数学分析9-3

合集下载

9-3 数学分析全套课件

9-3   数学分析全套课件
n
称 S(T ) MiΔxi 为 f 关于分割 T 的上和,其中
i 1
Mi sup f ( x) | x [ xi1 , xi ], i 1, 2, L n;
n
称 s(T ) miΔxi 为 f 关于分割 T 的下和,其中
i 1
mi inf f ( x) | x [ xi1 , xi ], i 1, 2, L n;
1 q
,
x
p q
( p,q 互素 ),
0 , x 0, 1 及 (0, 1) 中的无理数
在 [0, 1] 上可积,且
1
R( x) d x 0.
0
P74
前页 后页 返回
称 i Mimi (i 1, 2, L n) 为 f 在 [ xi1, xi ] 上的
振幅.
前页 后页 返回
结论
定理9.3(可积准则)函数 f 在[a, b]上可积的充要
条件是: 0, 分割 T ,使
n
n
S(T ) s(T ) (Mi mi )Δxi iΔxi .
i 1
i 1
三、充分条件 i Mi mi sup | f ( x) f ( x) | .
T : a0 x0 x1 L xn b,
及任意 i xi1 , xi , i 1, 2,L , n,
n
当 T maxxi 时,必有 f (i )xi J i1 前页 后页 返回
二、充要条件 定义 设 f 在 [a, b] 上有界, 对任意分割
T : a x0 x1 ... xn b,
前页 后页 返回
四、可积性举例
例1 求证 f 在 [0,1]上可积,其中
0,
x0
f (x)
1

华东师大数学分析答案完整版

华东师大数学分析答案完整版

!!第一章实数集与函数内容提要!一!实数!"实数包括有理数和无理数!有理数可用分数"#!""#为互质整数##"#$表示#也可用有限十进小数或无限十进循环小数表示!!$是首先遇到的无理数#它与古希腊时期所发现的不可公度线段理论有直接联系#且可以表示为无限十进不循环小数!实数的无限十进小数表示在人类实践活动中被普遍采用#我们是由无限十进小数表示出发来阐述实数理论的!$"若$%%#%%!%$&%&&为非负实数#称有理数$&%%#%%!%$&%&为实数$的&位不足近似#而有理数$&%$&&!!#&称为$的&位过剩近似#&%##!#$#&!’"在数学分析课程中不等式占有重要的地位#在后继课程中#某些不等式可以成为某个研究方向的基础!数学归纳法是证明某些不等式的重要工具!二!数集"确界原理!"邻域是数学分析中重要的基本概念!某点的邻域是与该点靠近的数的集合#它是描述极限概念的基本工具!在无限区间记号!()#%’#!()#%$#(%#&)$#!%#&)$#!()#&)$中出现的()与& )仅是常用的记号#它们并不表示具体的数!在数学分析课程范围内#不要把&)#()#)当作数来运算!%!%!!数学分析同步辅导及习题全解#上册$$"有界集和无界集是本章中关键的概念!要熟练掌握验证某个数集’是有界集或无界集的方法#其中重要的是证明数(不是数集’的上界!或下界$的方法!’"确界是数学分析的基础严格化中的重要的概念!上!下$确界是最大!小$数在无限数集情况下的推广!确界概念有两种等价的叙述方法#以上确界为例)设’是)中一个数集#若数!满足!!$!!$对一切$#’#有$$!#则!是’的上界*!"$对任意"%!#存在$##’#使得$#&"#则!又是’的最小上界’()!或!$$!!$对一切$#’#有$$!#则!是’的上界*!"$对任意#&##存在$##’#使得$#&!(##则!又是’的最小上界’()!这两种定义是等价的!!$$中的!(#相当于!!$中的"!在上述定义中可以限定#%###其中##为充分小的正数!定义!$$在某些证明题中使用起来更方便些!*"确界原理)设’是非空数集#若’有上界#则’必有上确界*若’有下界#则’必有下确界!确界原理是实数系完备性的几个等价定理中的一个!三!函数及其性质!"邻域!!$*!%#$$%!%($#%&$$称为%的$邻域#其中$&#!!$$*+!%*$$%!%($#%$*!%#%&$$%+$+#%+$(%+%$,称为%的空心$邻域#其中$&#!!’$*+&!%$%!%#%&,$和*+(!%$%!%(,#%$分别称为%的右邻域和左邻域#其中,&#!$"确界设给定数集’!!!$上确界!若存在数!#满足!$!$$!#,$#’*$$,$%!#都存在$##’#使$#&$#则称!为’的上确界#记为!%+,-$#’$!!$$下确界!若存在数%#满足!$$-%#,$#’*$$,&&%#都存在-##’#使-#%&#则称%为’的下确界#记为!%./0$$#’!!’$确界原理!#非空有上!下$界的数集#必有上!下$确界!$若数集有上!下$确界#则上!下$确界一定是惟一的!’"函数!!$函数定义给定两个非空实数集.和(#若有一个对应法则,#使.内每一个数$#都有惟一的一个数-#(与它对应#则称,是定义在.上的一个函数#记为-%,!$$#$#.#并称.为函数的定义域#称,!.$%+-+-%,!$$#$#.,!.($为函数的值域!!$$几个重要的函数#分段函数函数在其定义域的不同部分用不同公式表达的这类函数#常称为分段函数!$符号函数%"%第一章!实数集与函数+1/!$$%!#!!$&###$%#(!#$%’()#%狄利克雷函数.!$$%!#当$为有理数##当$+为无理数&黎曼函数)!/$%!##当$%"##"###0&"#为既约分数##当$%##!和!##!$’()中的无理数’复合函数-%,!1!$$$#$#2/其中-%,!3$#3#.#3%1!$$#$#2#2/%+$+1!$$#.,&2#2"4!’$反函数已知函数3%,!$$#$#.!若对,-##,!.$#在.中有且只有一个值$##使得,!$#$%-##则按此对应法则得到一个函数$%,(!!-$#-#,!.$#称这个函数,(!2,!.$0.为,的反函数!!*$初等函数#基本初等函数!常量函数"幂函数"指数函数"对数函数"三角函数"反三角函数这六类函数称为基本初等函数!$初等函数!由基本初等函数经过有限次四则运算与复合运算所得到的函数#统称为初等函数!%凡不是初等函数的函数#都称为非初等函数!*"有界性设-%,!$$#$#.!!$若存在数(#使,!$$$(#,$#.#则称,是.上的有上界的函数!!$$若存在数5#使,!$$-5#,$#.#则称,是.上的有下界的函数!!’$若存在正数6#使+,!$$+$6#则称,是.上的有界函数!!*$若对任意数(#都存在$##.#使,!$#$&(#则称,是.上的无上界函数#类似可定义无下界及无界函数!3"单调性设-%,!$$#$#.#若对,$!#$$#.#$!%$$#有!!$,!$!$$,!$$$#则称,在.上是递增函数!!$$,!$!$%,!$$$#则称,在.上是严格递增函数!类似可定义递减函数与严格递减函数!4"奇偶性设.是对称于原点的数集#-%,!$$#$#.!!!$若,$#.#都有,!($$%,!$$#则称,!$$是偶函数!!$$若,$#.#都有,!($$%(,!$$#则称,!$$是奇函数!%#%!!数学分析同步辅导及习题全解#上册$!’$奇函数图象关于原点对称#偶函数图像关于纵轴对称!5"周期性!!$设-%,!$$#$#.#若存在正数7#使,!$67$%,!$$#,$#.!则称,!$$为周期函数#7称为,的一个周期!!$$若,的所有周期中#存在一个最小周期#则为,的基本周期!典型例题与解题技巧%例!&!设,!$$在((%#%’上有定义#证明,!$$在((%#%’上可表示为奇函数与偶函数的和!分析!本题主要考察奇函数"偶函数的定义#采用构造法解题!证明!设,!$$%8!$$&9!$$#其中8!$$#9!$$分别为奇"偶函数#于是,!($$%8!($$&9!($$%(8!$$&9!$$而,!$$%8!$$&9!$$由之可得!!!8!$$%,!$$(,!($$$#9!$$%,!$$&,!($$$这里8!$$#9!$$分别是奇函数和偶函数!%例"&!求数集’%&!&$&!(!$!&&#0+,&的上"下确界!解题分析!当&%$7时#$7!&$$!7%$$7!&!$$!7#容易看出7%!时#$!&!$!$是偶数项中的最大数!当&%$7&!时#$7&!!&$(!$7&!!$%$7&!!&!$$7!&!&!#当7充分大时#奇数项与数!充分靠近!因为$!&!$!$!%3是’中最大数#于是+,-’!%3#由上面分析可以看出./0’%!!解题过程!因为!3是’中最大数#于是+,-’!%3!再证./0’%!#这是因为!!$,&#&!&$&!(!$!&-!*!"$设%%$7&!!&!$$7!&!#由等式%&(!%!%(!$!%&(!&%&($&&&!$可知$7&!!&!$$7!&!(!%!$$7&!%$7&%$7(!&&&!$!$$7&!于是,#&##17##0&只要7#&!$781$!#(!!$!$$#使得$7#&!!&!$$7#!&!(!$!$$7#&!%#即$7#&!!&!$$7#!&!%!&#%例#&!设函数,!$$定义在区间:上#如果对于任何$!#$$#:#及’#!##!$#恒有,(’$!&!!(’$$$’$’,!$!$&!!(’$,!$$$!证明)在区间:的任何闭子区间上,!$$有界!分析!本题主要考察函数的有界性#要充分利用已知条件给出的不等式#积极构造出类似的不等%$%第一章!实数集与函数式#以证出结论!证明!,(%#;’.:#,$#!%#;$#则存在’#!##!$#使$%%&’!;(%$有!$%’;&!!(’$%由已知不等式有,!$$%,(’;&!!(’$%’$’,!;$&!!(’$,!%$$’(&!!(’$(%(#其中(%9:;,!$$#,!;+,$,$#(%#;’#令-%!%&;$($#那么%&;$%$&-$,!%&;$$%,!$$&-$$$!$,!$$&!$,!-$$!$,!$$&!$(<,!$$-$,!%&;$$((%<!$由##$两式可知<!$,!$$$(#,$#!%#;$再由(的定义#可知,!$$$(#,$#(%#;’若令!<%9./+,!%$#,!;$#<!,#则<$,!$$$(#,$#(%#;’即,!$$在(%#;’上有界!历年考研真题评析!%题!&!!北京大学#$##3年$设,!$$在(%#;’上无界#求证)16#(%#;’#使得对,#&##,!$$在!#(##=&#$2(%#;’上无界!分析!本题采用闭区间套定理证明!证明!取%#;中点%&;$#则(%#%&;$’#(%&;$#;’中至少有一个区间使,!$$无界!如果两个都是可任取一个$#记为(%!#;!’!再取中点%!&;!$#又可得区间(%$#;$’#使,!$$在其上无界#这样继续下去有(%#;’3(%!#;!’3(%$#;$’3&3(%&#;&’3&使,!$$在每个区间上无界!由区间套原理#存在6%7.9&0)%&%7.9&0);&#则6#(%#;’#而对,#&##当&充分大时#有!=(##=&#$2(%#;’3(%&#;&’故,!$$在!=(##=&#$2(%#;’上无界!%题"&!!甘肃工业大学#$##4年$有下列几个命题)!!$任何周期函数一定存在最小正周期!!$$($’是周期函数!!’$+./!$不是周期函数!!*$$=8+$不是周期函数!其中正确的命题有!!!$!>"!个!!!?"$个!!!@"’个!!!A "*个%%%!!数学分析同步辅导及习题全解#上册$解题分析!本题主要考察周期函数的定义B 解题过程!选?!其中)!!$错B 比如,!$$%#B 那么任何正实数都是它的周期#而无最小正实数B !$$错B 设,!$$%($’的周期为C &##并设(C ’%9-#当9%#时#则C%!(%#其中#%%%!#那么(%&C ’%!#(%’%#!!!<(%&C ’"(%’这与C 为周期矛盾B !!!<9"#当9&#时#(C&!’%9&!#(!’%!!!!<(!&C ’"(!’#也矛盾B <($’不是周期函数B !’$对B D 若,!$$是定义域.上周期函数#那么存在函数>#使,$#.都有,!$6>$%,!$$!这必须有$6>#.!而本题定义域.%(##&)$#若是周期函数#则##.#必须(>#.#但(>4.#故不是周期函数!!*$对B 用反证法#设,!$$%$=8+$的周期为>&##则,!#$%#%,!>$%>=8+><=8+>%##>%&#(&($#&##E #且&#-#,!($&>$%,!(&&#($%!&#&!$(=8+(!&#&!$(’,!($$%($=8+($%##由,!($&>$%,!($$<=8+!&#&!$(%##矛盾B 即$=8+$不是周期函数!课后习题全解!!!F !!实数5!!设%为有理数#$为无理数!证明)!!$%?$是无理数*!!!!!!$$当%"#时#%$是无理数!!分析!根据有理数集对加"减"乘"除!除数不为#$四则运算的封闭性#用反证法证!!证明!!!$假设%?$是有理数#则!%?$$@%A $是有理数#这与题设$是无理数相矛盾#故%?$是无理数!!$$假设%$是有理数#则当%"#时#%$%A $是有理数#这与题设$为无理数相矛盾!故%$是无理数!6$!试在数轴上表示出下列不等式的解)!!$$!$$@!$&#*!!$$B $@!B %B $@’B *!’$$@!!@$$@!!-’$@!$!解!!!$由原不等式有$&#$$@!&+#!或!$%#$$@!%+#前一个不等式组的解集是C A +$B $&!,#后一个不等式组的解集是D A +$B @!%$%#,!故!!$的解集是C *D !如图!E !!%&%第一章!实数集与函数图!E !!$$由原不等式有$@!$@’%!#于是!?$$@’%!!所以@!%!?$$@’%!#即#%!’@$%!#则’@$&!#$%$!故!$$的解集为!@)#$$!如图!E $!图!E $!’$由原不等式应有’$@!$-##$@!!@$$@!!-##从而对原不等式两端平方有$@!?$$@!@$!$@!$!$$@!!$-’$@$因此有$!$@!$!$$@!!$$##所以!$@!$!$$@!!$A ##由此得$A !#或$A !$!但检验知$A !和$A !$均不符合原不等式!所以原不等式的解集为7!!小结!在!$$中是将绝对值不等式转化为不含绝对值的不等式去解!若直接利用绝对值的几何意义#其解集就是数轴上到点!的距离小于到点’的距离的点集#即数轴上点$左侧的点集!若直接考虑!’$的解$应使不等式中三个二次根式有意义#则必有$-!#但这时不等式左端为负而右端为正#显然不成立#故其解集为7!5’"设%";#$!证明)若对任何正数#有B %@;B %##则%A ;!!分析!用反证法#注意到题设中#的任意性#只要设法找到某一正数#使条件不成立即可!!证明!假设%";#则根据实数集的有序性#必有%&;或%%;!不妨设%&;#令#A %@;&##则B %@;B A %@;A ##但这与B %@;B A %@;%#矛盾#从而必有%A ;!5*"设$"##证明$?!$-$#并说明其中等号何时成立!!分析!由!%@;$$A %$@$%;?;$-##有%$?;$-$%;!!证明!因$"##则$与!$同号#从而有$?!$A B $B ?!B $B -$B $B %!B $!BA $等号当且仅当B $B A !B $B#即$AF !时成立!83"证明)对任何$#$有!!$B $@!B ?B $@$B -!*!!!!!$$B $@!B ?B $@$B ?B $@’B -$!!证明!直接由绝对值不等式的性质#对任意的$#$有!!$B $@!B ?B $@$B -B !$@!$@!$@$$B A B !B A !!$$B $@!B ?B $@$B ?B $@’B -B $@!B ?B $@’B -B !$@!$@!$@’$B A $64"设%";"=#$?!$?表示全体正实数的集合$!证明B %$?;!$@%$?=!$B $B;@=B !%’%!!数学分析同步辅导及习题全解#上册$你能说明此不等式的几何意义吗-!分析!用分析法证明!!证明!欲证B %$?;!$@%$?=!$B $B;@=B 只需证!%$?;!$@%$?=!$$$$!;@=$$即证!$%$@$!%$?;$$!%$?=$!$$@$;=只需证%$?;=$!%$?;$$!%$?=$!$只需证!!%$?;=$$$!%$?;$$!;$?=$$即证$%$;=$%$!;$?=$$由于%";"=#$?#所以$;=$;$?=$#%$&##所以有$%$;=$%$!;$?=$$成立!所以原不等式成立!其几何意义为)当;"=时#平面上以点C !%#;$"D !%#=$"G !###$为顶点的三角形中#B B C G B @B D G B B %B C D B *当;A =时#此三角形变成以点G !###$#C !%#;$为端点的线段!如图!@’!图!E ’!小结!利用分析法找到证题思路#再用综合法证明#过程更为简捷!65"设$&##;&##%";#证明%?$;?$介于!与%;之间!!分析!本题实质是要比较两数的大小#且该数符号不定#可用作差法!!证明!因$&##;&##%";#则由!@%?$;?$A ;@%;?$#%;@%?$;?$A $!%@;$;!;?$$得当%&;时#!%%?$;?$%%;*当%%;时#%;%%?$;?$%!!故总有%?$;?$介于!与%;之间!!小结!通常要证某数%介于另两数;与=之间#可转化为证!=@%$!;@%$%##这种方法在;与=大小关系不完全确定时#也不必分情况讨论#较为简捷!例如本题中)因为$&##;&##%";#则有!@%?$;?!$$%;@%?$;?!$$A @$!;@%$$;!;?$$$%#所以%?$;?$必介于!与%;之间!6G "设"为正整数!证明)若"不是完全平方数#则!"是无理数!!分析!本题采用反证法#联想到互质"最大公约数以及辗转相除法的有关知识点#可得结论!!证明!用反证法!假设!"为有理数#则存在正整数<"&使!"A<&#且<与&互质!于是<$A %(%第一章!实数集与函数"&$#<$A &%!"&$#可见&能整除<$!由于<与&互质#从而它们的最大公约数为!#由辗转相除法知)存在整数3"H 使<3?&H A !#则<$3?<&H A <!因&既能整除<$3又能整除<&H #故能整除其和#于是&能整除<#这样&A !#所以"A <$!这与"不是完全平方数相矛盾!!小结!本题证明过程比较独特#先假设有理数为互质的两个数的商#利用这两个数与"之间的关系#运用辗转相除法得出结论#注意知识点之间的内在联系!F $!数集"确界原理8!"用区间表示下列不等式的解)!!$B !@$B @$-#*!!$$$?!$$4*!’$!$@%$!$@;$!$@=$&#!%#;#=为常数#且%%;%=$*!*$+./$-!$$!!解!!!$原不等式等价于下列不等式组$%!!!@$$@$-+#!或!$-!!$@!$@$-+#前一个不等式组的解为$$!$*后一个不等式组的解集为空集#所以原不等式的解集为@)#!’!$!!$$绝对值不等式$?!$$4等价于@4$$?!$$4!这又等价于不等式组$&#@4$$$$?!$4+$!或!$%#4$$$$?!$@4+$而前一个不等式组的解集为(’@!$$#’?!$$’#后者的解集为(@’@!$$#@’?!$$’!因此原不等式的解集为(@’@!$$#@’?!$$’*(’@!$$#’?!$$’!’$作函数,!$$A !$@%$!$@;$!$@=$#$#$!则由%%;%=知,!$$%##当$#!@)#%$*!;#=$A ##当$A %#;#=&##当$#!%#;$*!=#?)’()$因此,!$$&##当且仅当!!!!$#!%#;$*!=#?)$故原不等式的解集为!%#;$*!=#?)$!*$若#$$$$(#则当且仅当$#(*#’*(’(时#+./$-!$$!再由正弦函数的周期性知)+./$-!$$的解集是$7(?(*#$7(?’*(’(#其中7为整数!8$"设’为非空数集!试对下列概念给出定义)!!$’无上界*!!!!!$$’无界!%)%!!数学分析同步辅导及习题全解#上册$!解!!!$设’是一非空数集!若对任意的(&##总存在$##’#使$#&(#则称数集’无上界!!$$设’是一非空数集!若对任意的(&##总存在$##’#使B $#B &(#则称数集’无界!8’"试证明由!’$式所确定的数集’有上界而无下界!!证明!由!’$式所确定的数集’A +-B -A $@$$#$#$,#对任意的$#$#-A $@$$$$#所以数集’有上界$!而对任意的(&##取$#A ’?!(#$#存在-#A $@$$#A $@’@(A@!@(#’#而-#%@(#因此数集’无下界!8*"求下列数集的上"下确界#并依定义加以验证)!!$’A +$B $$%$,*!!$$’A +$B $A &.#&#%?,*!’$’A +$B $为!##!$内的无理数,*!*$’A +$B $A !@!$&#&#%?,!!解!!!$+,-’A !$#./0’A@!$#下面依定义加以验证!因$$%$#等价于@!$%$%!$#所以对任意的$#’#有$%!$且$&@!$#即!$"@!$分别是’的上"下界!又对任意的正数##不妨设#%!$$#于是存在$#A !$@#$"$!A@!$?#$#使$#"$!#’#使$#&!$@##$!%@!$?##所以由上"下确界的定义+,-’A !$#./0’A@!$!!$$+,-’A?)#./0’A !#下面依定义验证!对任意的$#’#!$$%?)#所以!是’的下界!因为对任意的(&##令&A ((’?!#则&.&(#故’无上界#所以+,-’A?)*对任意的#&##存在$!A !.A !#’#使$!%!?##所以./0’A !!!’$+,-’A !#./0’A ##下面依定义验证!对任意的$#’#有#%$%!#所以!"#分别是’的上"下界!又对任意的#&##不妨设#%!#由无理数的稠密性#总存在无理数!#!###$#则有无理数$#A !@!#’#使$#A !@!&!@#*有无理数$!A !#’#使$!A !%#?##所以+,-’A !#./0’A #!!*$+,-’A !#./0’A !$#下面依定义验证!对任意的$#’#有!$$$%!#所以!"!$分别是’的上"下界!对任意的#&##必有正整数&##0/使!$&#%##则存在$#A !@!$&##’#使$#&!@##所以+,-’A !!又存在$!A !@!$A !$#’#使$!%!$?##所以./0’A !$!83"设’为非空有下界数集#证明)./0’A %#’9%A 9./’!!证明!:$!设./0’A %#’#则对一切$#’有$-%#而%#’#故%是数集’中最小的数#即%A 9./’!;$!设%A 9./’#则%#’*下面验证%A ./0’)!!$对一切$#’#有$-%#即%是’的下界*!"$对任何&&%#只需取$#A %#’#则$#%&!从而满足%A ./0’的定义!%*!%84"设’为非空数集#定义’@A +$B @$#’,!证明)!!$./0’@A@+,-’*!!$$+,-’@A@./0’!!证明!!!$%A ./0’@#由下确界的定义知#对任意的$#’@#有$-%#且对任意的&&%#存在$##’@#使$#%&!由’@A +$B @$#’,知#对任意的@$#’#@$$@%#且对任意的@&%@%#存在@$##’#使@$#&@&#由上确界的定义知+,-’A@%#存在@$##’#使@$#&@&#即./0’@A@+,-’!同理可证!$$成立!85"设C "D 皆为非空有界数集#定义数集C ?D A +I B I A $?-#$#C #-#D ,!证明)!!$+,-!C ?D $A +,-C ?+,-D *!!$$./0!C ?D $A ./0C ?./0D !!证明!!!$设+,-C A !!#+,-D A !$!对任意的I #C ?D #存在$#C #-#D #使I A $?-!于是$$!!#-$!$!从而I $!!?!$!对任意的#&##必存在$##C #-##D #使$#&!!@#$#-#&!$@#$#则存在I #A $#?-##C ?D #使I #&!!!?!$$@#!所以+,-!C ?D $A !!?!$A +,-C ?+,-D !同理可证!$$成立!6G"设%&##%"!#$为有理数!证明%$A+,-+%JB J 为有理数#J %$,#当%&!#./0+%JBJ 为有理数#J %$,#当%%!+!!分析!利用指数函数的单调性#把指数函数化归为对数函数讨论#并运用有理数的稠密性概念来证此题!!证明!只证%&!的情况#%%!的情况可以类似地加以证明!设C A +%J BJ 为有理数#J %$,!因为%&!#%J 严格递增#故对任意的有理数J %$#有%J%%$#即%$是C 的一个上界!对任意的"%%$#由%$&#及有理数的稠密性#不妨设"&#且为有理数!于是必存在有理数J #%$#使得"%%J #%%$!事实上#由781%$严格递增知)#%"%%$等价于781%"%781%%$A $#由有理数的稠密性#存在有理数J #使得781%"%J #%$#所以"A %781%"%%J #%%$!故%$A +,-C A +,-+%JB J 为有理数#J %$,#%&!!!小结!关于求数集的确界或证明数集确界的有关命题#主要利用确界的定义#进一步加深读者对数集上"下确界概念的理解#这对进一步学习极限理论及实数的完备性#使整个数学分析建立在坚实的基础上是十分重要的!F ’!函数概念8!"试作下列函数的图象)!!$-A $$?!*!!!!!!!$$-A !$?!$$*!’$-A !@!$?!$$*!*$-A +1/!+./$$*!3$-A ’$#B $B &!#$’#B $B %!#’#B $B A !’()!!解!利用描点作图法#各函数的图象如图!E *至图!E G !5$"试比较函数-A %$与-A 781%$分别当%A $和%A !$时的图象!%!!%图!E *!!!!!!!!!!图!E 3图!E 4!!!!!!!!!!图!E 5图!E G!分析!利用指数函数与对数函数性质#注意$在-A %$与-A 781%$的定义域上的取值范围是不同的!!解!当%A $时#-A %$是单调递增函数#当%A !$时#它是单调递减函数*当$A #时#!$!$$A $$A !#即两函数的图象都过点!##!$*当$&#时#!$!$$%!%$$#-A $$的图象在-A !$!$$的图象上方*当$%#时#!$!$$&!&$$#-A !$!$$的图象在-A $$的图象上方*对任意的$#$?#两函数值都大于##即函数的图象都在$轴上方#且-A $$的图象与-A!$!$$的图象关于-轴对称!%"!%-A 781%$是-A %$的反函数!当%A $时#是单调递增的#当%A !$时#是单调递减的*当#%$%!时#781!$$&#&781$$*当$A !时#781!$$A 781$$A #*当$&!时#781!$$%#%781$$*当$$#时#两个函数无定义#因此函数图象在-轴右方#且过点!!##$!-A 781!$$与-A 781$$的图象关于$轴对称!-A $$与-A 781$$的图象"-A!$!$$与-A 781!$$的图象皆关于直线-A $对称!如图!E H!图!E H !!!!!!!!!!!!!图!E !#8’"根据图!E !#写出定义在(##!’上的分段函数,!!$$和,$!$$的解析表达式!!解!利用直线的两点式方程或点斜式方程容易得到,!!$$A *$##$$$!$*@*$#!$%$$’()!,$!$$A !4$##$$$!*G @!4$#!*%$$!$##!$%$$’()!8*"确定下列初等函数的存在域)!!$-A +./!+./$$*!!!!!$$-A 71!71$$*!’$-A :I =+./71$!$!#*!*$-A 71:I =+./$!$!#!!解!!!$因为+./$的存在域为$#所以-A +./!+./$$的存在域为$!!$$因71$&#等价于$&!#所以-A 71!71$$的存在域是!!#?)$!!’$因为-A :I =+./3的存在域是(@!#!’#而@!$71$!#$!等价于!$$$!###所以-A :I =+./71$!$!#的存在域是(!#!##’!!*$因-A 713的存在域是!##?)$#而3A :I =+./$!#的值域为@($#((’$#由#%3$($%#!%有#%$!#$!#即#%$$!##所以-A 71:I =+./$!$!#的存在域是!##!#’!83"设函数,!$$A $?$#$$##$$#$&#+!求)!!$,!@’$#,!#$#,!!$*!!$$,!)$$@,!#$#,!@)$$@,!#$!)$&#$!!解!!!$,!@’$A $?!@’$A@!,!#$A $?#A $,!!$A $!A $!$$因为)$&##所以有,!)$$@,!#$A $)$@!$?#$A $)$@$,!@)$$@,!#$A $?!@)$$@!$?#$A@)$84"设函数,!$$A !!?$#求,!$?$$#,!$$$#,!$$$#,!,!$$$#,!,!$!$$!!解!,!$?$$A !!?!$?$$A!’?$,!$$$A !!?$$*,!$$$A !!?$$,!,!$$$A !!?!!?$A $?!$?$,!,!$!$$A !!?!,!$$A!!?!!?$$A !$?$85"试问下列函数是由哪些基本初等函数复合而成)!!$-A !!?$$$#*!!$$-A !:I =+./$$$$*!!’$-A 71!!?!?$!$$*!!*$-A $+./$$!!解!!!$-A 3$##3A H !?H $#H !A !#H $A $!$$-A 3$#3A :I =+./H #H A $$!’$-A 713#3A H !?H $#H !A !#H $A !’#’A H !?K #K A $$!*$-A $3#3A H $#H A +./$5G"在什么条件下#函数-A%$?;=$?L的反函数就是它本身-!分析!先把反函数求出#分别讨论原函数与反函数的定义域#再讨论参数!!解!首先;="%L #由-A %$?;=$?L #解得$A ;@L -=-@%#交换$与-得-A ;@L $=$@%!当="#时#原函数的定义域为$"@L =#反函数的定义域为$"%=!因此#要使二函数相同#必须%A@L #这时原函数为%$?;=$?L A;@L $=$@%#即为反函数!另外#当;A =A ##且%A L "#时亦满足!故当/;="%L 且%A@L 0或/;A =A #且%A L "#0时#该函数的反函数就是其本身!8H"试作函数-A :I =+./!+./$$的图象!%$!%!解!-A :I =+./!+./$$是以$(为周期的函数#其定义域为$#值域为@($#((’$的分段函数#其在一个周期区间(@(#(’上的表达式为-A (@$#($%$$($#@($$$$($@!(?$$#@($$%@(’()$其图象如图!E!!!图!E !!8!#"试问下列等式是否成立)!!$J :/!:I =J :/$$A $#$#$*!$$:I =J :/!J :/$$A $#$"7(?($#7A ##F !#F $#&!!解!!!$由J :/$与:I =J :/$的定义知#!!$式成立!!$$因为J :/$的定义域为$"7(?($#7A ##F !#F $#&#而:I =J :/$的值域仅为@($#(!$$!所以!$$式不成立!例如当$A ’*(时#:I =J :/!J :/$$A :I =J :/!@!$A@(*"$!8!!"试问-A B $B 是初等函数吗-!解!因-A B $B A $!$是由-A !3与3A $$复合而成的#所以-A B $B 是初等函数!8!$"证明关于函数-A ($’的如下不等式)!!$当$&#时#!@$%$!(’$$!*!$$当$%#时#!$$!(’$%!@$!!证!由定义知!(’$是不超过!$的最大整数#故有#$!$@!(’$%!所以!!!!!!!!!!!!$@!%!(’$$!$#%%!%!!$当$&#时#给#两端同乘以$得!@$%$!(’$$!!$$当$%#时#给#两端同乘以$得!$$!(’$%!@$ F*!具有某些特性的函数8!"证明,!$$A$$$?!是$上的有界函数!!证明!利用不等式$B$B$!?$$有#对一切$#$都有B,!$$B AB$B$$?!A!$$B$B$$?!$!$成立#故,!$$是$上的有界函数!8$"!!$叙述无界函数的定义*!$$证明,!$$A!$$为!##!$上的无界函数*!’$举出函数,的例子#使,!$$为闭区间(##!’上的无界函数!!解!!!$设,!$$为定义在.上的函数#若对任意的正数(#都存在$##.#使B,!$#$B&(#则称函数,!$$为.上的无界函数!!$$证明)对任意的正数(#存在$#A!(?!!#!##!$#使B,!$#$B A!$$#A(?!&(#所以,!$$A!$$是!##!$上的无界函数!!’$设,!$$A!$$#$#!##!’!#$A’()#!由!$$的证明知,!$$为(##!’上的无界函数!8’"证明下列函数在指定区间上的单调性) !!$-A’$@!在!@)#?)$上严格递增*!$$-A+./$在@($#((’$上严格递增*!’$-A=8+$在(##(’上严格递减!!分析!!$$"!’$两小题都是三角函数#要牢记三角函数的半角"倍角公式!后面讨论周期性以及傅里叶级数时都会用到!!证明!!!$任取$!"$$#!@)#?)$#$!%$$#则有,!$!$@,!$$$A’!$!@!$@!’$$@!$A’!$!@$$$%#可见,!$!$%,!$$$#所以,!$$A’$@!在!@)#?)$上严格递增!!$$任取$!#$$#@($#((’$#$!%$$#则有@($%$!?$$$%($#!@($$$!@$$$%#因此=8+$!?$$$&##!+./$!@$$$%#%& !%从而,!$!$@,!$$$A +./$!@+./$$A $=8+$!?$$$+./$!@$$$%##,!$!$%,!$$$!所以,!$$A +./$在@($#((’$上严格递增!!’$任取$!#$$#(##(’#$!%$$#则有#%$!?$$$%(#!@($$$!@$$$%##从而有+./$!?$$$&##+./$!@$$$%##故,!$!$@,!$$$A =8+$!@=8+$$A@$+./$!?$$$+./$!@$$$&##从而,!$!$&,!$$$#所以,!$$在(##(’上严格递减!8*"判别下列函数的奇偶性)!!$,!$$A !$$*?$$@!*!!!$$,!$$A $?+./$*!’$,!$$A $$K @$$*!*$,!$$A 71!$?!?$!$$!!解!!!$因为,!@$$A !$!@$$*?!@$$$@!A !$$*?$$@!A ,!$$#故,!$$A !$$*?$$@!是偶函数!!$$对任意的$#!@)#?)$有#,!@$$A !@$$?+./!@$$A@$@+./$A@!$?+./$$A@,!$$#故,!$$A $?+./$为!@)#?)$上的奇函数!!’$,!$$A $$K @$$在!@)#?)$上有定义#对任意的$#!@)#?)$有#,!@$$A !@$$$K @!@$$$A $$K @$$A ,!$$#故,!$$为!@)#?)$上的偶函数!!*$,!$$A 71!$?!?$!$$在!@)#?)$上有定义#对每一个$#!@)#?)$有#,!@$$A 71!@$?!?!@$$!$$A 71!@$?!?$!$$A@71!$?!?$!$$A@,!$$#所以,!$$A 71!$?!?$!$$为!@)#?)$上的奇函数!53"求下列函数的周期)!!$=8+$$*!!$$J :/’$*!!’$=8+$$?$+./$’!!分析!求三角函数周期时#应先转化为一次函数#再求周期#如!!$!如果有两个或两个以上的函数#分别求出它们各自的周期#再求最小公倍数#如!’$!!解!!!$,!$$A =8+$$A !$!!?=8+$$$#而!?=8+$$的周期是(#所以,!$$A =8+$$的周期是(!!$$因为J :/$的周期是(#所以,!$$A J :/’$的周期是(’!!’$因+./$"=8+$的周期是$(#所以=8+$$的周期是*(#+./$’的周期是4(#故,!$$A =8+$$?$+./$’的周期是!$(!84"设函数,!$$定义在(@%#%’上#证明)!!$M !$$A ,!$$?,!@$$#$#(@%#%’为偶函数*!$$8!$$A ,!$$@,!@$$#$#(@%#%’为奇函数*%’!%!’$,可表示为某个奇函数与某个偶函数之和!!证明!!!$因(@%#%’关于原点对称#M !$$在(@%#%’上有定义#对每一个$#(@%#%’有M !@$$A ,!@$$?,!$$A ,!$$?,!@$$A M !$$!故M !$$为(@%#%’上的偶函数!!$$因(@%#%’关于原点对称#8!$$在(@%#%’上有定义#对每一个$#(@%#%’有8!@$$A ,!@$$A@,!$$A@(,!$$@,!@$$’A@8!$$!故8!$$为(@%#%’上的奇函数!!’$由!!$"!$$得M !$$?8!$$A $,!$$#从而有,!$$A M !$$?8!$$$A !$M !$$?!$8!$$#而!$M !$$是偶函数#!$8!$$是奇函数!从而,!$$可表示为一个奇函数!$8!$$与一个偶函数!$M !$$之和!85"设,"1为定义在.上的有界函数#满足,!$$$1!$$#$#.!证明)!!$+,-$#.,!$$$+,-$#.1!$$*!!$$./0$#.,!$$$./0$#.1!$$!!证明!!!$记!A +,-$#.1!$$#则对任意的$#.有#1!$$$!#又因,!$$$1!$$#所以,!$$$1!$$$!!因此!是,!$$的上界#而+,-$#.,!$$是,!$$的最小上界#故+,-$#.,!$$$!A +,-$#.1!$$!!$$同理可证!8G"设,为定义在.上的有界函数#证明)!!$+,-$#.+@,!$$,A@./0$#.,!$$*!!$$./0$#.+@,!$$,A@+,-$#.,!$$!!证明!!!$记./0$#.,!$$A %!由下确界的定义知#对任意的$#.#,!$$-%#即@,!$$$@%#可见@%是@,!$$的一个上界*对任意的#&##存在$##.#使,!$#$&%?##即@,!$#$%@%@##可见@%是@,!$$的上界中最小者!所以+,-$#.+@,!$$,A@%A@./0$#.,!$$!!$$同理可证结论成立!也可直接用!!$的结论来证!事实上#在!!$中换,!$$为@,!$$得#+,-$#.,!$$A +,-$#.+@!,!$$$,A@./0$#.+@,!$$,#两边同乘以@!得./0$#.+@,!$$,A@+,-$#.,!$$6H"证明)J :/$在@($#(!$$上无界!而在@($#(!$$内任一闭区间(%#;’上有界!!分析!要证J :/$在!@($#($$上无界#只需在$##!@($#($$取一点#使J :/$#&(即可!证在!@($#($$上#存在区间(%#;’使J :/$有界#只需证J :/$$(##且有J :/%%J :/$%J :/;!!证明!对任意的(&##取$#A :I =J :/!(&!$#(($#(!$$#有+J :/$#+%+J :/!:I =J :/!L&!$$+%L&!&L #所以,!$$%J :/$在(($#(!$$内是无界函数!但任取(%#;’.@($#(!$$#由于J:/$在(%#;’上严格递增#从而当$#(%#;’时#J :/%%(!%$J:/$$J :/;#记(A 9:;+B J :/%B #B J :/;B ,#则对一切$#(%#;’有B J :/$B $(#所以J :/$是(%#;’上的有界函数!!小结!证明函数的有界性#往往要利用函数的单调性#同时往往利用放缩法#这是极限理论的基础#也是今后学习分析学的基础!6!#"讨论狄利克雷函数.!$$A !#当$为有理数###当$’()为无理数的有界性"单调性与周期性!!分析!狄利克雷函数由定义可证得有界性#单调性也比较明显#对周期性分有理数与无理数讨论!!解!由.!$$的定义知#对任意的$#$#有B .!$$B $!#所以.!$$是$上的有界函数!由于对任意的有理数$!与无理数$$#无论$!%$$还是$$%$!#都有.!$!$&.!$$$!所以.!$$在$上不具有单调性!对任意的有理数J 有$?J A 有理数#当$为有理数时无理数#当$’()为无理数时于是对任一$#$#有.!$?J $A !#当$为有理数时##当$’()为无理数时A .!$$所以#任意有理数J 都是.!$$的周期!但任何无理数都不是.!$$的周期!事实上#对任一无理数"#对无理数@"#.!@"$A ##而.!"?!@"$$A .!#$A !".!@"$!!小结!狄利克雷函数与黎曼函数是一类特殊函数#在以后的连续性以及极限理论中具有重要地位#要特别注意!8!!"证明),!$$A $?+./$在$上严格增!!证明!任取$!"$$#!@)#?)$#$!%$$#则,!$$$@,!$!$A !$$@$!$?!+./$$@+./$!$A !$$@$!$?$=8+$!?$$$+./$$@$!$-!$$@$!$@$=8+$!?$$$%+./$$@$!$&!$$@$!$@$%$$@$!$A #D +./$$@$!$%B $$@$!B !$$即,!$!$%,!$$$#所以,!$$A $?+./$在!@)#?)$上严格增!6!$"设定义在(%#?)$上的函数,在任何闭区间(%#;’上有界!定义(%#?)$上的函数)<!$$A ./0%$-$$,!-$#(!$$A +,-%$-$$,!-$!试讨论<!$$与(!$$的图象#其中!!$,!$$A =8+$#$#(##?)$*!!$$,!$$A $$#$#(@!#?)$!%)!%!分析!在讨论上述两个函数时#首先应分割区间#在区间内讨论其单调性然后再讨论有界性!!解!!!$由<!$$及(!$$的定义知#对%%$#当,!-$在(%#$’上为递增函数时#<!$$A ,!%$#(!$$A ,!$$!当,!-$在(%#$’上为减函数时#<!$$A ,!$$#(!$$A ,!%$!由此可知)对,!$$A =8+$#当#$$$(时#<!$$A =8+$#(!$$A !!而$#((#?)$时#由于@!$=8+$$!#所以#<!$$A@!#(!$$A !#即有<!$$A =8+$##$$$(@!#($$%?)+!!(!$$<!#$#(##?)$其图象见图!E !$!图!E !$!!!!!!!!!!图!E!’!$$同上理#当$#(@!##’时#(!$$A !#<!$$A $$*当$#!##?)$时#<!$$<#*当$#(@!#!’时#(!$$<!*当$#!!#?)$时#(!$$A $$!即有<!$$A $$#$#(@!##’##当$#!##?)+’(!$$A!#$#(@!#!’时$$#当$#!!#?)$+时其图象见图!E !’!!小结!确界理论是学习数学分析的基础#对后面学习连续"微分"积分等都具有重要作用!总练习题8!"设%#;#$#证明)!!$9:;+%#;,A !$!%?;?B%@;B $*!$$9./+%#;,A !$!%?;@B%@;B $!!证明!因为!$!%?;?B %@;B $A%#当%-;时;#当%%;+时!$!%?;@B%@;B $A %#当%%;时;#当%-;+时所以!9:;+%#;,A !$!%?;?B%@;B $9./+%#;,A !$!%?;@B %@;B $%*"%第一章!实数集与函数8$"设,和1都是.上的初等函数!定义(!$$A 9:;+,!$$#1!$$,#<!$$A 9./+,!$$#1!$$,#$#.!试问(!$$和<!$$是否为初等函数-!解!由习题!得(!$$A!$(,!$$?1!$$?B ,!$$@1!$$B ’A!$(,!$$?1!$$?(,!$$@1!$$’!$’<!$$A !$(,!$$?1!$$@B ,!$$@1!$$B ’A!$(,!$$?1!$$@(,!$$@1!$$’!$’所以#(!$$与<!$$都是由.上的初等函数,!$$"1!$$经四则运算和有限次复合而成的函数!所以#(!$$和<!$$都是初等函数!8’"设函数,!$$A !@$!?$#求),!@$$#,!$?!$#,!$$?!#,!!$$#!,!$$#,!$$$#,!,!$$$!!解!,!@$$A !?$!@$*!,!$?!$A @$$?$*!,!$$?!A !@$!?$?!A $!?$*,!!$$A !@!$!?!$A $@!$?!*!!,!$$A !?$!@$*!,!$$$A !@$$!?$$*,!,!$$$A !@!@$!?$!?!@$!?$A $$$A $5*"已知,!!$$A $?!?$!$#求,!$$!!分析!本题采用倒代换的方法#即!$A K #但是根号中移出的数要加绝对值!!解!令!$A K #则$A !K !所以,!K $A !K?!?!!$K!$A!K ?!?K !$B K B#故,!$$A !$?!?$!$B $B #故,!$$A !$?!?$!$B $B!83"利用函数-A ($’求解)!!$某系各班级推选学生代表#每3人推选!名代表#余额满’人可增选!名!写出可推选代表数-与班级学生数$之间的函数关系!假设每班学生数为’#)3#人$*!$$正数$经四舍五入后得整数-#写出-与$之间的函数关系!!解!!!$因余额满’人可补选一名#即就是可在原来基础上增加$人后取整#于是-A $?$(’3!!$A ’##’!#&#3#$!$$由($’的定义知!-A ($?#"3’#$&#%!"%!!数学分析同步辅导及习题全解#上册$54"已知函数-A ,!$$的图象#试作下列各函数的图象)!!$-A@,!$$*!!$$-A ,!@$$*!!’$-A@,!@$$*!*$-A B ,!$$B *!!3$-A +1/,!$$*!4$-A !$(B ,!$$B ?,!$$’*!!5$-A!$(B ,!$$B @,!$$’!!分析!作函数图象找出函数关于原函数的对称点"对称中心!有绝对值号的要分类讨论!!解!!!$-A@,!$$和-A ,!$$的图象关于$轴对称!!$$-A ,!@$$的图象与-A ,!$$的图象关于-轴对称!!’$-A@,!@$$的图象与-A ,!$$的图象关于原点对称!!*$-A B ,!$$B A ,!$$#!!$#.!A +$B ,!$$-#,@,!$$#$#.$A +$B ,!$$%#’(),!3$-A +1/,!$$A !#!!!$#.!A +$B ,!$$&#,##$#.$A +$B ,!$$A #,@!#$#.’A +$B ,!$$%#’(),!4$-A !$(B ,!$$B ?,!$$’A ,!$$#$#.!A +$B ,!$$-#,##$#.$A +$B ,!$$%#’(),!5$-A !$(B ,!$$B @,!$$’A ##$#.!A +$B ,!$$-#,@,!$$#$#.$A +$B ,!$$%#’(),其图象如图!E !*至图!E!5!图!E !*!!!!!!!!!!!图!E!3图!E !4!!!!!!!!!!!图!E !555"已知函数,和1的图象#试作下列函数的图象)!!$*!$$A 9:;+,!$$#1!$$,*!!$$+!$$A 9./+,!$$#1!$$,!%""%第一章!实数集与函数!分析!将9:;+,#1,与9./+,#1,转化为分段函数再讨论!!解!!!$*!$$A 9:;+,!$$#1!$$,A ,!$$#$#.!A +$B ,!$$-1!$$,1!$$#$#.$A +$B ,!$$%1!$+$,!$$+!$$A 9./+,!$$#1!$$,A 1!$$#$#.!A +$B ,!$$-1!$$,,!$$#$#.$A +$B ,!$$%1!$+$,其图象如图!E !G 和图!E !H !!!!图!E !G !!!!!!!!!!!图!E !H 5G "设,"1和N 为增函数#满足,!$$$1!$$$N !$$#$#$!证明),!,!$$$$1!1!$$$$N !N !$$$!!分析!本题己经给出了,"1"N 为增函数#把1!$$与N !$$看成中间变量!利用复合函数及其单调性质#可证得结论!!证明!因对任意的$#$#有,!$$$1!$$$N !$$#且,!$$"1!$$和N !$$均为增函数#所以#有,!,!$$$$,!1!$$$$1!1!$$$$1!N !$$$$N !N !$$$即,!,!$$$$1!1!$$$$N !N !$$$8H"设,和1为区间!%#;$上的增函数#证明第5题中定义的函数*!$$和+!$$也都是!%#;$上的增函数!!证明!对任意的$!"$$#!%#;$#$!%$$#由,!$$"1!$$在!%#;$上递增知,!$$$-,!$!$#1!$$$-1!$!$#因此*!$$$-,!$$$-,!$!$#*!$$$-1!$$$-1!$!$#所以*!$$$-9:;+,!$!$#1!$!$,A *!$!$#故*!$$在!%#;$上是增函数!同理可证+!$$是!%#;$上的增函数!8!#"设,为(@%#%’上的奇!偶$函数!证明)若,在(##%’上增#则,在(@%##’上增!减$!!证明!任取$!"$$#(@%##’#$!%$$#有@$!"@$$#(##%’且@$!&@$$!由,!$$为(@%#%’上的奇函数及在(##%’上递增得#,!$!$A@,!@$!$%@,!@$$$A ,!$$$!所以,!$$在(@%##’上是递增的!同理可证,!$$为偶函数时的相应结论成立!8!!"证明)!!$两个奇函数之和为奇函数#其积为偶函数*!$$两个偶函数之和与积之都为偶函数*!’$奇函数与偶函数之积为奇函数!!分析!对于!!$来说#./0$#.,!$$$,!$$#然后利用,!$$?1!$$@1!$$A ,!$$以及@./0$#.+@,!$$,A +,-$#.+,!$$,证得结论!%#"%。

24.交流绕组的磁动势-三相合成磁动势04

24.交流绕组的磁动势-三相合成磁动势04

§9-3 三相绕组的磁动势三相电流的表达式:⎪⎪⎭⎪⎪⎬⎫−=−==)240cos(2)120cos(2cos 2 t I i t I i tI i C B A ωωωI一、三相绕组的基波磁动势1.数学分析法()()()()111111cos cos cos 120cos 120cos 240cos 240A m B m C m f F t f F t f F t φφφωαωαωα==−−=−−1114(/)20.9m w w INk IN k pF p ϕπ==安极为每相绕组基波磁动势最大幅值。

11111111111111cos cos cos()cos()2211cos(120)cos(120)cos()cos(240)2211cos(240)cos(240)cos()cos(120)22A m m m B m m m C m m m f F t F t F t f F t F t F t f F t F t F t φφφφφφφφφωαωαωαωαωαωαωαωαωα==−++=−−=−++−=−−=−++−经积化和差:()()1111113cos cos 2A B C m f f f f F t F t φωαωα=++=−=−三相基波磁势:I 三相对称绕组通入三相对称电流产生的基波合成磁动势为幅值恒定的圆形旋转磁动势。

三相基波合成磁动势具有以下性质:1)极数:基波旋转磁动势的极数与绕组的极数相同;5)转向:三相基波合成磁动势的转向总是从电流超前的相绕组向电流滞后的相绕组方向转动。

4)转速:三相基波合成磁动势的转速与电流频率保持如下严格不变的关系:160f n p =3)幅值的位置:三相基波合成磁动势幅值位于处。

当某相电流达到最大时,基波合成磁动势的波幅刚好转到该相绕组的轴线上。

t αω=2)幅值:三相基波合成磁动势的幅值为一相基波脉振磁动势最大幅值的3/2倍。

为三相基波合成磁动势最大幅值。

数学分析 第二版 上下册 课后答案 陈纪修

数学分析 第二版 上下册 课后答案 陈纪修

7
但在[ 0, 1 ] 的任一子区间上都不是单调函数。

f
(
x)
=
⎧x
⎨ ⎩1

x
x为有理数 。
x为无理数
8
第二章 数列极限
习 题 2.1 实数系的连续性
1. (1) 证明 6 不是有理数;
(2) 3 + 2 是不是有理数? 证(1)反证法。若 6 是有理数,则可写成既约分数 6 = m 。由 m2 = 6n2 ,
3
习 题 1.2 映射与函数
1. 设 S = {α , β ,γ }, T = {a,b,c} ,问有多少种可能的映射 f :S → T ? 其中
哪些是双射?
解 有 33 = 27 种可能的映射,其中有 3!= 6 种是双射,它们是
⎧α a
⎧α a
⎧α b
⎧α b
⎧α c
⎧α c
f : ⎪⎨β b , f : ⎪⎨β c , f : ⎪⎨β c , f : ⎪⎨β a , f : ⎪⎨β a , f : ⎪⎨β b 。
(3) f (x) = sin2 x + cos2 x , g(x) = 1。
解 (1)函数 f 和 g 不等同;
5
(2)函数 f 和 g 不等同;
(3)函数 f 和 g 等同。
7. (1) 设 f (x + 3) = 2x3 − 3x2 + 5x − 1,求 f (x) ;
(2)

f
⎜⎛ ⎝
x
x −
(4)
y = f (u) =
u
,u
=
g(x)
=
x x
−1。
+1
( ) ( ) 解(1) y = loga (x2 − 3) ,定义域: − ∞,− 3 ∪ 3,+∞ ,值域: (−∞,+∞) ;

数学分析第三版上册教学设计

数学分析第三版上册教学设计

数学分析第三版上册教学设计课程简介数学分析是数学中的一门重要课程,旨在培养学生良好的数学思维能力和分析问题的综合能力。

《数学分析第三版上册》是数学分析课程教材之一,本教学设计针对这本书,旨在帮助学生更好地掌握课程内容,提高学生的数学功底。

教学目标通过本教学设计,希望学生能够:1.熟悉数学分析的基本概念和公式;2.掌握数学分析中的常见证明方法;3.培养对数学问题的敏锐思维和分析能力;4.提高解决实际问题的能力。

教学内容本教学设计将按照《数学分析第三版上册》的章节顺序展开教学,包括以下内容:第一章实数系本章介绍实数系的概念、有理数与无理数的性质、实数的完备性等内容。

教学重点是实数的完备性证明,通过引入数的上界和下界的概念,证明了实数系的完备性。

第二章极限与连续本章介绍极限的概念、数列极限、函数极限和导数的概念。

教学重点是函数极限和连续函数的概念,以及判断函数连续性的方法。

第三章一元函数的导数本章介绍一元函数的导数,包括导数的定义、导数的基本性质、导数的几何意义。

教学重点是导数的定义和基本性质,通过一些关键例题的讲解,让学生掌握导数的计算方法。

第四章微分学的应用本章介绍微分学在极值、最大误差、函数图形等方面的应用。

教学重点是极值问题的求解方法,以及对实际问题的应用。

第五章不定积分本章介绍不定积分和基本积分公式等内容。

教学重点是不定积分的计算方法和基本积分公式的证明。

教学方法本教学设计采用以下教学方法:1.讲授法:通过授课、演示和讲解等方式,让学生了解数学分析的基本概念和公式;2.问题导向法:在讲授完每个章节的基本知识后,引导学生针对相关问题进行思考和讨论;3.分组讨论法:将学生分成小组,进行小组讨论,帮助学生加深对知识点的理解并提高解决问题的能力。

评估方法为评估学生的学习情况和教学效果,将采用以下评估方法:1.期中考试:考核学生对前三章知识的掌握程度;2.期末考试:考核学生对全部知识的掌握程度;3.课堂表现:评估学生在课堂上的参与度和表现,包括提问、讨论等;4.作业评估:评估学生完成的作业情况,以及学生在作业中展现的解决问题的能力。

25电机学-交流绕组的磁动势4

25电机学-交流绕组的磁动势4

交流绕组的磁动势§9-2 一相绕组的磁动势(1)一相绕组的磁动势为一空间位置固定、幅值随时间变化的脉振磁动势,脉振的频率等于电流的频率,脉振磁动势的幅值位于相绕组的轴线上。

(2)一相绕组的基波(或谐波)脉振磁动势可以分解成两个幅值相等。

转速相同,转向相反的旋转磁动势。

旋转电角速度w 恰恰等于角频率每分钟转数同步速n1(3)一相绕组的 v 次谐波磁动势表达式为:f ϕν =Fϕν=Fϕmνcosναcosωt cosνα=0.9νIwkp wνcosωt cosνα交流绕组的磁动势§9-3 三相绕组的磁动势研究对象为研究方便,把三相绕组的每一相用一个等效的单层整距集中绕组来代替,该等效绕组的匝数等于实际一相串联匝数w 乘以绕组因数kw1, kw1w 称为一相的有效匝数,三相绕组在空间互差120度电角度。

这是一对极电机的三相等效绕组示意图。

电流正方向+B +AYC A XZ α=0 B+C三相绕组的基波磁动势结论:三相基波合成磁动势具有以下性质1)三相对称绕组通入三相对称电流产生的基波合成磁动势为一幅值不变的旋转磁动势。

由于基波磁动势矢量的端点轨迹是一个圆形,故又称为圆形旋转磁动势。

2)三相基波合成磁动势的幅值为一相基波脉振磁动势最大幅值的3/2 倍,即F 1 =32Fϕm1= 1.35Iwkp w1(安/ 极)3)三相基波合成磁动势的转向取决于电流的相序和三相绕组在空间上的排列次序。

基波合成磁动势总是从电流超前的相绕组向电流滞后的相绕组方向转动,例如电流相序为A-B-C,则基波合成磁动势按A轴-B轴-C轴方向旋转,改变三相绕组中电流相序可以改变旋转磁动势的转向。

4)三相基波合成磁动势的转速与电流频率保持严格不变的关系,即该转速即为同步速。

5)当某相电流达到最大值时,基波合成磁动势的波幅刚好转到该相绕组的轴线上,磁动势的方向与绕组中电流的方向符合右手螺旋定则。

分析方法如果三相等效绕组里通过三相对称电流,则每相均产生一脉振磁动势;把三个相绕组的磁动势进行合成,即得三相绕组的合成磁动势。

数学分析9定积分总练习题

数学分析9定积分总练习题

第九章 定积分总练习题1、证明:若φ在[0,a]上连续,f 二阶可导,且f ”(x)≥0,则有⎰a 0(t)) f(φa 1dt ≥f(⎰a(t) φa 1dt). 证:设T 为[0,a]的一个分割,其分点为n ka , k=0,1,…,n, 即x k =nka. 由f ”(x)≥0知f 凸,∴f(∑=n1k k )(x φn 1)≤∑=n1k k ))(x f(φn 1.即∑=n 1k k n a ))(x f(φa 1≥f(na)(x φa 1n 1k k ∑=). ∵f, φ在[0,a]上都可积,且f 连续, ∴令n →∞,有⎰a 0(t)) f(φa 1dt ≥f(⎰a(t) φa 1dt).2、证明下列命题.(1)若f 在[a,b]上连续增,F(x)=⎪⎩⎪⎨⎧=∈⎰ a.x ,f(a)b].a,(x f(t)dt a -x 1xa , 则F 在[a,b]上增.(2)若f 在[0,+∞)上连续,且f(x)>0,则φ(x)=⎰⎰x 0x0f(t)dttf(t)dt 在(0,+∞)上严格增.要使φ(x)在[0,+∞)上严格增,需要补充定义φ(0)=?证:(1)F ’(x)= ⎪⎩⎪⎨⎧=∈-⎰ a.x ,0b].a,(x a)-(x f(t)dt a -x f(x)2xa, 根据积分中值定理知,存在ξ∈(a,x),⎰xa f(t)dt =f(ξ)(x-a). 又f 在[a,b]上增, ∴F ’(x)=a-x )f(ξ-f(x)>0, x ∈(a,b],∴F ’(x)≥0, x ∈[a,b],∴F 在[a,b]上增.(2)任给x>0,有φ’(x)=2x0xx)f(t)dt (tf(t)dtf(x )f(t)dt x f(x )⎰⎰⎰- =2x0x0)f(t)dt (t)f(t)dt -(x f(x )⎰⎰.∵f(x)>0,∴(x-t)f(x)>0,∴⎰x0t)f(t)dt -(x >0,∴φ’(x)>0, x ∈(0,+∞),∴φ(x)=⎰⎰x 0x0f(t)dttf(t)dt 在(0,+∞)上严格增. 又+→0x lim φ(x)=⎰⎰+→x 0x00x f(t)dttf(t)dt lim=f(x )x f(x )lim 0x +→=+→0x lim x=0, ∴只要补充定义φ(0)=c ≤0,则φ(x)在[0,+∞)上严格增.3、设f 在[0,+∞)上连续,且+∞→x lim f(x)=A. 证明:⎰+∞→x0x f(t)dt x1lim=A. 证:∵+∞→x lim f(x)=A ,∴任给ε>0,存在M>0,使当x>M 时,有|f(x)-A|<2ε,又当T>M 时,|A f(x)dx T 1T 0-⎰|=T1|⎰⎰-T 0T0Adx f(x )dx | =T1|⎰T0A]dx -[f(x )|≤⎰T 0dx |A -f(x)|T 1=⎰M 0dx |A -f(x)|T 1+⎰T M dx|A -f(x)|T 1 ≤⎰M 0dx |A -f(x)|T 1+2ε(1-TM). ∴只要取T 1=max{⎰M 0dx |A -f(x)|ε2, 2M},则 当T>T 1时,就有|A f(x)dx T 1T 0-⎰|<2ε+2ε=ε.∴⎰+∞→T 0T f(x)dx T 1lim =⎰+∞→x0x f(t)dt x 1lim =A.4、设f 是定义在R 上的一个连续周期函数,周期为p ,证明:⎰+∞→x0x f(t)dt x 1lim =⎰p 0f(t)dt p 1. 证:令x=p λ,y=λt,则⎰x0f(t)dt x1=⎰p λ0y) y)d(λ f(λp λ1=⎰p 0y)dy f(λp 1=⎰p 0 t)dt f(λp 1. 由f(t)=f(t+np), n 为任意正整数,又np)f(t lim n ++∞→= t)f(λlim λ+∞→,∴⎰+∞→x0x f(t)dt x 1lim =⎰+∞→p 0λ t)dt f(λp 1lim =⎰++∞→p 0n )dt np f(t p 1lim =⎰p 0f(t)dt p1.5、证明:连续的奇函数的一切原函数皆为偶函数;连续的偶函数的原函数中只有一个是奇函数.证:设连续的奇函数f ,连续的偶函数g ,则它们的原函数分别为: F(x)=⎰x0f(t)dt +C ,G(x)=⎰x0g(t)dt +C.∵F(-x)=⎰-x 0f(t)d(t)+C=⎰x 0f(-t)d(-t)+C=-)f(t)d(-t x 0⎰+C=⎰x0f(t)dt +C=F(x), ∴连续的奇函数的一切原函数皆为偶函数又G(-x)=⎰-x0g(t)dt +C=⎰x 0g(-x )d(-t)+C=⎰x 0g(x )d(-t)+C=-⎰x0g(x )dt +C ≠-G(x), ∴仅当G(x)=⎰x 0g(t)dt 时,G(-x)=-⎰x0g(x )dt =-G(x), 即连续的偶函数的原函数中只有一个是奇函数.6、证明许瓦尔兹不等式:若f 和g 在[a,b]上可积,则 (⎰ba f(x )g(x )dx )2≤⎰b a 2(x )dx f ·⎰ba 2(x )dx g .证:若f 和g 在[a,b]上可积,则f 2,g 2,fg 都可积. 且对于任何t, (f+tg)2也可积.∵(f+tg)2≥0,∴⎰+b a 2tg)(f =⎰ba 2(x )dx f +2t ⎰ba f(x )g(x )dx +t2⎰ba2(x )dx g ≥0.∴二元一次方程的判别式△=4(⎰ba f(x )g(x )dx )2-4⎰ba 2(x )dx f ·⎰ba 2(x )dx g ≤0.∴(⎰b a f(x )g(x )dx )2≤⎰b a 2(x )dx f ·⎰ba 2(x )dx g .7、利用许瓦尔兹不等式证明:(1)若f 在[a,b]上可积,则(dx f(x )ba ⎰)2≤(b-a)⎰ba 2(x )dx f ; (2)若f 在[a,b]上可积,且f(x)≥m>0,则⎰ba f(x )dx ·⎰baf(x )dx≥(b-a)2; (3)若f,g 都在[a,b]上可积,则有闵可夫斯基不等式:21ba 2dx g(x))(f(x)⎥⎦⎤⎢⎣⎡+⎰≤21ba 2(x)dx f ⎥⎦⎤⎢⎣⎡⎰+21ba 2(x)dx g ⎥⎦⎤⎢⎣⎡⎰. 证:(1)记g(x)=1,∵f 和g 在[a,b]上可积,根据许瓦尔兹不等式,有 (dx f(x )ba ⎰)2 ≤⎰b a dx ·⎰b a 2(x )dx f =(b-a)⎰ba 2(x )dx f . (2)若f 在[a,b]上可积,且f(x)≥m>0,则f ,f1在[a,b]上也可积. 根据许瓦尔兹不等式,⎰b a f(x )dx ·⎰baf(x )dx ≥(⎰⋅b a dx f(x)1f(x))2=(b-a)2. (3)∵⎰+ba 2dx g(x ))(f(x )=⎰⎰⎰++ba 2ba ba 2(x )dxg f(x )g(x )dx 2(x )dx f≤⎰⎰⎰⎰+⎥⎦⎤⎢⎣⎡⋅+ba 221ba ba 22ba 2(x)dx g (x)dx g (x)dx f 2(x)dx f=221b a 221b a 2(x)dx g (x)dx f ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎰⎰. ∴21ba 2dx g(x))(f(x)⎥⎦⎤⎢⎣⎡+⎰≤21ba 2(x)dx f ⎥⎦⎤⎢⎣⎡⎰+21ba 2(x)dx g ⎥⎦⎤⎢⎣⎡⎰.8、证明:若f 在[a,b]上连续,且f(x)>0,则 ln ⎪⎭⎫⎝⎛⎰b a f(x )dx a -b 1≥⎰b a lnf(x)dx a -b 1. 证:在[a,b]中插入n-1个等分点a=x 0<x 1<x 2<…<x n =b. 记f(x i )=y i >0,于是由平均值不等式na-b (y 1+y 2+…+y n )≥(b-a)n n 21y y y ⋯=(b-a)e )y ln y (ln n a-b a -b 1n 1⋯+⋅.两边取极限得:⎰ba f(x )dx =na-b limn +∞→(y 1+y 2+…+y n )≥(b-a)na -b lim n +∞→e)y ln y (ln na-b a -b 1n 1⋯+⋅=(b-a)e⎰balnf(x)dx a -b 1.∴⎰b a f(x)dx a -b 1≥e ⎰balnf(x)dx a -b 1,∴ln ⎪⎭⎫ ⎝⎛⎰b a f(x )dx a -b 1≥⎰b a lnf(x)dx a -b 1.9、设f 为R +上的连续减函数,f(x)>0;又设a n =∑=n1k f(k)-⎰n1f(x )dx .证明:{a n }为收敛数列. 证:∵f 为R +上的连续减函数,∴a n =∑=n1k f(k)-⎰n1f(x )dx =∑=n 1k f(k)-∑⎰=+1-n 1k 1k k f(x )dx ≥∑=n 1k f(k)-∑=+1-n 1k k)-1f(k)(k =f(n)>0,即数列{a n }有下界,又a n+1-a n =f(n+1)-⎰+1n nf(x )dx ≤f(n+1)-⎰++1n n1)dx f(n =0.∴{a n }为递减数列. 由单调有界定理知{a n }收敛.10、证明:若f 在[a,b]上可积,且处处有f(x)>0,则⎰ba f(x )dx>0. 证:∵在[a,b]上处处有f(x)>0,∴使f(x)≤0的点只有有限个, 对[a,b]上任一分割T ,添加这些点为分点,则 在每一个小区间(x i ,x i+1)上恒有f(x)>0, ∴⎰+1i ix x f(x)dx>0, (i=0,1,…,n) 其中x 0=a, x n+1=b.∴⎰baf(x )dx =∑⎰=+ni 1i if(x )dx >0.。

数学分析考研试题及答案

数学分析考研试题及答案

数学分析考研试题及答案一、选择题(每题3分,共30分)1. 下列函数中,哪个不是有界函数?A. f(x) = sin(x)B. f(x) = e^xC. f(x) = x^2D. f(x) = 1/x2. 函数f(x) = x^3在区间(-∞, +∞)上是:A. 单调递增B. 单调递减C. 有增有减D. 常数函数3. 如果函数f(x)在点x=a处连续,那么:A. f(a)存在B. f(a) = 0C. lim(x->a) f(x) = f(a)D. lim(x->a) f(x) 不存在4. 定积分∫(0,1) x^2 dx的值是:A. 1/3B. 1/4C. 1/2D. 2/35. 函数序列fn(x) = x^n在[0, 1]上一致收敛的n的取值范围是:A. n = 1B. n > 1C. n < 1D. n = 26. 级数∑(1/n^2)是:A. 收敛的B. 发散的C. 条件收敛的D. 无界序列7. 如果函数f(x)在区间[a, b]上可积,那么:A. f(x)在[a, b]上连续B. f(x)在[a, b]上一定有界C. f(x)在[a, b]上单调递增D. f(x)在[a, b]上无界8. 函数f(x) = |x|在x=0处:A. 连续B. 可导C. 不连续D. 不可导9. 微分方程dy/dx + y = 0的通解是:A. y = Ce^(-x)B. y = Ce^xC. y = Csin(x)D. y = Ccos(x)10. 函数f(x) = e^x在x=0处的泰勒展开式是:A. f(x) = 1 + x + ...B. f(x) = x + ...C. f(x) = 1 + x^2 + ...D. f(x) = 1 + x^3 + ...二、填空题(每题4分,共20分)11. 极限lim(x->0) (sin(x)/x) 的值是 _______。

12. 函数f(x) = x^3 - 6x^2 + 11x - 6的拐点是 _______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

研究它们的性质
2.达布(Darboux 1842~1917 法国数学家) 上和与下和的定 义
设 T={ xi
i 1,2,, n }为对[ a ,b]的任一分
割。由 f ( x) 在[ a ,b]上有界知,它在每个 xi 上 存在上、下确界:
M i sup f ( x)
xxi
,
mi inf f ( x)
为 是由 的分点增加 的分点所构成的分法。根 据性质 2,有
S S
S S

S S S S
S () S () .从而
第一式得证,同理可证第二式.
xxi
,
i 1,2, , n .
作和
S (T ) M i xi
i 1 n

s(T ) mi xi
i 1
n

分别称为 f ( x) 关于分割 T 的上和与下和(或称 达布上和与达布下和,统称达布和)
,2, n , 显 然 有 任 给 i xi , i 1
k
: x0 0 x1 x2
xn 1
D x x S ,
k 1 k k k 1
n
n
k
1
k [ xk 1 , xk ] {k } 若取 ,且 是 上的无理数,则积分和
D k xk 0 xk 0 S , k 1 k 1
T T 表示 T 是 T
的加细 .
a, b 【性质 1】 在区间 的一个固定分法 下, 达布
下和 S ( ) 与达布上和 S () 分别是积分和 S (, ) 的下 确界与上确界,即
S inf S (, )

【证】 下面证明式第一式.

S sup S (, )
p 进行 次.
系 设分法 T 有 p 个分点,则对任何分法 T ,有
S (T ) p(M m) || T || S (T ),
s(T ) p(M m) || T || s(T ).
证 S (T ) p(M m) || T || S (T T ) S (T )
__
__
内加上一个新分点 x 所成的分法, 分别设
M1 sup f ( x) ,
[ xi 1 , x ]
M 2 sup f ( x) ,
[ x, xi ]
M i sup f ( x) .
[ xi 1 , xi ]
显然有
m M1 和 M 2 M i M
.于是
0 S (T ) S (T1 ) M i ( xi xi1 ) M 1 ( x xi1 ) M 2 (xi x)
性质 4 设 T 是 T 添加 p 个新分点的加细. 则有 s(T ) s (T ) s(T ) + p ( M m) T ,
__
S (T )
S (T ) S (T ) p(M m) T 证 设 T1 是只在 T 中第 i 个区间 [ xi 1 , xi ]
.
s(T ) p(M m) || T || s(T T ) s(T )
上积分和下积分 :
__
设函数
f ( x) 在区间
[ a , b ] 上有界. 由以上性质 2 , s(T ) 有
上界 , S (T ) 有下界 .因此它们分别有上确 界和下确界.
定义
记 a
b
S (T ) f ( x)dx inf T
k 2,3,
, n ,此时,相应的积分和

S ,
1 1 1 n n4

k 1
n
f
k xk


1 1 2 n n
1 1 n n n
1 1 1 1 n ( ) (d () 0) n 2 3 n lim S , f x 故 d 0 不存在,从而 在 0,1 上不可
S ( ) S ( ) 显然 与 仅在这个地方不同
S ( ) 中对应于区间 [ xk 1 , xk ] 的项是
mk xk mk ( xk xk 1 )
S ( ) 中对应于这个区间是两项之和 而
( x xk 1 ) mk ( xk x) mk

可积的必要条件
定理 9.2 在 [a, b] 上必有界.
【证】 反证法
若函数 f ( x) 在 [a, b] 上可积,则 f ( x)
a, b f x 若函数 在 上无界,对

a, b
的任意分法
f x [ x , x ] i 1 i 则至少存在一个子区间,不妨设为 , 在
例1 证明函数
1 f x x 0
0 x 1 x0
在[0,1]上不可积.
【证】 将[0,1]区间 n 等分,即取分法
k : xk , k 0,1, 2, n ,n
;取
{k } ,
k k 1 k 1 1 k , 1 4 0, n n n , n n , 其 中
§9.3
可积条件
一、可积的必要条 二、可积的充要条件
三、可积函数类
Riemann积分的定义
积分与分割、介点集的取法无关
几何意义(非负函数): 函数图象下方图形的面积。
xi-1 xi
b n
( R) f ( x)dx lim f (i )xi
a ||T || 0 i 1
其中 x x x i i i 1 xi 1 i xi
积.
注:该定理指出任何可积函数一定是有界,但要 注意的是:有界函数不一定可积.
1, 当x为有理数 , D( x) 例 2 证明狄利 克雷函数 0, 当x为无理数
1] 上有界但不可积. 在 [0,
0,1 【证】对于 的任意分法
根据有理数和无理数在数轴上的稠密性, 在 0,1 的没 有一个子区间上既有有理数,也有无理数 若取 {k } ,且 是 [ xk 1 , xk ] 上的有理数,则积分和
n n
从而 d 0 知,
lim S , 1
, d 0
lim S , 0
,根据定义
D x
在 0,1 上不可积.
二 可积的的充要条件
要判断一个函数是否可积,由定义,可直接考 察积分和是否能无限接近某一常数, 但由于积分和 的复杂性和那个常数不可预知, 因此这是极其困难 的 . 下面即将出的可积准则只与被积函数本身有 关,而不涉及定积分的值.
【性质 3】
a, b 对于区间 任意两个分法


S () S ()
S () S ()
即达布下和总不能超过任意一个达布上和。
【证】
a, b 将区间 的分法 与 的分点合在
a, b 一起,得到 的一个新分法 ,可以认为 是由
的分点增加 的分点所构成的分法, 当然也可以认
i 1
f i xi A
A
k 1
k i 1

n
f (k )xk )
其中
f ( )x
k 1 k
i 1
k

k i 1

n
f (k )xk
.
[ x , x ] k k 1 k 于是对于任意取定的 ,
k 1, 2,

, i 1, i 1,
其上无界.对于任取的
n k 1
: x0 a x1 x2
xn b
{k } ,注意到
i 1 n k 1 k i 1
S , f (k )xk f (i )xi f (k )xk f (k )xk
f (i )xi ( f (k )xk
(M i M 1 )(x xi 1 ) (M i M 2 )(xi x)
(M m)(x xi1 ) (M m)(xi x) (M m)(xi xi1 )
(M m) T
添加
p
个新分点可视为依次添加一个分点 即证得第二式. 可类证第一式.
a, b 基础上增加若干个新分点,得到 的一
个新分法 ,则达布下和不减少,达布上和 不增加,即 S () S () S () S () 【证】 我们只须讨论在分法 的分点中再
x 加进一个分点 的情况. x x x x x x k k 1 k k 1 设 加在 与 之间, 于是

已知
mk inf
xk 1
f ( x) x x
k
, 根据下确界定义,
0 , k [ xk 1 , xk ] ,使
mk f ( k ) mk

ba
于是
)xk
mk xk f ( k )xk (mk

ba
n
k 1, 2,
,n
将上式从加到n,有
,

分别称
b
a
s (T ) f ( x)dx sup T
.

b
a


b
a
为 函 数 f ( x) 在 区 间
[ a , b ] 上的上积分和下积分.
4.Darboux定理 :
Th 1 设函数 f ( x) 在区间 [ a , b ] 上有界, T 是区间 [ a , b ] 的分法 . 则有
xk 1 x x
inf 其中 mk
相关文档
最新文档