常见分布的期望和方差
常用分布的数学期望及方差

方差的性质
方差具有可加性
对于两个独立的随机变量X和Y,有Var(X+Y) = Var(X) + Var(Y)。
方差具有对称性
对于一个常数a和随机变量X,有Var(aX) = |a|^2 * Var(X)。
方差具有非负性
对于随机变量X,有Var(X) >= 0,其中 Var(X) = 0当且仅当X是一个常数。
05 数学期望与方差的应用
在统计学中的应用
描述性统计
数学期望和方差用于描述一组数据的中心趋势和 离散程度,帮助我们了解数据的基本特征。
参数估计
通过样本数据的数学期望和方差,可以对总体参 数进行估计,如均值和方差的无偏估计。
假设检验
在假设检验中,数学期望和方差用于构建检验统 计量,判断原假设是否成立。
常见分布的数学期望
均匀分布的数学期望为
$E(X) = frac{a+b}{2}$,其中a和b是均匀分布的下限和上 限。
柯西分布的数学期望为
$E(X) = frac{pi}{beta} sinh(frac{1}{beta})$,其中β是柯西 分布的参数。
拉普拉斯分布的数学期望为
$E(X) = frac{beta}{pi} tan(frac{pi}{beta})$,其中β是拉普 拉斯分布的参数。
03
泊松分布
正态分布是一种常见的连续型随机变量 分布,其方差记作σ²。正态分布的方差 描述了随机变量取值的分散程度。
二项分布是一种离散型随机变量分布, 用于描述在n次独立重复的伯努利试验 中成功的次数。其方差记作σ²,且σ² = np(1-p),其中n是试验次数,p是单次 试验成功的概率。
泊松分布是一种离散型随机变量分布, 用于描述在一段时间内随机事件发生的 次数。其方差记作σ²,且σ² = λ,其中 λ是随机事件发生的平均速率。
4_2方差及常见分布的期望方差

《概率统计》 返回 下页 结束
X P 8 0.3 9 0.2 10 0.5
Y P
8 0.2
9 0.4
10 0.4
偏离期望 的平方的 期望
解:
E ( X ) 8 0.3 9 0.2 10 0.5 =9.2(环) E (Y ) 8 0.2 9 0.4 10 0.4=9.2(环)
因此,从平均环数上看,甲乙两人的射击水平是一样的, 但两人射击水平的稳定性是有差别的,怎么体现这个差别呢?
b
1 E ( X ) xf ( x) dx x dx a b a ba 2 2 2 b 1 a ab b E ( X 2 ) x 2 f ( x) dx x 2 dx a ba 3 1 2 ab 2 2 2 2 ) D( X ) E( X ) [ E( X )] (a ab b ) ( 3 2
§4.2 方 差
0. 方差概念的引入
随机变量的数学期望是一个重要的数学特征,反应了随机变 量取值的平均大小,但只知道随机变量的数学期望是不够的.
引例1 甲、乙两门炮同时向一目标射击10发炮弹,其落点距 目标的位置如图:
中心
中心
甲炮射击结果
《概率统计》
返回
下页
常见分布的期望和方差

罕有散布的期望和方差(0,1)N 2()Yx n t =概率与数理统计重点摘要1.正态散布的盘算:()()()X F x P X x μσ-=≤=Φ.2.随机变量函数的概率密度:X 是屈服某种散布的随机变量,求()Y f X =的概率密度:()()[()]'()Y X f y f x h y h y =.(拜见P66~72)3.散布函数(,)(,)xyF x y f u v dudv -∞-∞=⎰⎰具有以下基赋性质:⑴.是变量x,y 的非降函数;⑵.0(,)1F x y ≤≤,对于随意率性固定的x,y 有:(,)(,)0F y F x -∞=-∞=; ⑶.(,)F x y 关于x 右持续,关于y 右持续;⑷.对于随意率性的11221212(,),(,),,x y x y x x y y << ,有下述不等式成立:4.一个主要的散布函数:1(,)(arctan )(arctan )23x y F x y πππ2=++22的概率密度为:22226(,)(,)(4)(9)f x y F x y x y x y π∂==∂∂++ 5.二维随机变量的边沿散布:边沿概率密度:()(,)()(,)X Y f x f x y dyf y f x y dx+∞-∞+∞-∞==⎰⎰边沿散布函数:()(,)[(,)]()(,)[(,)]xX yY F x F x f u y dy du F y F y f x v dx dv+∞-∞-∞+∞-∞-∞=+∞==+∞=⎰⎰⎰⎰二维正态散布的边沿散布为一维正态散布.6.随机变量的自力性:若(,)()()X Y F x y F x F y =则称随机变量X,Y 互相自力.简称X 与Y 自力.7.两个自力随机变量之和的概率密度:()()()()()Z X Y Y X f z f x f z x dx f y f z y dy +∞+∞-∞-∞=-=-⎰⎰个中Z =X +Y8.两个自力正态随机变量的线性组合仍屈服正态散布,即22221212(,Z aX bY N a b a b μμσσ=+++). 9.期望的性质:……(3).()()()E X Y E X E Y +=+;(4).若X,Y 互相自力,则()()()E XY E X E Y =. 10.方差:22()()(())D X E X E X =-.若X,Y不相干,则()()()D X Y D X D Y +=+,不然()()()2(,)D X Y D X D Y Cov X Y +=++,()()()2(,)D X Y D X D Y Cov X Y -=+-11.协方差:(,)[(())(())]Cov X Y E X E X Y E Y =--,若X,Y 自力,则(,)0Cov X Y =,此时称:X 与Y 不相干. 12.相干系数:(,)()()XY Cov X Y X Y ρσσ==1XY ρ≤,当且仅当X 与Y 消失线性关系时1XY ρ=,且1,b>0;1,b<0XY ρ⎧=⎨-⎩ 当 当。
理解概率分布函数常见分布公式详解

理解概率分布函数常见分布公式详解概率分布函数(Probability Distribution Function,简称PDF)是描述随机变量取值概率分布的函数,常用于统计学和概率论中。
在统计学中,常见的概率分布函数有众多的公式。
本文将详细解释几种常见的概率分布函数公式,包括均匀分布、正态分布、指数分布和泊松分布。
一、均匀分布均匀分布是最简单的概率分布函数之一,它在一个有限区间内的取值是均匀分布的。
均匀分布的概率密度函数公式为:f(x) = 1 / (b - a),a ≤ x ≤ b其中,a和b分别是区间的上下界。
均匀分布的期望值(均值)为(a + b)/ 2,方差为(b - a)^2 / 12。
二、正态分布正态分布是自然界和社会现象中常见的概率分布函数。
它在统计学中有着重要的地位。
正态分布的概率密度函数(Probability Density Function,简称PDF)公式为:f(x) = (1 / (σ * √(2π))) * exp(-((x - μ)^2/(2σ^2)))其中,μ是期望值(均值),σ是标准差。
正态分布的期望值和方差分别为μ和σ^2。
三、指数分布指数分布是描述事件发生的时间间隔的概率分布函数,常用于可靠性工程和排队论中。
指数分布的概率密度函数公式为:f(x) = λ * exp(-λx),x ≥ 0其中,λ是事件发生率。
指数分布的期望值为1 / λ,方差为1 / λ^2。
四、泊松分布泊松分布是描述单位时间或空间内事件发生次数的概率分布函数,常用于描述稀有事件的发生情况。
泊松分布的概率质量函数(Probability Mass Function,简称PMF)公式为:P(X = k) = (λ^k * exp(-λ)) / k!其中,λ是单位时间或空间内事件的平均发生率。
泊松分布的期望值和方差均为λ。
以上是几种常见的概率分布函数公式的详细解释。
这些概率分布函数在不同领域的应用非常广泛,能够描述和解释各种随机现象的概率分布情况。
常见分布的期望与方差的计算知识分享

3. 泊松分布
设 X ~ π(λ ), 且分布律为
P{ X = k} = λk e−λ , k = 0,1,2,", λ > 0.
k!
∑ ∑ 则有 E( X ) = ∞ k ⋅ λk e−λ = e−λ ∞ λk−1 ⋅ λ
k=0 k!
k=1 (k − 1)!
= λe−λ ⋅ eλ = λ
= np[ p + (1 − p)]n−1 = np
E( X 2 ) = E[ X ( X − 1) + X ] = E[ X ( X − 1)] + E( X )
∑ = n k(k − 1)⎜⎛ k ⎞⎟ pk (1 − p)n−k + np
k=0
⎝n⎠
∑ = n k(k − 1)n!pk (1 − p)n−k + np
(法二) X 的分布律为
P{ X = k} = ⎜⎛ n ⎞⎟ pk (1 − p)n−k ,(k = 0,1,2,", n),
⎝k⎠
∑ ∑ 则有 E( X ) = n k ⋅ P{ X = k} = n k⎜⎛ n ⎞⎟ pk (1 − p)n−k
k=0
k=0 ⎝ k ⎠
∑n
=
kn! pk (1 − p)n−k
E( X 2 ) = E[ X ( X − 1) + X ]
= E[ X ( X − 1)] + E( X )
∑ = +∞ k(k − 1) ⋅ λk e−λ + λ
k=0
k!
∑+∞
= λ2e−λ ⋅
λk − 2
+ λ = λ2e−λeλ + λ = λ2 + λ .
常见分布的期望和方差

罕睹分散的憧憬战圆好之阳早格格创做(0,1)N 2()Yx n t =概率取数理统计沉面纲要1、正态分散的预计:()()()X F x P X x μσ-=≤=Φ.2、随机变量函数的概率稀度:X是遵循某种分散的随机变量,供()Y f X =的概率稀度:()()[()]'()Y X f y f x h y h y =.(拜睹P66~72)3、分散函数(,)(,)xyF x y f u v dudv -∞-∞=⎰⎰具备以下基赋本量:⑴、是变量x ,y 的非落函数;⑵、0(,)1F x y ≤≤,对付于任性牢固的x ,y 有:(,)(,)0F y F x -∞=-∞=; ⑶、(,)F x y 闭于x 左连绝,闭于y 左连绝;⑷、对付于任性的11221212(,),(,),,x y x y x x y y << ,有下述没有等式创造:4、一个要害的分散函数:1(,)(arctan )(arctan )23x y F x y πππ2=++22的概率稀度为:22226(,)(,)(4)(9)f x y F x y x y x y π∂==∂∂++ 5、二维随机变量的边沿分散:边沿概率稀度:()(,)()(,)X Y f x f x y dyf y f x y dx+∞-∞+∞-∞==⎰⎰边沿分散函数:()(,)[(,)]()(,)[(,)]xX yY F x F x f u y dy du F y F y f x v dx dv+∞-∞-∞+∞-∞-∞=+∞==+∞=⎰⎰⎰⎰二维正态分散的边沿分散为一维正态分散.6、随机变量的独力性:若(,)()()X Y F x y F x F y =则称随机变量X ,Y 相互独力.简称X 取Y 独力.7、二个独力随机变量之战的概率稀度:()()()()()Z X Y Y X f z f x f z x dx f y f z y dy +∞+∞-∞-∞=-=-⎰⎰其中Z =X +Y8、二个独力正态随机变量的线性推拢仍遵循正态分散,即22221212(,Z aX bYN a b a b μμσσ=+++).9、憧憬的本量:……(3)、()()()E X Y E X E Y +=+;(4)、若X ,Y 相互独力,则()()()E XY E X E Y =. 10、圆好:22()()(())D X E X E X =-. 若X ,Y 没有相闭,则()()()D X Y D X D Y +=+,可则()()()2(,)D X Y D X D Y Cov X Y +=++,()()()2(,)D X Y D X D Y Cov X Y -=+-11、协圆好:(,)[(())(())]Cov X Y E X E X Y E Y =--,若X ,Y 独力,则(,)0Cov X Y =,此时称:X 取Y 没有相闭. 12、相闭系数:(,)()()XYCov X Y X Y ρσσ==1XY ρ≤,当且仅当X 取Y 存留线性闭系时1XYρ=,且1,b>0;1,b<0XYρ⎧=⎨-⎩ 当 当。
常见概率分布期望方差以及分布图汇总

������������
������������ 2
指数分布(负指 数分布)
Γ(1, ������)
������ > 0
������
������ 2
注:指数分布是Γ分布的特殊情况 χ2 分布
������2 (������)
������ ≥ 1
负二项分布(帕
离 散 型
斯卡分布)
B0 (������, ������)
0<p<1 r≥1
K=r,r+1,… P{������ = ������} = (1 − ������)������−1 ������ K=1,2,…
������ ������ 1 ������ ������������ ������
������ 2 ∞ ������⁄ 2
0,n>1
������ , ������ > 2 ������ − 2
非中心 t 分布
������(������, ������)
������ ������ ≥ 1
������ − 1 ������Γ ( ) ������ 2 √ ������ 2 Γ( ) 2 (n>1)
常见的“概率分布表 + 分布图”汇总(内容源自书本,同时本人额外加了许多内容进去。此表可直接打印)整理人:算法君
说明,我们学过的各种概率分布公式较多且形式多样,各分布的数学期望及方差是常用的数据,为方便做题目,也方便记忆故作此表,并在此共享给大家希望给大家提供一定方便!
类
分布
单点分布(退化 分布) (0-1)分布(两点 分布或伯努利分 布) 二项分布
数学期望 a p np
概率分布计算公式

概率分布计算公式概率分布是概率论中重要的概念之一,它描述了随机变量在各个取值上的取值概率。
在实际问题中,我们常常需要计算概率分布以解决相关的概率统计问题。
本文将介绍几种常见的概率分布以及它们的计算公式。
一、二项分布(Binomial Distribution)二项分布是概率论中常用的离散型概率分布,它描述了在一定次数的独立重复试验中,成功事件发生的次数的概率分布。
其计算公式为:P(X=k) = C(n, k) * p^k * (1-p)^(n-k)其中,P(X=k)表示成功事件发生k次的概率,n表示试验次数,p表示每次试验成功的概率,C(n, k)表示组合数,可以使用n个数任取k个的方式计算。
二项分布的期望为E(X)=np,方差为Var(X)=np(1-p)。
二、泊松分布(Poisson Distribution)泊松分布是一种离散型概率分布,适用于描述单位时间(或单位空间)内随机事件发生的次数。
其计算公式为:P(X=k) = (λ^k * e^(-λ))/k!其中,P(X=k)表示事件发生k次的概率,λ表示单位时间(或单位空间)内事件发生的平均次数,e为自然对数的底。
泊松分布的期望为E(X)=λ,方差为Var(X)=λ。
三、正态分布(Normal Distribution)正态分布是概率论中最重要的连续型概率分布,也称为高斯分布。
它的形状呈钟型曲线,对称于均值。
正态分布在实际问题中得到广泛应用。
其概率密度函数的计算公式为:f(x) = (1 / (σ * √(2π))) * e^((-1/2)*((x-μ)/σ)^2)其中,f(x)表示随机变量X的概率密度函数,μ为均值,σ为标准差,π为数学常数3.14159。
正态分布的期望为E(X)=μ,方差为Var(X)=σ^2。
四、指数分布(Exponential Distribution)指数分布是一种连续型概率分布,其概率密度函数具有常数倍衰减的特点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常见分布的期望和方差
概率与数理统计重点摘要
1、正态分布的计算:()()()X F x P X x μ
σ-=≤=Φ。
2、随机变量函数的概率密度:X 是服从某种分布的随机变量,求()Y f X =的概率密度:()()[()]'()Y X f y f x h y h y =。
(参见P66~72)
3、分布函数(,)(,)x y
F x y f u v dudv -∞-∞=⎰⎰具有以下基本性质:
⑴、是变量x ,y 的非降函数;
⑵、0(,)1F x y ≤≤,对于任意固定的x ,y 有:(,)(,)0F y F x -∞=-∞=;
⑶、(,)F x y 关于x 右连续,关于y 右连续;
⑷、对于任意的11221212(,),(,),,x y x y x x y y <<
,有下述不等式成立: 22122111(,)(,)(,)(,)0F x y F x y F x y F x y --+≥
4、一个重要的分布函数:1(,)(arctan )(arctan )23
x y F x y πππ2=++22的概率密度为:22226(,)(,)(4)(9)f x y F x y x y x y π∂==∂∂++ 5、二维随机变量的边缘分布:
边缘概率密度:()(,)()(,)X Y f x f x y dy f y f x y dx
+∞-∞
+∞-∞==⎰
⎰
边缘分布函数:()(,)[(,)]()(,)[(,)]x X y Y F x F x f u y dy du F y F y f x v dx dv
+∞
-∞
-∞+∞-∞-∞=+∞==+∞=⎰⎰⎰⎰ 二维正态分布的边缘分布为一维正态分布。
6、随机变量的独立性:若(,)()()X Y F x y F x F y =则称随机变量X ,Y 相互独立。
简称X 与Y 独立。
7、两个独立随机变量之和的概率密度:()()()()()Z X Y Y X f z f x f z x dx f y f z y dy +∞
+∞
-∞-∞=-=-⎰⎰其中Z =X +Y
8、两个独立正态随机变量的线性组合仍服从正态分布,即22221212(,Z aX bY N a b a b μμσσ=+++)。
9、期望的性质:……(3)、()()()E X Y E X E Y +=+;(4)、若X ,Y 相互独立,则()()()E XY E X E Y =。
10、方差: 22
()()(())D X E X E X =-。
若X ,Y 不相关,则()()()D X Y D X D Y +=+,否则()()()2(,)D X Y D X D Y Cov X Y +=++,()()()2(,)D X Y D X D Y Cov X Y -=+-
11、协方差:(,)[(())(())]Cov X Y E X E X Y E Y =--,若X ,Y 独立,则(,)0Cov X Y =,此时称:X 与Y 不相关。
12
、相关系数:(,)()()XY Cov X Y X Y ρσσ==1XY ρ≤,当且仅当X 与Y 存在线性关系时1XY ρ=,且1,b>0;1,b<0XY ρ⎧=⎨-⎩
当 当。
13、k 阶原点矩:()k k v E X =,k 阶中心矩:[(())]k k E X E X μ=-。
14、切比雪夫不等式:{}{}22()
()(),()1D X D X P X E X P X E X εεεε-≥≤-<≤-或。
贝努利大数定律:0lim 1n m P p n ε→⎧⎫-<=⎨⎬⎩⎭。
15、独立同分布序列的切比雪夫大数定律:因2111n i i P X n n σμεε2
=⎧⎫-<≥-⎨⎬⎩⎭∑,所以011lim 1n i n i P X n με→=⎧⎫-<=⎨⎬⎩⎭
∑ 。
16、独立同分布序列的中心极限定理:
(1)、当n 充分大时,独立同分布的随机变量之和1n n i i Z X
==∑的分布近似于正态分布2
(,)N n n μσ。
20、关于正态总值均值及方差的假设检验,参见P243和P248。