数学期望与方差讲解
第27讲数学期望与方差的计算

第27讲数学期望与方差的计算数学期望与方差是概率论和数理统计中的重要概念,用于描述随机变量的平均值和离散程度。
在实际问题中,计算数学期望和方差有助于理解和分析随机变量的特征,从而进行合理的决策和预测。
首先,我们来介绍数学期望的计算方法。
数学期望是随机变量的平均值,可以用来预测实验结果的平均结果。
对于离散型随机变量X,其数学期望E(X)的计算公式为:E(X)=Σ(x*P(X=x))其中,x表示随机变量的可能取值,P(X=x)表示随机变量取值为x的概率。
通过将每个可能取值与其对应的概率相乘,然后将所有结果相加,即可得到数学期望。
举个例子,假设我们有一个投硬币的实验,结果正面的概率为p,反面的概率为1-p。
我们定义随机变量X表示投硬币的结果,1表示正面,0表示反面。
那么投硬币的数学期望E(X)的计算公式为:E(X)=1*p+0*(1-p)=p即投硬币的数学期望为正面的概率。
类似地,对于连续型随机变量X,其数学期望E(X)的计算公式为:E(X) = ∫(x * f(x))dx其中,f(x)表示X的概率密度函数。
通过将每个可能取值与其对应的概率密度相乘,然后对所有结果进行积分,即可得到数学期望。
接下来,我们来介绍方差的计算方法。
方差是随机变量的离散程度的度量,反映了观测值与其平均值的偏离程度。
对于离散型随机变量X,其方差Var(X)的计算公式为:Var(X) = Σ((x - E(X))^2 * P(X = x))其中,x表示随机变量的可能取值,E(X)表示随机变量X的数学期望。
通过将每个可能取值与其对应的偏离程度的平方与其概率相乘,然后将所有结果相加,即可得到方差。
举个例子,假设我们有一个骰子的实验,骰子有六个面,每个面的概率相等。
我们定义随机变量X表示骰子的结果,那么骰子的方差Var(X)的计算公式为:Var(X) = ((1-3.5)^2 + (2-3.5)^2 + ... + (6-3.5)^2) / 6即骰子的方差为35/12对于连续型随机变量X,其方差Var(X)的计算公式为:Var(X) = ∫((x - E(X))^2 * f(x))dx其中,x表示随机变量的可能取值,E(X)表示随机变量X的数学期望,f(x)表示X的概率密度函数。
数学期望和方差

第四章 数学期望和方差
本 章 内 容
随机变量的平均取值 —— 数学 期望 随机变量取值平均偏离平均值的 情况 —— 方差 描述两个随机变量之间的某种关
系的数 —— 协方差与相关系数
第四章 数学期望和方差
§4.1 数学期望
引例:测量 50 个圆柱形零件直径(见下表)
尺寸(cm) 8 9 10 11 12 数量(个) 8 7 15 10 10 50
E(X) kC n kpk(1p)nk
k0
n
k
n!
pk(1p)nk
k1 k!(nk)!
nn p(n 1 )!p k 1 (1 p )(n 1 ) (k 1 )
k 1 (k 1 )(n ! k )!
n1
npCn k1pk(1p)(n1)k np
k0
第四章 数学期望和方差
(3)泊松分布
E i n1aiXiC i n1aiE (Xi)C
当X ,Y 相互独立时,
E (X Y ) = E (X )E (Y ) .
第四章 数学期望和方差
注:性质 4 的逆命题不成立,即 若E (X Y) = E(X)E(Y),X ,Y 不一定相互独立.
反例
pij X -1
Y
-1
18
0
18
第四章 数学期望和方差
若X ≥0,且EX 存在,则EX ≥0.
证明:设 X 为连续型,密度函数为f (x), 则 由X ≥0 得:
f(x)0, x0,
所以
E Xxf(x )d xxf(x )d x 0 .
0
推论: 若 X ≤Y,则 EX ≤EY.
证明:由已知 Y-X≥0,则 E(Y-X) ≥0. 而E(Y-X)=E(Y)-E(X), 所以,E(X) ≤E(Y).
数学期望(均值)、方差和协方差的定义与性质

均值、方差和协方差的定义和基本性质1 数学期望(均值)的定义和性质定义:设离散型随机变量X 的分布律为{}, 1,2,k k P X x p k === 若级数1k k k xp ∞=∑绝对收敛,则称级数1k k k xp ∞=∑的和为随机变量X 的数学期望,记为()E X 。
即()1k k k E X x p ∞==∑。
设连续型随机变量X 的概率密度为()f x ,若积分()xf x dx ∞−∞⎰ 绝对收敛,则称积分()xf x dx ∞−∞⎰的值为随机变量X 的数学期望,记为()E X 。
即 ()()E X xf x dx ∞−∞=⎰ 数学期望简称期望,又称为均值。
性质:下面给出数学期望的几个重要的性质(1)设C 是常数,则有()E C C =;(2)设X 是一个随机变量,C 是常数,则有()()E CX CE X =;(3)设X 和Y 是两个随机变量,则有()()()E X Y E X E Y +=+,这一性质可以推广至任意有限个随机变量之和的情况;(4)设X 和Y 是相互独立的随机变量,则有()()()E XY E X E Y =。
2 方差的定义和性质定义:设X 是一个随机变量,若(){}2E X E X −⎡⎤⎣⎦存在,则称(){}2E X E X −⎡⎤⎣⎦为X的方差,记为()D X 或()Var X ,即性质:下面给出方差的几个重要性质(1)设C 是常数,则有()0D C =;(2)设X 是一个随机变量,C 是常数,则有()()2D CX C D X =,()()D X C D X +=;(3)设X 和Y 是两个随机变量,则有()()()()()()(){}2D X Y D X D Y E X E X Y E Y +=++−−特别地,若X 和Y 相互独立,则有()()()D X Y D X D Y +=+ (4)()0D X =的充分必要条件是以概率1取常数()E X ,即(){}1P X E X ==。
期望与方差的关系

期望与方差的关系
方差与期望的关系公式:DX=E(X^2-2XEX+(EX)^2)。
方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。
概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。
统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。
在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。
它反映随机变量平均取值的大小。
需要注意的是,期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。
期望值是该变量输出值的平均数。
期望值并不一定包含于变量的输出值集合里。
— 1 —。
期望与方差的概念及计算

期望与方差的概念及计算概率统计是应用最广泛的数学分支之一。
其中,期望和方差是两个极为重要的统计量。
他们体现了随机变量的特征和性质,为我们理解数据的特征提供了帮助。
本文将着重介绍期望和方差的概念及其计算方法。
一、期望的概念及计算期望,又称数学期望,是一个随机变量的平均值,其表现了样本空间中各种结果的权重平均值。
我们可以根据随机变量的取值和概率来求期望。
对于离散型随机变量,期望的计算公式为:E(X)=∑xiPi其中,xi是随机变量取得的各个值,Pi是相应的概率。
将每个xi乘以其对应的Pi,再求和,就可以得到该离散型随机变量的期望。
对于连续型随机变量,期望的计算公式为:E(X)= ∫xf(X)dx其中,f(X)是随机变量的概率密度函数。
同样,我们需要将随机变量的每个取值乘以该取值的密度函数值,再在整个样本空间上对其进行积分,即可得到该连续型随机变量的期望。
二、方差的概念及计算方差是随机变量与其期望之间偏离程度的一个度量。
方差越大,说明随机变量分布的波动范围越大。
方差的公式为:Var(X)= E[(X- μ)2] = E(X2)- [E(X)]2其中,μ是随机变量的期望值。
这个公式看起来比较复杂,我们可以简单地理解为:计算随机变量的每个取值与期望的距离的平方,再将这些平方值加起来,再除以总共的取值个数,就得到了方差的值。
那么,如何计算每个取值与期望的距离呢?我们可以借助离差的概念来处理这个问题。
离差,指的是随机变量每个取值与其期望值的差值。
利用离差的概念,我们可以将方差公式写为如下形式:Var(X)= ∑ (xi-μ)2Pi同样,对于连续型随机变量,其方差的计算公式为:Var(X)= ∫ (x-μ)2f(X)dx三、期望和方差的性质期望和方差是随机变量与概率密度函数之间的一个重要关系。
它们有以下几个基本性质:1. 常数的期望等于这个常数。
2. 线性组合的期望等于各个随机变量的期望的线性组合。
3. 期望的加法分配律。
方差与期望

方差与期望期望公式:方差公式:方差=E(x²)-E(x)²,E(X)是数学期望。
在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。
它反映随机变量平均取值的大小。
概率论简介:期望值像是随机试验在同样的机会下重复多次,所有那些可能状态平均的结果,便基本上等同“期望值”所期望的数。
期望值可能与每一个结果都不相等。
换句话说,期望值是该变量输出值的加权平均。
期望值并不一定包含于其分布值域,也并不一定等于值域平均值。
赌博是期望值的一种常见应用。
例如,美国的轮盘中常用的轮盘上有38个数字,每一个数字被选中的概率都是相等的。
赌注一般押在其中某一个数字上,如果轮盘的输出值和这个数字相等,那么下赌者可以获得相当于赌注35倍的奖金(原注不包含在内),若输出值和下压数字不同,则赌注就输掉了。
考虑到38种所有的可能结果,然后这里我们的设定的期望目标是“赢钱”,则因此,讨论赢或输两种预想状态的话,以1美元赌注押一个数字上,则获利的期望值为:赢的“概率38分之1,能获得35元”,加上“输1元的情况3 7种”,结果约等于-0。
0526美元。
也就是说,平均起来每赌1美元就会输掉0。
0526美元,即美式轮盘以1美元作赌注的期望值为负0。
0526美元扩展资料:在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。
概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。
统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。
在许多实际问题中,研究方差即偏离程度有着重要意义。
方差刻画了随机变量的取值对于其数学期望的离散程度。
(标准差、方差越大,离散程度越大)若X的取值比较集中,则方差D(X)较小,若X的取值比较分散,则方差D (X)较大。
因此,D(X)是刻画X取值分散程度的一个量,它是衡量取值分散程度的一个尺度。
数学期望与方差的运算性质

数学期望与方差的运算性质教程一:复习公式离散随机变量(),(,)(,)(,)(,)i j ij i j ij i jP X Y a b p Eh X Y h a b p ==→=∑连续随机变量()()()2,~,(,)(,),R f x y Eg g x y f x y dxdy ξηξη→=⎰⎰二:期望运算性质()E aX bY c aEX bEY c ++=++应用例题、袋中装有m 个不同色小球,有返回取球n 次,出现X 种不同颜色,求EX 解答:用i X ⎧=⎨⎩1第i颜色球在n次取球中出现0第i颜色球在n次取球中没出现,则m X X X ++= 1由于()()1101,111,n ni i P X P X m m ⎛⎫⎛⎫==-==-- ⎪ ⎪⎝⎭⎝⎭()111/ni EX m =--,()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--==++=∑=nmi i m m m EX X X E EX 11111三、协方差:若,EX EY θμ==,()()cov(,)X Y E X Y θμ=--⎡⎤⎣⎦称为随机变量X 、Y 的协方差.covariance()()cov(,)X Y E X Y θμ=--⎡⎤⎣⎦()()()()()()()()()()()EYEX XY E XY E XY E Y E X E XY E E Y E X E XY E Y X XY E ⨯-=-=+--=+--=+-+-+=+--=θμθμθμμθθμθμθμθμθμθμ 例题:害虫一生产卵个数X 服从参数为λ的Poisson分布,若每个卵能孵化成下一代的概率都是p ,假定害虫后代个数为Y ,求cov(,)X Y解答:(,)()()(1)!i i jj ji j i e P X i Y j P X i P Y j X i C p p i λλ-≥-=======-!(1)(1)!!()!!()!i i j i j j i j e i e p p p p i j i j j i j λλλλ----=-=---000(,)(1)!()!i ij i ji j i i j e EXY ijP X i Y j ij p p j i j λλ-∞∞-=≤======--∑∑∑∑000(,)(1)!()!iij i j i j i i j e EX iP X i Y j i p p j i j λλ-∞∞-=≤======--∑∑∑∑000(,)(1)!()!iij i j i j i i j e EY jP X i Y j j p p j i j λλ-∞∞-=≤======--∑∑∑∑clear clcsyms i j p lamda positiveEXY=symsum(symsum(i*j*exp(-lamda)*lamda^i/gamma(j+1)/gamma(i-j+1)*p^j*(1-p)^(i-j),j,0,i),i,0,inf)EX=symsum(symsum(i*exp(-lamda)*lamda^i/gamma(j+1)/gamma(i-j+1)*p^j*(1-p)^(i-j),j,0,i),i,0,inf)EY=symsum(symsum(j*exp(-lamda)*lamda^i/gamma(j+1)/gamma(i-j+1)*p^j*(1-p)^(i-j),j,0,i),i,0,inf)cov=simple(EXY-EX*EY); cov EXY =p*lamda*(lamda+1) EX = lamda EY = lamda*p cov = lamda*p可以看到,协方差不为0 例题:P180 3.4.8()[0,1][0,2],~(,)1/3()(,)f x y x y I x y ξη⨯=+,求(238)Var X Y -+syms x y positivemoment1=int(int((2*x-3*y+8)*1/3*(x+y),x,0,1),y,0,2); moment2=int(int((2*x-3*y+8)^2*1/3*(x+y),x,0,1),y,0,2); Var=moment2-moment1^2 Var = 245/81协方差计算公式()()()(),cov(,)EX a EY bX Y E X EX E Y EY E X a E Y b ===--=--()()()()E XY aY bX ab E XY aE Y bE X ab =--+=--+ ()E XY ab ba ab =--+ ()()()E XY E X E Y =-注: Y=X时得到什么公式?例题:若随机变量,X Y 独立,求它们的协方差解答:,EX EY θμ==,因为,X Y 独立,所以X Y θμ--、也相互独立()()()()cov(,)0X Y E X Y E X E Y θμθμ=--=-⨯-=⎡⎤⎣⎦注:相互独立随机变量协方差为0的逆命题不成立,如,假定随机变量~(1,1)X U -,则显然2cov(,)0X X =,但是2X X 、不独立 四、协方差和方差性质1:协方差是方差推广,方差是特殊协方差cov(,)()X X Var X =,cov(,)0X c =,cov(,)cov(,)X Y Y X =1111cov(,)cov(,)m n m ni i j j i j i j i j i j c X d Y c d X Y =====∑∑∑∑特殊地11111()cov(,)cov(,)mmmmmi i i i j i i i i j Var X X X X X =======∑∑∑∑∑111cov(,)cov(,)cov(,)m m m i j i j i i i j i j i X X X X X X ===≠⎡⎤==+⎢⎥⎣⎦∑∑∑∑1cov(,)()mi j i i j i X X Var X =≠⎡⎤=+⎢⎥⎣⎦∑∑11cov(,)()mmi j i i i j i X X Var X ==≠⎡⎤=+⎢⎥⎣⎦∑∑∑12cov(,)()mi j i i j iX X Var X =>=+∑∑特别地121212()()()2cov(,)Var X X Var X Var X X X +=++121212112212()cov(,)cov(,)cov(,)Var X X X X X X X X X X X X -=--=-+-- 11122122cov(,)cov(,)cov(,)cov(,)X X X X X X X X =+-+-+-- 11122122cov(,)cov(,)cov(,)cov(,)X X X X X X X X =+-+-+-- 1122122()cov(,)cov(,)cov(,)Var X X X X X X X =---- 1121222()cov(,)cov(,)cov(,)Var X X X X X X X =--+ 1212()()2cov(,)Var X Var X X X =+-这个结论说明,一般,和的方差并不等于方差之和 定理:若随机变量1,,n X X 相互独立,则111()2cov(,)()()nnni i j i i i i i j iVar X X X Var X Var X ===>=+=∑∑∑∑。
随机变量的数学期望与方差

随机变量的数学期望与方差随机变量在概率论中具有重要地位,它描述了随机事件的变化规律,数学期望和方差是衡量随机变量分布的重要指标。
一、数学期望数学期望是对随机变量取值的平均值的度量,记作E(X),其中X为随机变量。
数学期望可以理解为长期重复试验中,随机变量取值的平均结果。
对于离散型随机变量,数学期望的计算公式为:E(X) = ∑(x * P(X=x))其中x为随机变量的取值,P(X=x)为该取值发生的概率。
对于连续型随机变量,数学期望的计算公式为:E(X) = ∫(x * f(x))dx其中f(x)为随机变量的概率密度函数。
二、方差方差是随机变量取值分散程度的度量,记作Var(X)或σ^2,其中X为随机变量。
方差描述的是随机变量取值与其数学期望之间的偏离情况。
对于离散型随机变量,方差的计算公式为:Var(X) = ∑((x - E(X))^2 * P(X=x))其中x为随机变量的取值,E(X)为该随机变量的数学期望。
对于连续型随机变量,方差的计算公式为:Var(X) = ∫((x - E(X))^2 * f(x))dx其中f(x)为随机变量的概率密度函数。
三、应用举例为了更好理解数学期望与方差的作用和计算方法,下面以骰子为例进行说明。
假设我们有一个六面骰子,其取值范围为1到6,每个面出现的概率相等。
我们可以定义骰子的随机变量X表示投掷后骰子的结果。
1. 计算数学期望:E(X) = (1 * 1/6) + (2 * 1/6) + (3 * 1/6) + (4 * 1/6) + (5 * 1/6) + (6 * 1/6) = 3.5所以,这个六面骰子的数学期望为3.5,即在长期重复的投掷中,平均每次的点数是3.5。
2. 计算方差:Var(X) = ((1-3.5)^2 * 1/6) + ((2-3.5)^2 * 1/6) + ((3-3.5)^2 * 1/6) + ((4-3.5)^2 * 1/6) + ((5-3.5)^2 * 1/6) + ((6-3.5)^2 * 1/6) ≈ 2.92所以,这个六面骰子的方差为2.92,即在长期重复的投掷中,每次投掷结果与平均值3.5偏离的程度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
E (C ) = C E (aX ) = a E (X )
E (X + Y ) = E (X ) + E (Y )
E
n i1
ai X i
C
n i1
ai E( X i )
C
当X ,Y 相互独立时,
E (X Y ) = E (X )E (Y ) .
8
k1 k![(n 1) (k 1)]!
n1
np
(n 1)!
p qi (n1)i
i0 i![(n 1) i]!
n1
np Cni 1 p i q n1i i0
np np( p q)n1
(3) Poisson 分布: X ~ P()
E( X ) k k e e k1
0
推论: 若 X ≤Y,则 EX ≤EY。
证明:由已知 Y - X≥0,则 E(Y - X) ≥0。
而E(Y - X) = E(Y)-E(X), 所以,E(X) ≤E(Y)。 11
例1.设 X~N(10,4),Y~U[1,5],且X与Y 相互独立,求 E(3X+2XY-Y+5)。
解: 由已知, 有 E(X)=10, E(Y)=3.
PX
1k
2k k
1 2k
,k
1,2,
求EX.
解
由于
xk pk
k 1
1k 1
k 1
k
lnk .
但是
k 1
xk
pk
1 k 1 k
.
因而其数学期望EX不存在.
2.常见随机变量的数学期望
(1) 0--1 分布
引例1 分赌本问题(产生背景)
A、B两人赌技相同, 各出赌金100元, 并约定
先胜三局者为胜, 取得全部 200元. 由于出现意外 情况, 在 A 胜 2 局、B 胜1局时, 不得不终止赌博, 如果要分赌金, 该如何分配才算公平?
分析 假设继续赌两局, 则结果有以下四种情况:
AA
AB
BA
BB
A胜B负 A胜B负 A胜B负 B胜A负
注 性质 4 的逆命题不成立,即 若E (X Y) = E(X)E(Y),X ,Y 不一定相互独立. 反例
pij X -1
0
Y
-1
18
18
0
18
0
1
18
18
pi•
38 28
1 p• j
18 38 18 28 18 38
38
9
X Y -1
0
1
P
28 48
28
E(X ) E(Y ) 0; E( XY ) 0; E(XY ) E(X )E(Y )
e.g. 小组 8 个人,英语得 90 分的 3 人,80 分的 4 人, 60 分的 1 人,求平均分数.
90 3 80 4 601 90 3 80 4 60 1
3 41
8
8
8
变除法为乘法和加法
Def. 1 设离散型随机变量 X 的分布律为
P{X ak } pk , k 1, 2,
E(3X 2XY Y 5) 性质2和3 3E(X ) 2E(XY ) E(Y ) E(5)
性质4
310 2 E(X ) E(Y) 3 5
30 2103 3 5 92
12
数学期望不存在的实例
例8 设离散型随机变量X的分布律为
pk
B胜A负 B胜A负 A胜B负 B胜A负
把已赌过的三局(A 胜2局、B 胜1局)与上述结果 相结合, 即A、B赌完五局:
前三局: A胜2局B胜1局
后二局: A A A B B A B B
A胜
B胜
故有, 在赌技相同的情况下, A、B最终获胜的
可能性大小之比为 3:1.
即A 应获得赌金的 3 , 而 B 只能获得赌金的 1 .
E( X ) ak P{X ak } ak pk
k
k
称为 X 的数学期望或均值
Def. 2 设连续型随机变量 X 的分布密度函数为 f (x)
其数学期望定义为 E(X )
xf (x)dx
e. g. 1 甲、乙两人赌博,甲赢的概率为 1 ,输的
概率为
2
,但甲赢一次可从乙处得
但 P(X 0,Y 0) 0
P( X
0)P(Y
0)
2 2
8
10
若X ≥0,且EX 存在,则EX ≥0。
证明:设 X 为连续型,密度函数为f (x), 则
由X ≥0 得:
f (x) 0, x 0 ,
所以
EX x f (x)dx x f (x)dx 0.
k0 k!
k1 (k 1)!
ee
(4) 正态分布: X ~ N (, 2 )
E(X )
X1 0
P p 1 p
E(X ) 1 p 0 (1 p) p
(2) 二项分布:X ~ b(n, p)
n
E( X ) kCnk p k q nk
k 0
n
k
n!
pk qnk
k0 k!(n k)!
n
np k
(n 1)!
p q k 1 (n1)(k 1)
3
3
元,而输
3
一次要付给乙 1 元,求甲的平均赢利。
e. g. 2 某同学假期回家探亲,有三种方法:坐汽车, 240 元;坐火车,300 元;坐飞机,980 元.由于 各种原因,该同学采用三种路线的概率分别为:
0.3, 0.5, 0.2 。试写出差旅费 X 的概率分布,并计
算差旅费的平均值。
B. 数学期望的性质
0
其概率分别为:
3
1
4
4
因而A期望所得的赌金即为X的 “期望”值,
等于 200 3 ຫໍສະໝຸດ 1 150(元). 44即为 X的可能值与其概率之积的累加.
第3节 数学期望与方差
数学期望和方差是常用的随机变量的两个数字特征
一、数学期望(mathematical expectation)
1.数学期望的概念
4
4
因此, A 能“期望”得到的数目应 为
200 3 0 1 150(元), 44
而B 能“期望”得到的数目, 则为
200 1 0 3 50(元). 44
若设随机变量 X 为: 在 A 胜2局B 胜1局的前提 下, 继续赌下去 A 最终所得的赌金.
则X 所取可能值为: 200