常用分布的数学期望及方差

合集下载

常见分布的数学期望和方差

常见分布的数学期望和方差

E( X
2)
n k0
k 2Ckn
pkqnk
n
np
k 1
k
(k
(n 1)! 1)!(n
k )!
p k 1q n k
n np (k
k 1
1) (k
(n 1)! 1)!(n
k )!
pk1q nk
n k 1
(k
(n 1)! 1)!(n
k )!
pk1q nk
np[(n 1) p 1],
EX 2 4 ,试求 a 和 b( a b ).
解 DX EX 2 (EX )2 3 ;
ab 2
(b a)2 12
EX 1, DX 3

a b 2, b a 6 ;
a 2, b 4 .
因此 X 在区间[2,4] 上均匀分布.
21
第21页
例3 假设随机变量 X 和 Y 相互独立,且都在区间(0,1) 上 均匀分布,试求随机变量 Z X Y 的数学期望.
0.90 .
12
第12页
二、常见持续型分布旳数学盼望和方差
1. 均匀分布 X ~ U (a, b) .
1
f
(
x)
b
a
,
a xb
0 , 其它
b1
E( X ) xf ( x)dx x dx
a ba
1 b2 a2 a b .
ba 2
2
13
第13页
二、常见持续型分布旳数学盼望和方差
望 与
指数 分布
f
(
x)
e x
0,
,
x0 else
( 0)
p
npab 2 1源自pqnpq(b a)2 12 1

高中数学中的概率统计计算期望与方差的技巧

高中数学中的概率统计计算期望与方差的技巧

高中数学中的概率统计计算期望与方差的技巧概率统计是高中数学中的重要内容,计算期望与方差是其中的关键技巧。

本文将介绍几种常见的计算期望与方差的技巧,以帮助读者更好地理解和应用这些知识。

一、离散型随机变量的期望与方差计算对于离散型随机变量X,其概率分布列为P(X=x),而期望和方差的计算公式如下:1. 期望计算期望E(X)表示随机变量X的平均值,计算公式为:E(X) = Σ[x * P(X=x)]其中,Σ表示对所有可能取值的求和。

通过遍历所有可能取值,将取值与其对应的概率相乘,再求和,即可得到期望值。

2. 方差计算方差Var(X)表示随机变量X的离散程度,计算公式为:Var(X) = Σ[(x - E(X))^2 * P(X=x)]同样,通过遍历所有可能取值,将每个取值减去期望值,再平方,再与其对应的概率相乘,最后再求和,即可得到方差值。

这种计算方法适用于离散型随机变量的期望和方差计算,例如投掷一枚骰子的结果、抽取一副扑克牌的点数等情况。

二、连续型随机变量的期望与方差计算对于连续型随机变量X,其概率密度函数为f(x),而期望和方差的计算公式如下:1. 期望计算期望E(X)的计算公式为:E(X) = ∫(x * f(x))dx其中,∫表示对整个定义域的积分。

通过对概率密度函数乘以x后再积分,即可得到期望值。

2. 方差计算方差Var(X)的计算公式为:Var(X) = ∫[(x - E(X))^2 * f(x)]dx同样,通过对概率密度函数乘以(x - E(X))的平方后再积分,即可得到方差值。

这种计算方法适用于连续型随机变量的期望和方差计算,例如正态分布、指数分布等情况。

三、应用技巧下面将介绍一些计算期望与方差时的常用技巧:1. 期望的线性性质如果X和Y是两个随机变量,a和b为常数,则有:E(aX + bY) = aE(X) + bE(Y)这是期望的线性性质,利用这个性质可以简化复杂随机变量的期望计算。

常用分布的数学期望及方差

常用分布的数学期望及方差

方差的性质
方差具有可加性
对于两个独立的随机变量X和Y,有Var(X+Y) = Var(X) + Var(Y)。
方差具有对称性
对于一个常数a和随机变量X,有Var(aX) = |a|^2 * Var(X)。
方差具有非负性
对于随机变量X,有Var(X) >= 0,其中 Var(X) = 0当且仅当X是一个常数。
05 数学期望与方差的应用
在统计学中的应用
描述性统计
数学期望和方差用于描述一组数据的中心趋势和 离散程度,帮助我们了解数据的基本特征。
参数估计
通过样本数据的数学期望和方差,可以对总体参 数进行估计,如均值和方差的无偏估计。
假设检验
在假设检验中,数学期望和方差用于构建检验统 计量,判断原假设是否成立。
常见分布的数学期望
均匀分布的数学期望为
$E(X) = frac{a+b}{2}$,其中a和b是均匀分布的下限和上 限。
柯西分布的数学期望为
$E(X) = frac{pi}{beta} sinh(frac{1}{beta})$,其中β是柯西 分布的参数。
拉普拉斯分布的数学期望为
$E(X) = frac{beta}{pi} tan(frac{pi}{beta})$,其中β是拉普 拉斯分布的参数。
03
泊松分布
正态分布是一种常见的连续型随机变量 分布,其方差记作σ²。正态分布的方差 描述了随机变量取值的分散程度。
二项分布是一种离散型随机变量分布, 用于描述在n次独立重复的伯努利试验 中成功的次数。其方差记作σ²,且σ² = np(1-p),其中n是试验次数,p是单次 试验成功的概率。
泊松分布是一种离散型随机变量分布, 用于描述在一段时间内随机事件发生的 次数。其方差记作σ²,且σ² = λ,其中 λ是随机事件发生的平均速率。

常用分布函数及特征函数

常用分布函数及特征函数
数学期望
1 q peit ,方差 2 ,特征函数 p p 1 qeit
k nk CM CN M , k 1, 2, , min M , N , M N n CN k nk
超几何分布
P X k
nM nM ,方差 数学期望 N N
帕斯卡分布
M 1 N
f x1 , , xn 2
帕累托(Pareto)分布

C

k k k 2 k k 1 , x ,k 2 f x x , k 1 ,方差 , 0 ,数学期望 2 k 1 k 1 k 2 0, x
X
i 1
n
i
~ n, 。
若 X ~ ,1 ,则 Y
X

~ , 。
若 X 1 , X 2 , , X n 相互独立,且 X i ~ N 0,1 ,则
X
i 1
n
2 i
n 1 ~ , 2 n 。 2 2


n
P X k
数学期望 ,方差 ,特征函数 e e 几何分布
it
k
k!
e , k 0,1, 2, , 0
1

P X k q k 1 p , k 1, 2, , 0 p 1, p q 1
2


威布尔分布
2 x 1e x , x 0 1/ 2 / 2 / 1 1/ 1 f x ,数学期望 1/ 1 ,方差 x0 0,

伽马(Gamma)分布 , ,形状参数 ,尺度参数

六个常用分布的数学期望和方差

六个常用分布的数学期望和方差


12
若随机变量X~U( a , b ),则
ab
(b a)2
E(X)
, D( X )
2
12
五.指数分布
随机变量X服从参数为λ的指数分布,其概率密度为:
f
(
x)
1
θ
e
x θ
0
x0 x0
E(X )
xf ( x)dx
x
1
e
x θ
dx
x
( x)de θ
0
θ
0

x)e
x
x
e dx
X X1 X2 Xn
E( X ) E( X1 ) E( X 2 ) E( X n ) np
D( X ) D( X1 ) D( X 2 ) D( X n ) np(1 p)
即: 若随机变量X~B( n , p ),则
E( X ) np,D( X ) np(1 p)
E[3( X 2 1)] 3E( X 2 ) 3
3{D( X ) [E( X )]2 } 3 33
例2.已知X和Y相互独立,且X在区间(1,5)上服从
均匀分布, Y ~ N (1,求9)(1, ) (X,Y)的联合概率密度;(2)
E(3X 4Y 2) , D(3X 4Y 2)
E( X ) xf ( x)dx
b
x
1
dx
a ba
1 x2 b
ba 2 a
ab 2
E( X 2 ) b x 2
1
b3 a3 dx
a 2 ab b2
a ba
3(b a)
3
D( X )
E( X 2 ) [E( X )]2

六个常用分布的数学期望和方差

六个常用分布的数学期望和方差
2
例1.已知 X ~ (3) , Y 2 X 1 , 求E (Y ) , D(Y ) , E[3( X 2 1)] 解:X ~ (3) , 则 E ( X ) 3 , D( X ) 3
E (Y ) E ( 2 X 1) 2 E ( X ) 1 5
D(Y ) D( 2 X 1) 4 D( X ) 12



xf ( x )dx

b
x
1 ba
dx
a

1 ba
x
2
b

ab 2
2 a
E( X )
2

b
x
2
1 ba
dx
b a
3
3
a
3(b a )
a ab b
2 2

a ab b
2
2
3
a 2ab b
2 2
D( X ) E ( X ) [ E ( X )]
即: 若随机变量X~B( n , p ),则
E ( X ) np,D( X ) np(1 p)
三.泊松分布
随机变量
P{ X k }
X ~ ( ) ,其分布律为:
λ e
k λ
,
k 0,1,2, ,
k!
E( X )
k
k 0

e
k

e

k!
(k 1)!

xf ( x )dx




x
1 2

e
dx (令 t
t
2
x

常见概率分布期望方差以及分布图汇总

常见概率分布期望方差以及分布图汇总
������ ������ −1 − 2 ������ 2
������������
������������ 2
指数分布(负指 数分布)
Γ(1, ������)
������ > 0
������
������ 2
注:指数分布是Γ分布的特殊情况 χ2 分布
������2 (������)
������ ≥ 1
负二项分布(帕
离 散 型
斯卡分布)
B0 (������, ������)
0<p<1 r≥1
K=r,r+1,… P{������ = ������} = (1 − ������)������−1 ������ K=1,2,…
������ ������ 1 ������ ������������ ������
������ 2 ∞ ������⁄ 2
0,n>1
������ , ������ > 2 ������ − 2
非中心 t 分布
������(������, ������)
������ ������ ≥ 1
������ − 1 ������Γ ( ) ������ 2 √ ������ 2 Γ( ) 2 (n>1)
常见的“概率分布表 + 分布图”汇总(内容源自书本,同时本人额外加了许多内容进去。此表可直接打印)整理人:算法君
说明,我们学过的各种概率分布公式较多且形式多样,各分布的数学期望及方差是常用的数据,为方便做题目,也方便记忆故作此表,并在此共享给大家希望给大家提供一定方便!

分布
单点分布(退化 分布) (0-1)分布(两点 分布或伯努利分 布) 二项分布
数学期望 a p np

概率分布计算公式

概率分布计算公式

概率分布计算公式概率分布是概率论中重要的概念之一,它描述了随机变量在各个取值上的取值概率。

在实际问题中,我们常常需要计算概率分布以解决相关的概率统计问题。

本文将介绍几种常见的概率分布以及它们的计算公式。

一、二项分布(Binomial Distribution)二项分布是概率论中常用的离散型概率分布,它描述了在一定次数的独立重复试验中,成功事件发生的次数的概率分布。

其计算公式为:P(X=k) = C(n, k) * p^k * (1-p)^(n-k)其中,P(X=k)表示成功事件发生k次的概率,n表示试验次数,p表示每次试验成功的概率,C(n, k)表示组合数,可以使用n个数任取k个的方式计算。

二项分布的期望为E(X)=np,方差为Var(X)=np(1-p)。

二、泊松分布(Poisson Distribution)泊松分布是一种离散型概率分布,适用于描述单位时间(或单位空间)内随机事件发生的次数。

其计算公式为:P(X=k) = (λ^k * e^(-λ))/k!其中,P(X=k)表示事件发生k次的概率,λ表示单位时间(或单位空间)内事件发生的平均次数,e为自然对数的底。

泊松分布的期望为E(X)=λ,方差为Var(X)=λ。

三、正态分布(Normal Distribution)正态分布是概率论中最重要的连续型概率分布,也称为高斯分布。

它的形状呈钟型曲线,对称于均值。

正态分布在实际问题中得到广泛应用。

其概率密度函数的计算公式为:f(x) = (1 / (σ * √(2π))) * e^((-1/2)*((x-μ)/σ)^2)其中,f(x)表示随机变量X的概率密度函数,μ为均值,σ为标准差,π为数学常数3.14159。

正态分布的期望为E(X)=μ,方差为Var(X)=σ^2。

四、指数分布(Exponential Distribution)指数分布是一种连续型概率分布,其概率密度函数具有常数倍衰减的特点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( x − µ )2 2σ 2

t2 2
dt , (
x−µ
σ
= t)
=
σ

∫ te
t2 − 2
dt +

µ 2π
∫e
t2 − 2
dt = µ

DX = E ( X − µ ) =
2
=
σ2 =− te 2π
σ t 2π −∞


2 2
t2 − e 2
t2 − 2
−∞
∫ (x − µ)
σ
2 ∞
2
1 2π σ
且 X 1 ,L , X n 独立,令 X = X 1 + L + X n ,则 X 的可能 取值为 0,1,…n,
P{ X = k } = C nk p k q n − k , k = 0 , L , n
EX = ∑ EX i = np , DX = ∑ DX i = npq,
i =1 i =1 n n
n
= n ( n − 1) p 2 ∑
n! n! = p ( k − 1) p k −1 q n − k + p p k −1 q n − k ( k − 1)! ( n − k )! ( k − 1)! ( n − k )! k =1 k =1


n
( n − 2)! p k − 2 q n − 2 − ( k − 2 ) + np k = 2 ( k − 2)!( n − 2 − ( k − 2))!
泊 分 3. 松 布
设 X 服从参数为λ泊松分布, 其分布律为 P{ X = k} =
EX =
λk


k
λk
k!
e −λ = λe −λ
k =0


k =1
k! λ k −1 = λe −λ e λ = λ ( k − 1)! 返回主目录
e − λ ,k=0,1,...
第十三章 随机变量的数字特征
( n − 1)! p k −1 q n −1−( k −1) = np ( k − 1)! ( n − 1 − ( k − 1))! 返回主目录 k =1

n
第十三章 随机变量的数字特征
EX = np


n
n
k −1 C n −1 p k −1 q n −1− ( k −1) = np
= np ( p + q ) n −1 = np
EX
2
k =1

i=0
2
n −1
§3 几种期望与方差 i C n −1 p i q n −1− i
=
k ⋅C p q
2 k n k
n−k
n ! =p k pk −1qn−k (k − 1)! n − k)! ( k =1

n
n
k =0
n! p kq n−k = ∑ k ⋅ k ! ( n − k )! k=0
EX
2
= =
∑k ∑
2

2
λk
k!
e
−λ
=
k =0 ∞
∑ k (k − 1)! e
k =1

λk
Hale Waihona Puke −λ§3 几种期望与方差
( k − 1)
−λ ∞
λk
( k − 1)!
e
−λ
+
k =1
∑ (k − 1)!
k =1

λk
e −λ
= λ e
∑ ( k − 2 )! (k
k=2
λk − 2
+ λe − λ e λ = λ2 + λ
a + b 2 (b − a ) 2 1 DX = EX 2 − ( EX ) 2 = ∫ x 2 dx − ( ) = b−a 2 12 a
b
5.正态分布 X ~ N(µ,σ 2 )
EX =
∞ −∞

x
1 e 2π σ
∞ −∞

(x−µ )2 2σ
2
dx =
1 2π
∞ −∞

−∞
∫ (σ t + µ ) e
= 2Φ (3) − 1 = 0.9974
因此,对于正态随机变量来说,它的值落在区间 [µ − 3σ , µ + 3σ ] 内 几乎 肯 是 定的 。
在上一节用切比晓夫不等式估计概率有:
P {| X − µ | < 3 σ } ≥ 0 . 8889
返回主目录
e
dx , (

x−µ
σ
= t)
dt =

|
∞ −∞
σ2 + 2π
−∞

t2 − 2 t e 2
t2 − 2
dt = −
σ
2


−∞

t2 − tde 2
−∞
∫e
dt = σ 2
返回主目录
第十三章 随机变量的数字特征
P{| X − µ |≤ σ } = P{µ − σ ≤ X ≤ µ + σ }
= Φ(
§3 几种期望与方差
P{| X − µ |≤ 2σ } =P { µ − 2σ ≤ X ≤ µ + 2σ }
= 2Φ ( 2) − 1 = 0.9544
µ +σ − µ µ −σ − µ ) − Φ( ) = Φ(1) − Φ(−1) = 2Φ(1) − 1 = 0.6826 σ σ
P{| X − µ |≤ 3σ } = P{ µ − 3σ ≤ X ≤ µ + 3σ }
第十三章 随机变量的数字特征
§3.几种重要随机变量的数学期望及方差 1.两点分布
X 0 pk 1 − p 1 p
EX=p , DX = EX 2 − ( EX ) 2 = p − p 2 = pq 。
2. 二项分布 方法1: k k n−k P{ X = k } = C n p q , k = 0 ,1, L , n 。 n n n! k k n−k EX = ∑ k ⋅ C n p q = ∑k⋅ p kq n−k k ! ( n − k )! k =0 k =0
n
= n ( n − 1) p 2 ( p + q ) n − 2 + np = n 2 p 2 − np 2 + np
DX = EX
2
− ( EX ) 2 = n 2 p 2 − n p 2 + np − n 2 p 2 = np (1 − p ) = npq
第十三章 随机变量的数字特征
§3 几种期望与方差 方法2: X i 服从(0-1)分布, P{ X i = 0} = q, P{ X i = 1} = p, i = 1,2,L, n
DX = EX 2 − (EX ) 2 = λ2 + λ − λ2 = λ
4.均匀分布

1 /(b − a ), a < x < b 。 f ( x) = 0, 其它
EX =
−∞

1 a+b xf ( x)dx = x dx = b−a 2

a
b
返回主目录
第十三章 随机变量的数字特征
§3 几种期望与方差
相关文档
最新文档