1-2固定管板管壳式换热器设计课程设计

合集下载

管壳式换热器的课程设计

管壳式换热器的课程设计
注意事项
避免选用不合适的材料导致设备损坏 或安全事故;注意材料的兼容性和与 其他材料的接触情况;考虑材料的可 加工性和安装维护的便利性。
04
管壳式换热器的优化设计
传热效率优化
01
传热效率
通过选择合适的材料、优化管程和壳程流体的流速和温度,以及采用强
化传热技术,如增加翅片、改进管子形状等,提高换热器的传热效率。
管件与结构
优化换热器内部的管件和 结构,减少流体流动过程 中的局部阻力,降低压力 损失。
结构强度优化
1 2
应力分析
对换热器进行详细的应力分析,确保其在正常操 作条件下具有足够的结构强度和稳定性。
材料选择
根据使用条件和要求,选择合适的材料和厚度, 以提高换热器的结构强度和耐腐蚀性。
3
支撑与固定
合理设计换热器的支撑和固定结构,以减小应力 集中和振动,提高其结构强度和使用寿命。
新材料与新技术的应用
新型材料
采用高导热性能的复合材料、纳米材料等,提高换热器的传热效率。
新型涂层
利用先进的涂层技术,如陶瓷涂层、金属氧化物涂层等,增强换热器的抗腐蚀和 耐磨性能。
节能减排与环保要求
高效节能
研发低能耗的换热器,优化换热器结构,降低运行过程中的能源消耗。
环保设计
采用无毒、无害的材料,减少换热器对环境的影响,同时对换热器产生的废弃物进行环保处理。
能源与动力工程领域的应用
发电厂
管壳式换热器可用于加热和冷却发电厂中的各种 流体,如锅炉给水、凝结水和冷却水等。
船舶工程
在船舶工程中,管壳式换热器可用于船舶发动机 的冷却和加热,以及生活用水的加热和冷却。
采暖系统
在供暖系统中,管壳式换热器可用于将热量从热 源传递到水中,为建筑物提供热水供暖。

化工原理课程设计-固定管板式换热器

化工原理课程设计-固定管板式换热器

化工原理课程设计-固定管板式换热器
固定管板式换热器课程设计
一、固定管板式换热器介绍
固定管板式换热器是由一系列密封的管子和管板组成的固定式换热器,它是一种高效的传热设备。

固定管板式换热器由管头、管板、管和膨胀节
组成,管板被以阶梯形式安装在壳体内,壳体无特殊要求,可以是钢料或
不锈钢料。

在制造过程中,在管头和管板之间要有一个膨胀节,可以在换
热器的两端安装膨胀节,用于调节管头的压力。

固定管板式换热器的管头有支架结构,管头上的管可以直接在管头上
安装,无需特殊设备,且安装费用便宜。

另外,固定管板式换热器的支架
结构为有利回转,可以一次性安装比较多的管。

换热器的传热面积大,且
不会有结垢的烦恼,这使得固定管板式换热器备受客户青睐。

二、固定管板式换热器实验
1.实验准备
在实验准备阶段,首先要做的就是对实验装置进行检查,在检查过程中,要检查铡管的弯曲度是否符合要求,对膨胀节是否无异常进行检查;
其次把准备好的介质进行油温测试;最后根据测得的油温,调节管头的压力。

2.实验步骤
(1)首先将介质压入换热器,并使用电动泵将介质压入管内,介质
被。

管壳式换热器设计 课程设计

管壳式换热器设计 课程设计

管壳式换热器设计课程设计XXX课程设计:管壳式换热器设计学院:机械与XXX专业:热能与动力工程专业班级:11-02班指导老师:小组成员:目录第一章:设计任务书第二章:管壳式换热器简介第三章:设计方法及设计步骤第四章:工艺计算4.1 物性参数的确定4.2 核算换热器传热面积4.2.1 传热量及平均温差4.2.2 估算传热面积第五章:管壳式换热器结构计算管壳式换热器是常用的热交换设备,广泛应用于化工、石油、制药、食品等行业。

本次课程设计旨在设计一台管壳式换热器,以满足特定工艺条件下的换热需求。

在设计之前,需要了解管壳式换热器的基本结构和工作原理。

管壳式换热器由外壳、管束、管板、管箱、管夹等部分组成。

热量通过内置于管束中的流体在管内传递,再通过管壳间的流体传递到外壳中,从而实现热交换。

设计过程中,需要确定流体的物性参数,包括密度、比热、导热系数等。

同时,还需要核算换热器传热面积,以满足特定的传热需求。

传热量和平均温差是计算传热面积的重要参数,而估算传热面积则需要考虑流体的流动状态、管束的排布方式等因素。

最终,我们将根据设计要求进行管壳式换热器的结构计算,确定外壳、管束等部分的尺寸和数量,以满足特定工艺条件下的换热需求。

第一章设计任务书本项目旨在设计一台管壳式换热器,用于将煤油由140℃冷却至40℃。

处理能力为10t/h,压强降不得超过100kPa。

具体操作条件为:煤油的入口温度为140℃,出口温度为40℃,冷却水的入口温度为26℃,出口温度为40℃。

2.第二章管壳式换热器简介管壳式换热器是石油化工行业中应用最广泛的换热器。

尽管各种板式换热器的竞争力不断上升,但管壳式换热器仍然占据着换热器市场的主导地位。

目前,各国为提高这类换热器性能进行的研究主要集中在强化传热、提高对苛刻工艺条件的适应性以及开发适用于各类腐蚀介质的材料。

此外,结构改进也是向着高温、高压、大型化方向发展的必然趋势。

5.1 换热管计算及排布方式在设计管壳式换热器时,需要计算并确定换热管的数量、直径和排布方式。

(完整word版)固定管板式换热器课程设计

(完整word版)固定管板式换热器课程设计

一 列管换热器工艺设计1、根据已知条件,确定换热管数目和管程数: 选用.5225⨯φ的换热管 则换热管数目:5.737019.014.35.2110A 0≈⨯⨯==d l n p π根 故738=n 根管程数:对于固定板式换热器,可选单管程或双管程,为成本计,本设计采用单管程。

2、管子排列方式的选择(1)采用正三角形排列(2)选择强度焊接,由表1.1查的管心距t=25mm 。

(3)采用正三角形排列,当传热管数超过127根,即正六边形的个数a>6时,最外层六边形和壳体间的弓形部分空间较大,也应该配置传热管。

不同的a 值时,可排的管数目见表1.2。

具体排列方式如图1,管子总数为779根。

30111 23 397 7 42 43912 25 469 8 48 51713 27 547 9 2 66 61314 29 631 10 5 90 72115 31 721 11 6 102 82316 33 817 12 7 114 93117 35 919 13 8 126 104518 37 1027 14 9 138 116519 39 1411 15 12 162 130320 41 1261 16 13 4 198 145921 43 1387 17 14 7 228 161622 45 1519 18 15 8 246 176523 47 1657 19 16 9 264 1921图1.1折流板的管孔及换热管及拉杆分布3、壳程选择壳程的选择:简单起见,采用单壳程。

4、壳体内径的确定换热器壳体内径与传热管数目、管心距和传热管的排列方式有关。

壳体的内径需要圆整成标准尺寸。

以400mm为基数,以100mm为进级档,必要时可以50mm为进级档。

对于单管程换热器,壳体内径公式0bt+-D d=~)32()1(式中,t 为管心距,单位mm ;0d 为传热管外径,单位mm 。

对于正三角形排列 n b 1.1= 将779=n 代入,得到 7.30≈b 取31,5.7975.2)1(D 0=+-=d b t结合换热管的排布图稍加圆整可选定mm 800D =二 列管换热器零部件的工艺机构设计1、折流板的设计(1)、折流板切口高度的确定 经验证明,20%的切口最为适宜: 因此可取mm D h 1608002.02.0=⨯== 切口高度h 确定后,还用考虑折流板制造中,可能产生的管控变形而影响换热管的穿入,故应将该尺寸调整到使被切除管孔保留到小于1/2孔位。

化工原理课程设计——管壳式换热器课程设计(安全系数为1625%)

化工原理课程设计——管壳式换热器课程设计(安全系数为1625%)

目录化工原理课程设计任务书设计概述试算并初选换热器规格1. 流体流动途径的确定2.物性参数及其选型3. 计算热负荷及冷却水流量4. 计算两流体的平均温度差5. 初选换热器的规格工艺计算1. 核算总传热系数2. 核算压强降经验公式设备及工艺流程图设计结果一览表设计评述参考文献化工原理课程设计任务书化工原理课程设计任务书一.设计任务用初温为20℃的冷却水,将流量为(4000+200×学号)kg/h的95%(体积分率)的乙醇水溶液从70℃冷却到35℃;设计压力为1.6MPa,要求管程和壳程的压降不大于30kPa,试选用适当的管壳式换热器。

二.设计要求每个设计者必须提交设计说明书和装配图(A2或A3)。

1.设计说明书必须包括下述内容:封面、目录、设计任务书、设计计算书、设计结果汇总表、符号说明、参考文献以及设计自评等。

2.设计计算书的主要内容应包括的步骤:1) 计算热负荷、收集物性常数。

根据设计任务求出热流体放热速率或冷流体吸热速率,考虑了热损失后即可确定换热器应达到的传热能力Q;按定性温度确定已知条件中未给出的物性常数。

2) 根据换热流体的特性和操作参数决定流体走向(哪个走管程、哪个走壳程);计算平均温差。

3) 初步估计一个总传热速率常数K估,计算传热面积A估。

4) 根据A估初选标准换热器;5) 换热面积的核算。

分别按关联式求出管内、外传热膜系数,估计污垢热阻,求出总传热速率常数K核,得出所需传热面积A需,将A需与A实际进行比较,若A实际比A需大15%-25%,则设计成功;否则重新计算。

6) 管程和壳程压力降的核算。

7)接管尺寸的计算。

3.符号说明的格式:分为英文字母、希腊字母,要按字母排序,要写出中文名称和单位;4.参考文献的格式:按GB7714-87的要求。

一、设计题目:设计一台换热器二、操作条件:1、乙醇水溶液:入口温度70℃,出口温度35℃。

2、冷却介质:循环水,入口温度20℃。

3、允许压强降:不大于30kPa。

管壳式换热器设计-课程设计

管壳式换热器设计-课程设计

一、课程设计题目管壳式换热器的设计二、课程设计内容1.管壳式换热器的结构设计包括:管子数n,管子排列方式,管间距的确定,壳体尺寸计算,换热器封头选择,容器法兰的选择,管板尺寸确定塔盘结构,人孔数量及位置,仪表接管选择、工艺接管管径计算等等。

2. 壳体及封头壁厚计算及其强度、稳定性校核(1)根据设计压力初定壁厚;(2)确定管板结构、尺寸及拉脱力、温差应力;(3)计算是否安装膨胀节;(4)确定壳体的壁厚、封头的选择及壁厚,并进行强度和稳定性校核。

3. 筒体和支座水压试验应力校核4. 支座结构设计及强度校核包括:裙座体(采用裙座)、基础环、地脚螺栓5. 换热器各主要组成部分选材,参数确定。

6. 编写设计说明书一份7. 绘制2号装配图一张,Auto CAD绘3号图一张(塔设备的)。

三、设计条件气体工作压力管程:半水煤气0.75MPa壳程:变换气 0.68 MPa壳、管壁温差55℃,tt >ts壳程介质温度为220-400℃,管程介质温度为180-370℃。

由工艺计算求得换热面积为140m2,每组增加10 m2。

四、基本要求1.学生要按照任务书要求,独立完成塔设备的机械设计;2.设计说明书一律采用电子版,2号图纸一律采用徒手绘制;3.各班长负责组织借用绘图仪器、图板、丁字尺;学生自备图纸、橡皮与铅笔;4.画图结束后,将图纸按照统一要求折叠,同设计说明书统一在答辩那一天早上8:30前,由班长负责统一交到HF508。

5.根据设计说明书、图纸、平时表现及答辩综合评分。

五、设计安排六、说明书的内容1.符号说明2.前言(1)设计条件;(2)设计依据;(3)设备结构形式概述。

3.材料选择(1)选择材料的原则;(2)确定各零、部件的材质;(3)确定焊接材料。

4.绘制结构草图(1)换热器装配图(2)确定支座、接管、人孔、控制点接口及附件、内部主要零部件的轴向及环向位置,以单线图表示;(3)标注形位尺寸。

(4)写出图纸上的技术要求、技术特性表、接管表、标题明细表等5.壳体、封头壁厚设计(1)筒体、封头及支座壁厚设计;(2)焊接接头设计;(3)压力试验验算;6.标准化零、部件选择及补强计算:(1)接管及法兰选择:根据结构草图统一编制表格。

固定管板式换热器课程设计

固定管板式换热器课程设计

固定管板式换热器课程设计课程设计名称:固定管板式换热器课程设计课程设计目标:1. 了解固定管板式换热器的基本原理和工作原理;2. 掌握固定管板式换热器的设计计算方法和参数选择;3. 能够应用所学知识进行固定管板式换热器的设计与改进;4. 锻炼学生的团队合作能力、实际操作能力和问题解决能力。

课程设计内容:1. 换热器设计基础知识1.1 换热器的分类和基本工作原理;1.2 换热器的热传导基本原理;1.3 换热器的换热系数与传热面积关系;1.4 换热器设计的目的和要求。

2. 固定管板式换热器的结构和工作原理2.1 固定管板式换热器的主要构件和组成;2.2 固定管板式换热器的流体流动方式;2.3 固定管板式换热器的热传导过程。

3. 固定管板式换热器的设计计算3.1 换热器需求参数的确定;3.2 固定管板式换热器的传热面积计算;3.3 固定管板式换热器的管束设计;3.4 固定管板式换热器的板设计;3.5 固定管板式换热器的布置方式选择。

4. 固定管板式换热器的优化改进4.1 基于性能参数的优化改进;4.2 基于结构参数的优化改进;4.3 换热器系统的综合优化。

课程设计流程:1. 学生团队选定特定的换热器设计目标;2. 学生团队进行文献调研,了解固定管板式换热器的基本知识;3. 学生团队进行设计计算,根据选定的设计目标确定换热器参数;4. 学生团队进行换热器结构设计,包括管束设计和板设计;5. 学生团队根据设计结果进行性能和结构优化改进;6. 学生团队进行设计方案的整理和总结,并撰写设计报告。

课程设计评价指标:1. 设计报告的完整性和规范性;2. 设计计算的准确性和合理性;3. 设计结果的优化改进程度;4. 学生团队的合作能力和实践操作能力;5. 学生团队对于课程设计所学知识的应用能力。

固定管板式换热器课设

固定管板式换热器课设

江汉大学课题名称:固定管板式换热器设计系别:化学与环境工程学院专业:过控121班学号: 122209104119姓名:库勇智指导教师:杨继军时间: 2016年元月课程设计任务书设计题目:固定管板式换热器设计一、设计目的:1.实用国家最新压力容器标准、规范进行设计,掌握典型的过程装备设计的全过程。

2.掌握查阅和综合分析文献资料的能力,进行设计方法和设计方案的可行性研究和论证。

3.掌握软件强度设计计算,要求设计思路清晰,计算数据准确可靠,正确掌握计算机操作和专业软件的实用。

4.掌握图纸的计算机绘图。

二、设计条件:设计条件单名称管程壳程物料名称循环水甲醇工作压力0.45Mpa 0.05Mpa操作温度40℃70℃推荐钢材10,Q235-A,16MnR换热面积60㎡推荐管长Φ=2532-39㎡40-75㎡76-135㎡2m 2.5 3m管口表符号公称直径用途a 200 冷却水金口b 200 甲醇蒸汽进口c 20 放气口d 70 甲醇物料出口e 20 排净物f 200 冷却水出口三、设计要求:1.换热器机械设计计算及整体结构设计2.绘制固定管板式换热器装配图(一张一号图纸)3.管长与壳体内径之比在3-20之间四、主要参考文献1.国家质量监督检验检疫总局,GB150-2011《压力容器》,中国标准出版社,2011.2.国家质量监督检验检疫总局,TSG R0004-2009《固定式压力容器安全技术监察规程》,新华出版社,2009.3.国家质量监督检验检疫总局,GB151-1999《管壳式换热器》,中国标准出版社,1999.4.天津大学化工原理教研室,《化工原理》上册,姚玉英主编,天津科学技术出版社,2012.5.郑津样,董其伍,桑芝富主编,《过程装备设计》,化学工业出版社,2010.6.赵惠清,蔡纪宁主编,《化工制图》,化学工业出版社,2008。

7.潘红良,郝俊文主编,《过程装备机械设计》,华东理工大学出版社,2006。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

sn
mm
拉杆直径
mm
做草图
作图结果所得数据
正方形层数
a
总管子数
nt

拉杆数
传热面积
F"
管束中心至做外层管中心距离
管束外缘直径
DL
m
壳体内径
DS
m
长径比
管程计算
管程接管直径
D2
mm
管程雷诺数
Re2
管程换热系数
α
2
W/(m2•℃)
壳程结构及壳程计算
折流板形式
折流板缺口高度
h
m
折流板的圆心角

折流板间距
D1
m
错流区排管数
Nc

每一缺口内的有效错流管排数 Ncw

旁流通道数
NE
旁通挡板数
Nss

错流面积中旁流面积所占分数 Fbp
一块折流板上管子和管孔间泄漏面积 Atb
m2
折流板外缘与壳体内壁之间泄漏面积 Asb
m2
壳程雷诺数
Re1
理想管束传热因子
js
折流板缺口校正因子
jc
折流板泄漏校正因子
j1
旁通校正因子
DL 0.161 2 2 0.0125
0.347
Ds (b 1)s 2b'
b' (1 1.5)d0
b 1.1 nt
0.450833154
长径比=
l Ds
12
D2 1.13
M2

142.780018
Re2
2 2 di 2
26804.09593
2
正三角形 选 32 由《热交换器原理与设计》P45表2.3 44 由《热交换器原理与设计》P45表2.3
s p s cos30
27.71281292
s p s sin 30
16
16 由《热交换器原理与设计》P50
5
nt nZt
114
4 由《热交换器原理与设计》P51表2.7 107.4424688 ntπ dl 0.161
jb
壳程传热因子
j0
壳程质量流速
Gs
kg/(m2*s)
壳侧壁面温度
tw

壁煤油粘度
μ
w1
kg/(m*s)
壳侧换热系数
α
1
W/(m2•℃)
需用传热面积
水垢热阻
rs,2
(m2*℃)/W
热流体污垢热阻
rs,1
(m2*℃)/W
管壁热阻
传热系数
K
W/(m2•℃)
传热面积
F
m2
传热面积之比
F"/F
检验壳侧壁温
11431.96323
222 Pr 4 Zt 2
PN 1.5
3978.8
222
2
746.025
P t P i P r P N
16156.78823
0.13 查《热交换器原理与设计》图2.36
Pbk 4 f k
M12 Nc ( / w1 )0.14 2 2 Ac 1
928.0055556
M2
cp2
t
Q '' '
2
t
2

15.88071661
t1m,c
tmax tmin t '1 t ''1 t2' t2'' tmax t ' t '' In In 1' 2 tmin t2 t ''1
54.72110472
t2 '' t2 ' P ' t 1 t2 '
1
3 选取
Fbp [ Ds DL
1 N E lE ]ls / Ac 2
0.722055901
1 Atb d o (d H d o ) (1 Fc )nt 2
0.003032397
Asb
Ds ( Ds Db ) 2h [ arccos(1 )] 2 Ds
Ncw )R Nc
236.518545
47
57
6
0.5
Ø150×5
Ø1203×6
0.123683279 0.437256098
符合表2.10的规定
符合表2.10的规定
11.82320946
Pwk
M12 (2 0.6 Ncw ) 2 Ab Ac 1
12.27790098
0.63 查《热交换器原理与设计》图2.38 0.53 查《热交换器原理与设计》图2.37
间距相等,不需校正
Ps [( Nb 1)Pbk Rb Nb Pwk ]R1 2Pbk Rb (1
煤油的普朗特数
Pr1
水的定性温度 tm2 水的比热 cp2 水的密度 ρ 水的导热系数 λ 水的黏度 μ 水的普朗特常数 Pr2
2 2 2

kJ/(kg*℃)
kg/m3
W/(m*℃)
kg/(m*s)
-
传热量及平均温差
热损失系数
η
L
-
传热量
Q
kW
冷却水量
M2
kg/s
逆流时的对数平均温差
Δ t1m,c

参数P及R
P
R
温差修正系数
ψ
-
有效平均温差
Δ tm

估算传热面积及传热面结构
初选传热系数
K′
W/(m2•℃)
估算传热面积
F′
m2
管子材料
管程内水流速
ω2
m/s
管程所需流通截面
At
m2
每程管数
n

每根管长
l
m
管子排列方式
管中心距
s
mm
分程隔板槽处管中心距
lE
mm
平行于流向的管距
sp
mm
垂直于流向的管距
240 查《热交换器原理与设计》附录A
F'
Q K 0 tm
'
85.14124959
Ø 25×2.5 选用碳钢无缝钢管
1 在《热交换器原理与设计》附录F中选用
At
22
M2
0.015965333
n
4 At d 2i
50.81923289
F' l nZ t d 0
5.887756977
2
di
0.023Re20.8 Pr20.4
4924.03331
弓形 选定
h 0.25Ds
0.125
1200.Biblioteka 5Nb l 1 ls
23
18
0.0254 由GB51-1999 84 由图 18
0.4955 由GB51-1999
Awg
Ds 2 1 2h [ (1 )sin ] 4 2 Ds 2
M 1d o 1 Ac
0.002356194
Re1
3110.135907
0.007 由《热交换器原理与设计》图2.28 1.1 由《热交换器原理与设计》图2.29
Asb Atb Ac N ss 查图2.31 Nc
Asb 然后查图2.30 Asb Atb
0.87
0.94
jo js jc j1 jb
ls
m
折流板数目
Nb

折流板上管孔数

折流板上管孔直径
dH
m
通过折流板上管子数

折流板缺口处管子数
折流板直径
Db
m
折流板缺口面积
Awg
m2
错流区内管数占总管数的百分数 Fc
缺口处管子所占面积
Awt
m2
流体在缺口处流通面积
Ab
m2
流体在两折流板间错流流通截面积 Ac
m2
壳程流通截面积
As
m2
壳程接管直径
tw1

管内摩擦因子
fi
管侧壁温
tw2

壁温下水粘度
µw2
kg/(m*s)
沿程阻力
Δ Pi
Pa
回弯阻力
Δ Pr
Pa
进出口连接管阻力
Δ PN
Pa
管程总阻力
Δ Pt
Pa
理想管束摩擦系数
fk
-
理想管束错流段阻力
Δ Pbk
pa
理想管束缺口处阻力
Δ Pwk
pa
旁路校正系数
Rb
-
折流板泄漏校正系数
R1
-
折流板间距不等的校正系数
Rs
-
壳程总阻力
Δ Ps
pa
<1-2>固定管板管壳式换热器设计 计算公式或数据来源 数值
180 由题意 40 由题意 26 由题意 40 由题意 10000 由题意
M1
M t
2.777777778
t
m1

t '' t '
1 1
2
110
查物性表
2.435
查物性表
758.32
查物性表
0.0005125
查物性表
0.1026
Pr1
1c p1 1
12.16313353
t
m2

t ''
2
t'
2
相关文档
最新文档