(完整word版)常见分布的期望和方差
常用分布的数学期望及方差

方差的性质
方差具有可加性
对于两个独立的随机变量X和Y,有Var(X+Y) = Var(X) + Var(Y)。
方差具有对称性
对于一个常数a和随机变量X,有Var(aX) = |a|^2 * Var(X)。
方差具有非负性
对于随机变量X,有Var(X) >= 0,其中 Var(X) = 0当且仅当X是一个常数。
05 数学期望与方差的应用
在统计学中的应用
描述性统计
数学期望和方差用于描述一组数据的中心趋势和 离散程度,帮助我们了解数据的基本特征。
参数估计
通过样本数据的数学期望和方差,可以对总体参 数进行估计,如均值和方差的无偏估计。
假设检验
在假设检验中,数学期望和方差用于构建检验统 计量,判断原假设是否成立。
常见分布的数学期望
均匀分布的数学期望为
$E(X) = frac{a+b}{2}$,其中a和b是均匀分布的下限和上 限。
柯西分布的数学期望为
$E(X) = frac{pi}{beta} sinh(frac{1}{beta})$,其中β是柯西 分布的参数。
拉普拉斯分布的数学期望为
$E(X) = frac{beta}{pi} tan(frac{pi}{beta})$,其中β是拉普 拉斯分布的参数。
03
泊松分布
正态分布是一种常见的连续型随机变量 分布,其方差记作σ²。正态分布的方差 描述了随机变量取值的分散程度。
二项分布是一种离散型随机变量分布, 用于描述在n次独立重复的伯努利试验 中成功的次数。其方差记作σ²,且σ² = np(1-p),其中n是试验次数,p是单次 试验成功的概率。
泊松分布是一种离散型随机变量分布, 用于描述在一段时间内随机事件发生的 次数。其方差记作σ²,且σ² = λ,其中 λ是随机事件发生的平均速率。
六个常用分布的数学期望和方差

即
12
若随机变量X~U( a , b ),则
ab
(b a)2
E(X)
, D( X )
2
12
五.指数分布
随机变量X服从参数为λ的指数分布,其概率密度为:
f
(
x)
1
θ
e
x θ
0
x0 x0
E(X )
xf ( x)dx
x
1
e
x θ
dx
x
( x)de θ
0
θ
0
(
x)e
x
x
e dx
X X1 X2 Xn
E( X ) E( X1 ) E( X 2 ) E( X n ) np
D( X ) D( X1 ) D( X 2 ) D( X n ) np(1 p)
即: 若随机变量X~B( n , p ),则
E( X ) np,D( X ) np(1 p)
E[3( X 2 1)] 3E( X 2 ) 3
3{D( X ) [E( X )]2 } 3 33
例2.已知X和Y相互独立,且X在区间(1,5)上服从
均匀分布, Y ~ N (1,求9)(1, ) (X,Y)的联合概率密度;(2)
E(3X 4Y 2) , D(3X 4Y 2)
E( X ) xf ( x)dx
b
x
1
dx
a ba
1 x2 b
ba 2 a
ab 2
E( X 2 ) b x 2
1
b3 a3 dx
a 2 ab b2
a ba
3(b a)
3
D( X )
E( X 2 ) [E( X )]2
01分布的期望和方差

01分布的期望和方差
01分布的期望和方差是:期望p方差p(1-p),二项分布期望np,方差np (1-p)。
一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。
若随机变量X服从一个数学期望为μ、方差为σ^2的高斯分布,记为N(μ,σ^2)。
图形特点:
对于固定的n以及p,当k增加时,概率P{X=k}先是随之增加直至达到最大值,随后单调减少。
可以证明,一般的二项分布也具有这一性质,且: 当(n+1)p不为整数时,二项概率P{X=k}在k=[(n+1)p]时达到最大值。
当(n+1)p为整数时,二项概率P{X=k}在k=(n+1)p和k=(n+1)p-1时达到最大值。
[x]为取整函数,即为不超过x的最大整数。
01分布的期望和方差是:期望p方差p(1-p),二项分布期望np,方差np(1-p)。
一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。
若随机变量X服从一个数学期望为μ、方差为σ^2的高斯分布,记为N(μ,σ^2)。
图形特点:
对于固定的n以及p,当k增加时,概率P{X=k}先是随之增加直至达到最大值,随后单调减少。
可以证明,一般的二项分布也具有这一性质,且: 当(n+1)p不为整数时,二项概率P{X=k}在k=[(n+1)p]时达到最大值。
当(n+1)p为整数时,二项概率P{X=k}在k=(n+1)p和k=(n+1)p-1时达到最大值。
[x]为取整函数,即为不超过x的最大整数。
常见分布的期望和方差

罕有散布的期望和方差(0,1)N 2()Yx n t =概率与数理统计重点摘要1.正态散布的盘算:()()()X F x P X x μσ-=≤=Φ.2.随机变量函数的概率密度:X 是屈服某种散布的随机变量,求()Y f X =的概率密度:()()[()]'()Y X f y f x h y h y =.(拜见P66~72)3.散布函数(,)(,)xyF x y f u v dudv -∞-∞=⎰⎰具有以下基赋性质:⑴.是变量x,y 的非降函数;⑵.0(,)1F x y ≤≤,对于随意率性固定的x,y 有:(,)(,)0F y F x -∞=-∞=; ⑶.(,)F x y 关于x 右持续,关于y 右持续;⑷.对于随意率性的11221212(,),(,),,x y x y x x y y << ,有下述不等式成立:4.一个主要的散布函数:1(,)(arctan )(arctan )23x y F x y πππ2=++22的概率密度为:22226(,)(,)(4)(9)f x y F x y x y x y π∂==∂∂++ 5.二维随机变量的边沿散布:边沿概率密度:()(,)()(,)X Y f x f x y dyf y f x y dx+∞-∞+∞-∞==⎰⎰边沿散布函数:()(,)[(,)]()(,)[(,)]xX yY F x F x f u y dy du F y F y f x v dx dv+∞-∞-∞+∞-∞-∞=+∞==+∞=⎰⎰⎰⎰二维正态散布的边沿散布为一维正态散布.6.随机变量的自力性:若(,)()()X Y F x y F x F y =则称随机变量X,Y 互相自力.简称X 与Y 自力.7.两个自力随机变量之和的概率密度:()()()()()Z X Y Y X f z f x f z x dx f y f z y dy +∞+∞-∞-∞=-=-⎰⎰个中Z =X +Y8.两个自力正态随机变量的线性组合仍屈服正态散布,即22221212(,Z aX bY N a b a b μμσσ=+++). 9.期望的性质:……(3).()()()E X Y E X E Y +=+;(4).若X,Y 互相自力,则()()()E XY E X E Y =. 10.方差:22()()(())D X E X E X =-.若X,Y不相干,则()()()D X Y D X D Y +=+,不然()()()2(,)D X Y D X D Y Cov X Y +=++,()()()2(,)D X Y D X D Y Cov X Y -=+-11.协方差:(,)[(())(())]Cov X Y E X E X Y E Y =--,若X,Y 自力,则(,)0Cov X Y =,此时称:X 与Y 不相干. 12.相干系数:(,)()()XY Cov X Y X Y ρσσ==1XY ρ≤,当且仅当X 与Y 消失线性关系时1XY ρ=,且1,b>0;1,b<0XY ρ⎧=⎨-⎩ 当 当。
概率论八大分布的期望和方差

概率论八大分布的期望和方差
概率论是数学中一个很重要的分支,它通过概率来研究不确定性事件发生的规律。
其中,概率论8大分布描述了多次实验和事件中,可能出现的概率位置及其期望等统计量,被广泛用于对数据的拟合和预测。
首先说明的是正态分布,即平均数和方差成正比的分布,它的期望为μ,标准差为σ,因此它的方差为σ²。
接下来介绍的是指数分布,它是描述数据发生在某一时刻及其之前的分布,其期望是1/λ,方差也为1/λ²,其中λ>0。
三角分布是描述一个实验发生三次时的分布,其期望是a+b+c/3,方差为abcb/36。
威布尔分布的期望是α/(1+α),方差为α/((1+α)²(1+2α))。
泊松分布是按概率论中常用的概率模型,其期望是λ,方差也为λ。
F比例的期望依赖于自由度的不同,给定两个自由度为m和n的差异,它的期望为m/n,方差为2m²n²/((m+n)²(m+n+2))。
相间分布是另一种概率模型,它描述了一个试验出现在某个位置的概率,它的期望为μ+σ/2,及其方差为(σ/2)²。
最后要介绍的是Gamma分布,它由α和β决定,其期望为αβ,方差为
αβ²。
以上是概率论8种分布的期望和方差。
科学家们利用这些概念,处理概率性事件作出合理的决策,从而取得成果。
从长远来看,熟悉概率论8大分布的期望和方差,对于科学家精确处理概率性问题有着至关重要的作用。
常见分布的数学期望和方差

e x , x 0
f (x) 0, x0
E( X )
xf ( x)dx
x ex dx
0
x de x
0
xex
0
exdx
0
1
ex
0
1
.
14
2. 指数分布 X ~ E() .
E( X )
1
,D( X )
1
2
E( X 2 ) x 2 f ( x) dx x 2 ex dx
一、常见离散型分布的数学期望和方差
1. 0-1分布 X 0 1
P 1 p p
E( X ) 0(1 p) 1 p p . E( X 2 ) 02 (1 p) 12 p p , D( X ) E( X 2 ) [E( X )]2 p p2 p(1 p) .
E( X ) p D( X ) p(1 p)
2
方 差
正态 分布
f (x)
1
e , ( x )2 2 2
x
2
( 0)
2
例1
设X
~
N
(
1
,
2 1
)
,Y
~
N
(2ຫໍສະໝຸດ ,2 2)
,且X ,Y
相互
独立,则 E( XY )
, D( XY )
.
解 E( XY ) 12 ,
D( XY ) E[( XY )2 ] [E( XY )]2
[D( X ) (EX )2 ][D(Y ) (EY )2 ] (12 )2
D. D(2 X 1) 4np(1 p)
解选
例2 设(D随).机变量X ,Y 相互独立且分布相同,则 X Y
与 2X 的关系是则( ).
常见分布的期望和方差.pdf

x +
FX (x) = F(x, +) =
边缘分布函数:
[
− −
f (u, y)dy]du
y +
FY ( y) = F(+, y) =
[
− −
f (x, v)dx]dv
二维正态分布的边缘分布为一维正态分布。
6、随机变量的独立性:若 F(x, y) = FX (x)FY ( y) 则称随机变量 X,Y 相互独立。简称 X 与 Y 独立。
9、期望的性质:……(3)、 E(X +Y) = E(X ) + E(Y) ;(4)、若 X,Y 相互独立,则 E(XY) = E(X )E(Y) 。
10、方差: D(X ) = E(X 2 ) − (E( X ))2 。 若 X,Y 不相关,则 D(X +Y) = D(X ) + D(Y) ,否则 D(X +Y) = D(X ) + D(Y) + 2Cov(X ,Y) ,
分布类型
0-1 分布 B(1,p) 二项分布 B(n,p)
泊松分布 P(λ)
均匀分布 U( a,b ) 正态分布 N( , 2 )
指数分布 E(λ)
2 分布, 2 (n)
t 分布, t(n)
常见分布的期望和方差
概率密度函数
pi = P X = i = Cni piqn−i (q =1− p),(i =1, 2,..., n)
⑵、 0 F(x, y) 1,对于任意固定的 x,y 有: F(−, y) = F(x, −) = 0 ;
⑶、 F(x, y) 关于 x 右连续,关于 y 右连续;
⑷、对于任意的 (x1, y1), (x2, y2 ), x1 x2, y1 y2 ,有下述不等式成立:
常见分布的数学期望和方差

分布
k!
数
k 0,1,2,
pq
npq
学 期
均匀 分布
f (x)
1 b
a
,
a
x
b
0 , else
望 与
指数 分布
f
(
x)
e x
0,
,
x0 else
( 0)
ab 2 1
(b a)2 12 1
2
方 差
正态 分布
f (x)
1
e ,
(
x) 2 2
2
x
2
( 0)
2
例1
设X
~
N
(
1
,
2 1
E( X i ) p , D( X i ) p(1 p) ,
而 X= X1+X2+…+Xn , Xi 相互独立,
n
n
所以 E( X ) E( X i ) E( X i ) np .
i 1
i 1
n
n
D( X ) D( X i ) D( X i ) np(1 p) .
i 1
i 1
所以 D( X ) np(np p 1) (np)2 np(1 p) .
4
下面利用期望和方差的性质重新求二项分布的
数学期望和方差.
设 X ~ B ( n, p ),X表示n重伯努利试验中的成功次数.
设
1 X i 0
如第i次试验成功 如第i次试验失败
i=1,2,…,n
则
Xi
P
10
p 1 p
与 2X 的关系是则( ).
A.有相同的分布
B.数学期望相等
C.方差相等
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常见分布的期望和方差
x n
(0,1)
N()
概率与数理统计重点摘要
1、正态分布的计算:()()(
)X F x P X x μ
σ
-=≤=Φ。
2、随机变量函数的概率密度:X 是服从某种分布的随机变量,求()Y f X =的概率密度:()()[()]'()Y X f y f x h y h y =。
(参见P66~72)
3、分布函数(,)(,)x y
F x y f u v dudv -∞-∞
=
⎰⎰
具有以下基本性质:
⑴、是变量x ,y 的非降函数;
⑵、0(,)1F x y ≤≤,对于任意固定的x ,y 有:(,)(,)0F y F x -∞=-∞=; ⑶、(,)F x y 关于x 右连续,关于y 右连续;
⑷、对于任意的11221212(,),(,),,x y x y x x y y <<
,有下述不等式成立: 22122111(,)(,)(,)(,)0F x y F x y F x y F x y --+≥
4、一个重要的分布函数:1(,)(arctan )(arctan )23
x y
F x y πππ2=++22的概率密度为:2222
6(,)(,)(4)(9)f x y F x y x y x y π∂==∂∂++ 5、二维随机变量的边缘分布:
边缘概率密度:
()(,)()(,)X Y f x f x y dy
f y f x y dx
+∞
-∞+∞
-∞
==⎰⎰
边缘分布函数:
()(,)[(,)]()(,)[(,)]x
X y
Y F x F x f u y dy du
F y F y f x v dx dv
+∞
-∞-∞+∞
-∞
-∞
=+∞==+∞=⎰⎰
⎰⎰
二维正态分布的边缘分布为一维正态分布。
6、随机变量的独立性:若(,)()()X Y F x y F x F y =则称随机变量X ,Y 相互独立。
简称X 与Y 独立。
7、两个独立随机变量之和的概率密度:()()()()()Z X Y Y X f z f x f z x dx f y f z y dy +∞
+∞
-∞
-∞
=
-=-⎰
⎰
其中Z =X +Y
8、两个独立正态随机变量的线性组合仍服从正态分布,即2222
1212(,Z aX bY N a b a b μμσσ=+++)。
9、期望的性质:……(3)、()()()
EX Y EX EY +=+;(4)、若X ,Y 相互独立,则()()()E XY E X E Y =。
10、方差: 2
2
()()(())D X E X E X =-。
若X ,Y 不相关,则()()()D X Y D X D Y +=+,否则()()()2(,)D X Y D X D Y Cov X Y +=++,
()()()2(,)D X Y D X D Y Cov X Y -=+-
11、协方差:(,)[(())(())]Cov X Y E X E X Y E Y =--,若X ,Y 独立,则(,)0Cov X Y =,此时称:X 与Y 不相关。
12
、相关系数:(,)
()()
XY Cov X Y X Y ρσσ=
=
1XY ρ≤,当且仅当X 与Y 存在线性关系时1XY ρ=,且1,b>0;1,b<0XY ρ⎧=⎨-⎩
当 当。
13、k 阶原点矩:()k k v E X =,k 阶中心矩:[(())]k
k E X E X μ=-。
14、切比雪夫不等式:{}
{}2
2
()
()
(),()1D X D X P X E X P X E X εεεε-≥≤
-<≤-
或。
贝努利大数定律:0
lim 1n m P p n ε→⎧⎫
-<=⎨
⎬⎩⎭。
15、独立同分布序列的切比雪夫大数定律:因2111n i i P X n n σμεε2
=⎧⎫-<≥-⎨⎬⎩⎭∑,所以011lim 1n i n i P X n με→=⎧⎫-<=⎨⎬⎩⎭
∑ 。
16、独立同分布序列的中心极限定理:
(1)、当n 充分大时,独立同分布的随机变量之和1
n
n i
i Z X
==
∑的分布近似于正态分布2
(,)N n n μσ。
(2)、对于12,,...n X X X 的平均值11n i i X X n ==∑,有11()()n i i n E X E X n n μ
μ===
=∑,221
1()()n
i i n D X D X n n n σσ22
====∑,即独立同分布的随机
变量的均值当n 充分大时,近似服从正态分布()N n
σμ2
,。
(3)、由上可知:{}{}lim ()()()()n n n P a Z b b a P a Z b b a →∞
<≤=Φ-Φ⇒<≤≈Φ-Φ。
17、棣莫弗—拉普拉斯中心极限定理:设m 是n 次独立重复试验中事件A 发生的次数,p 是事件A 发生的概率,则对任意x
,
lim ()n P x x →∞
⎧⎫⎪≤=Φ⎬⎪⎭
, 其中1q p =-。
(1)、当n 充分大时,m 近似服从正态分布,()N np npq ,。
(2)、当n 充分大时,
m
n
近似服从正态分布,(,)pq N p n 。
18、参数的矩估计和似然估计:(参见P200)
19
20。