广西柳州二中2020-2021学年高二上学期期末考试数学(文科)试题答案
2020年柳州市高二数学上期末模拟试题(含答案)

A. B. C. D.
二、填空题
13.将函数 的图象向左平移 个单位长度,得到函数 的图象,则 __________.
14.根据党中央关于“精准脱贫”的要求,石嘴山市农业经济部门派3位专家对大武口、惠农2个区进行调研,每个区至少派1位专家,则甲,乙两位专家派遣至惠农区的概率为_____.
A.3B. C. D.
4.如图,矩形ABCD中,点E为边CD的中点,若在矩形ABCD内部随机取一个点Q,则点Q取自△ABE内部的概率等于
A. B.
C. D.
5.如图所给的程序运行结果为 ,那么判断框中应填入的关于 的条件是( )
A. ?B. ?C. ?D. ?
6.如果数据 、 、 、 的平均值为 ,方差为 ,则数据: 、 、 、 的平均值和方差分别为()
由 ,得 每增一个单位长度, 不一定增加 ,而是大约增加 个单位长度,故选项 错误;
由已知表格中的数据,可知 , , 回归直线必过样本的中心点 ,故 错误;
又 , 回归方程为 ,
当 时, 的预测值为 ,故 正确,
故选:D.
【点睛】
本题考查线性回归方程的性质及应用,注意回归直线过 ,本题属于基础题.
8.C
A. , B. , C. , D. ,
7.已知具有线性相关的两个变量 之间的一组数据如下表所示:
若 满足回归方程 ,则以下为真命题的是()
A. 每增加1个单位长度,则 一定增加1.5个单位长度
B. 每增加1个单位长度, 就减少1.5个单位长度
C.所有样本点的中心为
D.当 时, 的预测值为13.5
8.如图,正方形ABNH、DEFM的面积相等, ,向多边形ABCDEFGH内投一点,则该点落在阴影部分内的概率为()
广西柳州市数学高二上学期文数期末考试试卷

广西柳州市数学高二上学期文数期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)某社区有500个家庭,其中高收入家庭125户,中等收入家庭280户,低收入家庭95户.为了调查社会购买力的某项指标,要从中抽取1个容量为100的样本,记作①;某学校高一年级有12名女排运动员,要从中选出3名调查学习负担情况,记作②.那么完成上述两项调查应采用的抽样方法是()A . ①用简单随机抽样法;②用系统抽样法B . ①用分层抽样法;②用简单随机抽样法C . ①用系统抽样法;②用分层抽样法D . ①用分层抽样法;②用系统抽样法2. (2分) (2019高二上·九台月考) 以为顶点的三角形()A . 以A点为直角顶点的直角三角形B . 以B点为直角顶点的直角三角形C . 锐角三角形D . 钝角三角形3. (2分)一个算法的程序框图如图所示,若该程序输出的结果是,则判断框内应填入的条件是()A . i<4B . i>44. (2分)在长度为3的线段上随机取两点,将其分成三条线段,则恰有两条线段的长大于1的概率为()A .B .C .D .5. (2分)(2020·化州模拟) 若的展开式中各项的系数之和为,则分别在区间和内任取两个实数,,满足的概率为()A .B .C .D .6. (2分)已知M是正四面体ABCD棱AB的中点,N是棱CD上异于端点C,D的任一点,则下列结论中,正确的个数有()(1)MN⊥AB;(2)若N为中点,则MN与AD所成角为60°;(3)平面CDM⊥平面ABN;(4)不存在点N,使得过MN的平面与AC垂直.A . 1D . 47. (2分)(2018·南宁模拟) 已知正三棱柱(上下底面是等边三角形,且侧棱垂直于底面的三棱柱)的高为2,它的6个顶点都在体积为的球的球面上,则该正三棱柱底面三角形边长为()A .B .C . 3D .8. (2分)关于统计数据的分析,有以下几个结论:①将一组数据中的每个数据都减去同一个数后,方差没有变化;②绘制频率分布直方图时,各小长方形的面积等于相应各组的组距;③一组数据的方差一定是正数;④如图是随机抽取的200辆汽车通过某一段公路时的时速分布直方图,根据这个直方图,可以得到时速在(50,60)的汽车大约是60辆.则这4种说法中错误的个数是()A . 1B . 29. (2分)设点(a,b)是区域内的随机点,函数在区间[1,)上是增函数的概率为()A .B .C .D .10. (2分)从(其中)所表示的圆锥曲线(椭圆、双曲线、抛物线)方程中任取一个,则此方程是焦点在y轴上的双曲线方程的概率为()A .B .C .D .11. (2分) (2016高三上·安徽期中) 已知正方体ABCD﹣A1B1C1D1 ,则下列说法不正确的是()A . 若点P在直线BC1上运动时,三棱锥A﹣D1PC的体积不变B . 若点P是平面A1B1C1D1上到点D和C1距离相等的点,则P点的轨迹是过D1点的直线C . 若点P在直线BC1上运动时,直线AP与平面ACD1所成角的大小不变D . 若点P在直线BC1上运动时,二面角P﹣AD1﹣C的大小不变12. (2分) (2018高二上·遂宁期末) 在直角坐标系内,已知是以点为圆心的圆上C的一点,折叠该圆两次使点分别与圆上不相同的两点(异于点)重合,两次的折痕方程分别为和,若圆C上存在点,使得,其中点、,则的最大值为()A . 7B . 6C . 5D . 4二、填空题 (共4题;共4分)13. (1分)有下列关系:①苹果的产量与气候之间的关系;②学生与他(她)的学号之间的关系;③森林中的同一种树木,其断面直径与高度之间的关系;④曲线上的点与该点的坐标之间的关系.其中有相关关系的是________ (填上你认为正确的所有序号)14. (1分)某程序框图如图所示,若输入的n=10,则输出的结果是________.15. (1分)(2016·新课标I卷文) 设直线y=x+2a与圆C:x2+y2﹣2ay﹣2=0相交于A,B两点,若|AB|=2 ,则圆C的面积为________.16. (1分)(2017·北京) 在极坐标系中,点A在圆ρ2﹣2ρcosθ﹣4ρsinθ+4=0上,点P的坐标为(1,0),则|AP|的最小值为________.三、解答题 (共6题;共60分)17. (10分)(2018·茂名模拟) 在平面直角坐标系中,以原点为极点,轴的非负半轴为极轴,建立极坐标系,曲线的极坐标方程为,直线的参数方程为(为参数,为倾斜角).(1)若,求的普通方程和的直角坐标方程;(2)若与有两个不同的交点,且为的中点,求 .18. (10分)随着我国经济的发展,居民的储蓄款逐年增长,设某地区城乡居民人民币储蓄存款(年底余额)如表:年份20102011201220132014时间代号t12345储蓄存款y(千亿元)567810(1)取y关于t的回归方程 = t+a;(2)用所求回归方程预测该地区2015年(t=6)的人民币储蓄存款.19. (10分) (2015高二上·抚顺期末) 如图所示,在正方体ABCD﹣A1B1C1D1中,E是棱DD1的中点.(1)求直线BE与平面ABB1A1所成的角的正弦值;(2)在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.20. (15分)(2014·广东理) 随机观测生产某种零件的某工作厂25名工人的日加工零件个数(单位:件),获得数据如下:30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36.根据上述数据得到样本的频率分布表如下:分组频数频率[25,30]30.12(30,35]50.20(35,40]80.32(40,45]n1f1(45,50]n2f2(1)确定样本频率分布表中n1,n2,f1和f2的值;(2)根据上述频率分布表,画出样本频率分布直方图;(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率.21. (5分)(2017·山东) 如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是的中点.(12分)(Ⅰ)设P是上的一点,且AP⊥BE,求∠CBP的大小;(Ⅱ)当AB=3,AD=2时,求二面角E﹣AG﹣C的大小.22. (10分)已知圆C经过A(3,2),B(1,6)圆心在直线y=2x上.(1)求圆C方程;(2)若直线 x+2y+m=0与圆C相交于M、N两点,且∠MAN=60°,求m的值.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共60分)17-1、17-2、18-1、18-2、19-1、19-2、20-1、20-2、20-3、22-1、22-2、。
广西壮族自治区柳州市第二中学2020年高二数学理上学期期末试题含解析

广西壮族自治区柳州市第二中学2020年高二数学理上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知集合,,则()A.B.C.D.参考答案:D略2. 设函数f(x)是R上以5为周期的可导偶函数,则曲线y=f(x)在x=5处的切线的斜率为()A.-B.0 C. D.5参考答案:B略3. 已知α,β是两个不重合的平面,直线m⊥α,直线n⊥β,则“α,β相交”是“直线m,n异面”的()A.充分不必要条件B.必要不充分条件C.充分条件D.既不充分也不必要条件参考答案:B【考点】必要条件、充分条件与充要条件的判断.【分析】根据空间直线与直线,平面与平面位置关系的几何特征,结合充要条件的定义,可得答案.【解答】解:α,β是两个不重合的平面,直线m⊥α,直线n⊥β,当α,β相交时直线m,n可以异面和相交,当直线m,n异面直线时,α,β必相交,故“α,β相交”是“直线m,n异面”的必要不充分条件,故选:B4. 非空数集A={a1,a2,a3,…,a n}(n∈N*)中,所有元素的算术平均数记为E(A),即E(A)=.若非空数集B满足下列两个条件:①B?A;②E(B)=E(A),则称B为A的一个“保均值子集”.据此,集合{1,2,3,4,5}的“保均值子集”有()A.5个B.6个C.7个D.8个参考答案:C【考点】子集与交集、并集运算的转换;众数、中位数、平均数.【分析】根据集合A和“保均值子集”的定义把集合的非空真子集列举出来,即可得到个数.【解答】解:非空数集A={1,2,3,4,5}中,所有元素的算术平均数E(A)==3,∴集合A的“保均值子集”有:{3},{1,5},{2,4},{3,1,5},{3,2,4},{1,5,2,4},{1,2,3,4,5}共7个;故选C.5. 某中学高考数学成绩近似地服从正态分布,则此校数学成绩在分的考生占总人数的百分比为()A.31.74﹪B.68.26﹪C.95.44﹪D.99.74﹪参考答案:C6. 抛物线的焦点坐标为A.B.(0,1) C.D.(1,0)参考答案:C抛物线y2x,开口向右,p,故焦点坐标为 (,0), 故选:C . 7. 函数的导函数的图象如图所示,则下列说法错误的是( )A. (-1,3)为函数的单调递增区间;B. (3,5)为函数的单调递减区间;C. 函数在处取极大值;D. 函数在处取极小值;参考答案:C 【分析】根据导函数图象中函数值的正负确定单调性增减,根据导函数图象中零点且其附近函数值符号发生变化确定极值,由正变负为极大值,由负变正为极小值.【详解】由函数y =f (x )导函数的图象可知,f (x )的单调递减区间是(-∞,-1),(3,5),单调递增区间为(-1,3),(5,+∞),所以f (x )在x =-1,5取得极小值,在x =3取得极大值,故选项C 错误. 【点睛】导函数图象特点:导函数图象中函数值的正负确定单调性增减,根据导函数图象中零点且其附近函数值符号发生变化确定极值,由正变负为极大值,由负变正为极小值.8. 过双曲线的一个焦点作实轴的垂线,交双曲线于A ,B 两点,若线段AB 的长度恰等于焦距,则双曲线的离心率为( )A. B. C. D.参考答案:A试题分析:,又.考点:双曲线的标准方程及其几何性质(离心率的求法).9. 如果平面α外有两点A 、B ,它们到平面α的距离都是,则直线AB 和平面α的位置关系是( ) A、平行 B 、相交 C 、平行或相交 D 、AB ⎧α参考答案:C 略10. 若的取值范围是 ( )A .[2,6]B .[2,5]C .[3,6]D .[3,5]参考答案:A二、 填空题:本大题共7小题,每小题4分,共28分11. 在等差数列{a n }中,已知,,则有( )(A )(B )(C )(D )参考答案:A 12. 在区间上任取一个实数,则的概率是▲ .参考答案:略13. 当实数满足时,恒成立,则实数的取值范围是 .参考答案:14. 过点(-2,3)的抛物线的标准方程为__________.参考答案:略15. 采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9,抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C ,则抽到的人中,做问卷B 的人数为 .参考答案:10考点: 系统抽样方法. 专题: 概率与统计.分析: 由题意可得抽到的号码构成以9为首项、以30为公差的等差数列,求得此等差数列的通项公式为a n =9+(n ﹣1)30=30n ﹣21,由451≤30n﹣21≤750 求得正整数n 的个数,即为所求. 解答: 解:由960÷32=30,故由题意可得抽到的号码构成以9为首项、以30为公差的等差数列, 且此等差数列的通项公式为a n =9+(n ﹣1)30=30n ﹣21. 由 451≤30n﹣21≤750 解得 15.7≤n≤25.7. 再由n 为正整数可得 16≤n≤25,且 n∈z, 故做问卷B 的人数为10, 故答案为:10.点评: 本题主要考查等差数列的通项公式,系统抽样的定义和方法,属于基础题. 16. 若实数、、满足,则称比远离.若比1远离0,则的取值范围是_______________.参考答案:略17. 已知角的终边经过点P (3,4),则cos的值为.参考答案:三、 解答题:本大题共5小题,共72分。
2020-2021学年高二上册数学期末数学试卷(文科)带答案

2020-2021学年高二(上)期末数学试卷(文科)一、选择题(共12小题,每小题5分,共60分).)1. 命题“对任意的x∈R,x3−2x+1≤0”的否定是()A.不存在x∈R,x3−2x+1≤0B.存在x∈R,x3−2x+1≤0C.存在x∈R,x3−2x+1>0D.对任意的x∈R,x3−2x+1>02. “p或q为真”是“非p为假”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3. 若=a+bi(a, b∈R),则a2019+b2020=()A.−1B.0C.1D.24. 与双曲线的焦点相同,且长轴长为的椭圆的标准方程为()A. B. C. D.5. 已知函数f(x)=x3−2x2,x∈[−1, 3],则下列说法不正确的是()A.最大值为9B.最小值为−3C.函数f(x)在区间[1, 3]上单调递增D.x=0是它的极大值点6. 双曲线x2a2−y23=1(a>0)有一个焦点与抛物线y2=8x的焦点重合,则双曲线的渐近线方程为()A.y=±12x B.y=±2x C.y=±√33x D.y=±√3x7. 函数y=x cos x−sin x在下面哪个区间内是减函数()A. B.(π, 2π) C.D.(2π, 3π)8. 已知函数,则下列选项正确的是( )A.f(e)<f(π)<f(2.7)B.f(π)<f(e)<f(2.7)C.f(e)<f(2.7)<f(π)D.f(2.7)<f(e)<f(π)9. 已知椭圆E:x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l:3x −4y =0交椭圆E 于A ,B 两点,若|AF|+|BF|=4,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( ) A.(0, √32] B.(0, 34]C.[√32, 1)D.[34, 1)10. 已知函数f(x)=ax 3−3x 2+1,若f(x)存在唯一的零点x 0,且x 0>0,则a 的取值范围是( ) A.(2, +∞) B.(−∞, −2)C.(1, +∞)D.(−∞, −1)11. 如图所示点F 是抛物线y 2=8x 的焦点,点A ,B 分别在抛物线y 2=8x 及圆x 2+y 2−4x −12=0的实线部分上运动,且AB 总是平行于x 轴,则△FAB 的周长的取值范围是( )A.(6, 10)B.(8, 12)C.[6, 8]D.[8, 12]12. 设f(x)是定义在R 上的函数,其导函数为f′(x),若f(x)−f′(x)<1,f(0)=2021,则不等式f(x)>2020⋅e x +1(e 为自然对数的底数)解集为( ) A.(−∞, 0)∪(0, +∞) B.(2020, +∞)C.(0, +∞)D.(−∞, 0)∪(2020, +∞)二、填空题(共4小题,每小题5分,共20分))13. 已知复数z=11+i+i(i为虚数单位),则|z|=________.14. 命题“∃x0∈R,满足不等式”是假命题,则m的取值范围为________.15. 如图所示,抛物线形拱桥的跨度是20米,拱高是4米,在建桥时,每隔4米需要用一支柱支撑,则其中最长的支柱的长度为________米.16. 已知函数f(x)的导数f′(x)=a(x+1)(x−a),若f(x)在x=a处取到极大值,则a的取值范围是________.三、解答题(共6小题,共70分))17. (1)已知椭圆的离心率为,点(2,)在C上.求椭圆C的方程; 17.(2)求与椭圆4x2+5y2=20有相同的焦点,且顶点在原点的抛物线方程.18. 设关于x的不等式x2≤5x−4的解集为A,不等式x2−(a+2)x+2a≤0(a≥2)的解集为B.(1)求集合A,B;(2)若x∈A是x∈B的必要条件,求实数a的取值范围.19. 已知m∈R,命题p:方程x2m−1+y27−m=1表示焦点在y轴上的椭圆;命题q:“方程x2+y2−2x+(2m−6)y+m2−14m+26=0表示圆心在第一象限的圆”.(1)若命题p是真命题,求实数m的取值范围;(2)若命题p和q均为假命题,求实数m的取值范围.20. 函数.(1)求曲线y=f(x)在点(2, f(2))处的切线方程;(2)求f(x)在区间上的最大值.21. 已知中心在原点的椭圆的一个焦点为F1(3, 0),点M(4, y)(y>0)为椭圆上一点,△MOF1的面积为.(1)求椭圆C的方程;(2)是否存在平行于OM的直线l,使得直线l与椭圆C相交于A、B两点,且以线段AB为直径的圆恰好经过原点?若存在,求出l的方程,若不存在,说明理由.22. 已知f(x)=ax−ln x,x∈(0, e],g(x)=ln x,其中e是自然常数,a∈R.x(1)讨论a=1时,函数f(x)的单调性和极值;(2)求证:在(1)的条件下,f(x)>g(x)+1;2(3)是否存在实数a使f(x)的最小值是3?若存在,求出a的值;若不存在,说明理由.参考答案与试题解析一、选择题(共12小题,每小题5分,共60分).1.【答案】C【解析】根据全称命题的否定是特称命题,任意改存在,结论否定,写出对应的命题即可.2.【答案】B【解析】根据充分条件和必要条件的定义分别进行判断即可.3.【答案】D【解析】化简复数,利用复数的相等即可得出a,b.再进行乘方运算即可.4.【答案】B【解析】求出双曲线的半焦距,利用椭圆长轴长,求解短半轴的长,即可得到椭圆方程.5.【答案】C【解析】对f(x)求导,分析f′(x)的正负,进而得f(x)的单调区间,极值可判断C错误,D正确,再计算出极值,端点处函数值f(1),f(3),可得函数f(x)的最大值,最小值,进而可判断A正确,B正确.6.【答案】D【解析】求出抛物线的焦点坐标,利用双曲线的几何性质求解渐近线方程即可.7.【答案】D【解析】分析知函数的单调性用三角函数的相关性质不易判断,易用求其导数的方法来判断其在那个区间上是减函数.8.【答案】D【解析】求出函数的导数,得到函数的单调性求出答案即可.9.【答案】A【解析】如图所示,设F′为椭圆的左焦点,连接AF′,BF′,则四边形AFBF′是平行四边形,可得4=|AF|+|BF|=|AF′|+|BF|=2a.取M(0, b),由点M到直线l的距离不小于45,可得√32+42≥45,解得b≥1.再利用离心率计算公式e=ca=√1−b2a2即可得出.10.【答案】B【解析】(i)当a=0时,f(x)=−3x2+1,令f(x)=0,解得x=±√33,两个解,舍去.(ii)当a≠0时,f′(x)=3ax2−6x=3ax(x−2a ),令f′(x)=0,解得x=0或2a.对a分类讨论:①当a<0时,由题意可得关于a的不等式组;②当a>0时,推出极值点不满足题意,推出结果即可.11.【答案】B【解析】由抛物线定义可得|AF|=x A+2,从而△FAB的周长=|AF|+|AB|+|BF|=x A+2+(x B−x A)+4=6+x B,确定B点横坐标的范围,即可得到结论.12.【答案】C【解析】构造函数,利用函数的导数判断函数的单调性,转化求解不等式的解集即可.二、填空题(共4小题,每小题5分,共20分)13.【答案】√22【解析】利用复数代数形式的乘除运算化简,再由复数模的计算公式求解.14.【答案】[−4, 4]【解析】利用含有一个量词的命题的否定,将命题转化为“∀x∈R,x2+mx+4≥0”是真命题,然后利用一元二次不等式恒成立求解即可.15.【答案】【解析】先建立适当坐标系,设抛物线方程为x2=−2py(p>0),把点B(10, −4)代入抛物线方程,求得p,得到抛物线方程,进而把x=2代入抛物线方程求得y,可得最高支柱的高度.16.【答案】(−1, 0)【解析】讨论a的正负,以及a与−1的大小,分别判定在x=a处的导数符号,从而确定是否在x=a处取到极大值,从而求出所求.三、解答题(共6小题,共70分)17.【答案】由已知可得:,解得a=2,所以椭圆C的方程为;已知椭圆的标准方程为:,所以c=,则其焦点坐标分别为(−1, 0),5),当抛物线的焦点坐标为(1, 0)时,此时抛物线开口向右5=4x,当抛物线的焦点坐标为(−1, 8)时,此时抛物线开口向左2=−4x,综上,抛物线的方程为:y4=±4x.【解析】(1)根据已知建立等式关系即可求解;(2)先求出椭圆的焦点坐标,然后对抛物线的开口方向讨论即可求解.18.【答案】不等式x2≤5x−8,化为x2−5x+8≤0,因式分解为(x−1)(x−3)≤0,解得1≤x≤6,∴解集A=[1, 4];不等式x3−(a+2)x+2a≤5,化为(x−2)(x−a)≤0,当a>2时,解集M=[2;当a=2时,解集M={6};综上,不等式x2−(a+2)x+8a≤0(a≥2)的解集B={x|5≤x≤a}.∵x∈A是x∈B的必要条件,∴B⊆A,∴2≤a≤4,∴实数a的取值范围是[3, 4].【解析】先求解二元一次不等式解集,再根据充分条件和必要条件的定义分别进行判断即可.19.【答案】方程x 2m−1+y27−m=1表示焦点在y轴上的椭圆,可得7−m>m−1>0,解得1<m<4,则命题p是真命题,实数m的取值范围为(1, 4);方程x2+y2−2x+(2m−6)y+m2−14m+26=0表示圆心在第一象限的圆,可得3−m>0且4+(2m−6)2−4(m2−14m+26)>0,即m<3且m>2,解得2<m<3,命题p和q均为假命题,可得{m≥4m≤1m≥3m≤2,解得m≥4或m≤1.则m的取值范围是(−∞, 1]∪[4, +∞).【解析】(1)由方程表示焦点在y轴的椭圆可得7−m>m−1>0,可得所求范围;(2)由方程表示圆心在第一象限的圆,可得3−m>0且4+(2m−6)2−4(m2−14m+26)>0,解不等式可得m的范围,再由p,q均为假命题可得m的不等式组,解不等式可得所求范围.20.【答案】f(x)=+ln,x∈(0,所以f′(x)=-+=,x∈(0.因此f′(2)=,即曲线y=f(x)在点(7.又f(2)=ln2−,所以曲线y=f(x)在点(2, f(2))处的切线方程为y−(ln2−(x−2),即x−4y+3ln2−4=5.因为f′(x)=-+=,x∈(6,所以函数f(x)在(0, 1)上减少,+∞)上增加.所以函数f(x)在区间)或f(e)其中,f(,f(e)=,【解析】(1)求出函数的导数,求解切线的斜率,求解切线方程即可.(2)判断函数的单调性,然后转化求解函数的最大值即可.21.【答案】由MOF1的面积为,则,得y=1,5),又点M在椭圆上,①因为F1是椭圆的焦点,所以a5=b2+9②由①②解得:a2=18,b2=9,所以椭圆的方程为:;假设存在直线l满足题意,因为OM的斜率k=,设l的方程为y=,联立方程组,整理得9y5−16my+8m2−8=0,△=(16m)2−5×9×(8m4−9)>0,解得m,设A,B两点的坐标为(x7, y1),(x2, y7),则y,y,以AB为直径的圆的方程为(x−x1)(x−x2)(x−x2)+(y−y1)(y−y2)(y−y5)=0,该圆经过原点,所以x1x4+y1y2=3,又x1x2=(5y1−4m)(7y2−4m)=16y,所以x1x2+y1y2=17y6y2−16m(y1+y4)+16m2=,解得m=,经检验满足题意,所以存在直线l满足题意,此时直线l的方程为y=.【解析】(1)由已知三角形的面积即可求出点M的纵坐标,把点M的坐标代入椭圆方程再由a,b,c的关系即可求解;(2)先假设存在,然后由OM的斜率设出直线l的方程,联立直线l与椭圆的方程,利用韦达定理以及以AB为直径的圆过原点满足的等式即可求解.22.【答案】解:(1)因为f(x)=x−ln x,f′(x)=1−1x =x−1x,所以当0<x<1时,f′(x)<0,此时函数f(x)单调递减.当1<x≤e时,f′(x)>0,此时函数f(x)单调递增.所以函数f(x)的极小值为f(1)=1.(2)因为函数f(x)的极小值为1,即函数f(x)在(0, e]上的最小值为1.又g′(x)=1−ln xx2,所以当0<x<e时,g′(x)>0,此时g(x)单调递增.所以g(x)的最大值为g(e)=1e <12,所以f(x)min−g(x)max>12,所以在(1)的条件下,f(x)>g(x)+12.(3)假设存在实数a,使f(x)=ax−ln x,x∈(0, e],有最小值3,则f′(x)=a−1x=ax−1x,①当a≤0时,f′(x)<0,f(x)在(0, e]上单调递减,f(x)min=f(e)=ae−1=3,a=4e,(舍去),此时函数f(x)的最小值不是3.②当0<1a <e时,f(x)在(0, 1a]上单调递减,f(x)在(1a, e]上单调递增.所以f(x)min=f(1a)=1+ln a=3,a=e2,满足条件.③当1a ≥e时,f(x)在(0, e]上单调递减,f(x)min=f(e)=ae−1=3,a=4e,(舍去),此时函数f(x)的最小值是不是3.综上可知存在实数a=e2,使f(x)的最小值是3.【解析】(1)当a=1时,求函数的定义域,然后利用导数求函数的极值和单调性.(2)利用(1)的结论,求函数f(x)的最小值以及g(x)的最大值,利用它们之间的关系证明不等式.(3)利用导数求函数的最小值,让最小值等于3,解参数a.试卷第11页,总11页。
2020-2021学年高二上学期期末考试数学试卷(含解析)

2020-2021学年高二上学期期末考试数学试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.若3324A 10A n n =,则n =( )A .1B .8C .9D .102.期末考试结束后,某班要安排6节课进行试卷讲评,要求课程表中要排入语文、数学、英语、物理、化学、生物共六节课,如果第一节课只能排语文或数学,最后一节不能排语文,则不同的排法共有( ) A .192种B .216种C .240种D .288种3.一台X 型号自动机床在一小时内不需要工人照看的概率为0.8,有4台这种型号的自动机床各自独立工作,则在一小时内至多2台机床需要工人照看的概率是( ) A .0.1536B .0.1808C .0.5632D .0.97284.某市气象部门根据2021年各月的每天最高气温平均值与最低气温平均值(单位:℃)数据,绘制如下折线图:那么,下列叙述错误的是( )A .各月最高气温平均值与最低气温平均值总体呈正相关B .全年中,2月份的最高气温平均值与最低气温平均值的差值最大C .全年中各月最低气温平均值不高于10℃的月份有5个D .从2021年7月至12月该市每天最高气温平均值与最低气温平均值都呈下降趋势5.若()2N 1,X σ~,则()0.6827P X μσμσ-<≤+=,(22)0.9545P X μσμσ-<≤+=,已知()21,3X N ~,则(47)P X <≤=( )A .0.4077B .0.2718C .0.1359D .0.04536.为了评价某个电视栏目的改革效果,在改革前后分别从居民点抽取了100位居民进行调查,经过计算()200.01P K k ≥=,根据这一数据分析,下列说法正确的是( )A .有1%的人认为该栏目优秀;B .有1%的把握认为该栏目是否优秀与改革有关系;C .有99%的把握认为电视栏目是否优秀与改革有关系;D .没有理由认为电视栏目是否优秀与改革有关系.7.若1021001210)x a a x a x a x =++++,则012310a a a a a -+-++的值为.A 1B 1C .101)D .101)8.关于()72x +的二项展开式,下列说法正确的是( ) A .()72x +的二项展开式的各项系数和为73B .()72x +的二项展开式的第五项与()72x +的二项展开式的第五项相同C .()72x +的二项展开式的第三项系数为4372CD .()72x +的二项展开式第二项的二项式系数为712C9.如图,某建筑工地搭建的脚手架局部类似于一个3×2×3的长方体框架,一个建筑工人欲从A 处沿脚手架攀登至B 处,则其最近的行走路线中不连续向上攀登的概率为( )A .528B .514C .29D .1210.三棱锥P ABC -中P A 、PB 、PC 两两互相垂直,4PA PB +=,3PC =,则其体积( ) A .有最大值4B .有最大值2C .有最小值2D .有最小值4二、填空题11.最小二乘法得到一组数据(),(1,2,3,4,5)i i x y i =的线性回归方程为ˆ23yx =+,若5125ii x==∑,则51i i y ==∑___________.12.某班举行的联欢会由5个节目组成,节目演出顺序要求如下: 节目甲不能排在第一个,并且节目甲必须和节目乙相邻.则该班联欢会节目演出顺序的编排方案共有____种. 13.若随机变量X 的概率分布如表,则表中a 的值为______.14.设随机变量ξ~B (2,p ),若P (ξ≥1)=59,则D (ξ)的值为_________.15.已知等差数列{}n a 中,33a =,则1a 和5a 乘积的最大值是______.16.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了5个问题就晋级下一轮的概率为___________.17.经统计,在银行一个营业窗口每天上午9点钟排队等候的人数及相应概率如下:则该营业窗口上午9点钟时,至少有2人排队的概率是_____.18.点A ,B ,C 在球O 表面上,2AB =,BC =90ABC ∠=︒,若球心O 到截面ABC的距离为___________.19.如图,在三棱柱111ABC A B C -中,四边形11AAC C 是边长为4的正方形,平面ABC ⊥平面11AAC C ,3AB =,5BC =.(℃)求证:1AA ⊥平面;(℃)若点E 是线段的中点,请问在线段是否存在点E ,使得面11AAC C ?若存在,请说明点E 的位置,若不存在,请说明理由; (℃)求二面角的大小.20.四根绳子上共挂有10只气球,绳子上的球数依次为1,2,3,4,每枪只能打破一只球,而且规定只有打破下面的球才能打上面的球,则将这些气球都打破的不同打法数是________.三、解答题21.已知集合(){}()12,,,|,1,2,,1nn i R x x x x R i n n =∈=≥,定义n R 上两点()12,,,n A a a a ,()12,,,n B b b b 的距离()1,ni i i d A B a b ==-∑.(1)当2n =时,以下命题正确的有__________(不需证明): ℃若()1,2A ,()4,6B ,则(),7d A B =;℃在ABC 中,若90C =∠,则()()()222,,,d A C d C B d A B ⎡⎤⎡⎤⎡⎤+=⎣⎦⎣⎦⎣⎦; ℃在ABC 中,若()(),,d A B d A C =,则B C ∠=∠;(2)当2n =时,证明2R 中任意三点A B C ,,满足关系()()(),,,d A B d A C d C B ≤+;(3)当3n =时,设()0,0,0A ,()4,4,4B ,(),,P x y z ,其中x y z Z ∈,,,()()(),,,d A P d P B d A B +=.求满足P 点的个数n ,并证明从这n 个点中任取11个点,其中必存在4个点,它们共面或者以它们为顶点的三棱锥体积不大于83.22.今年4月,教育部办公厅印发了《关于加强义务教育学校作业管理的通知》,规定初中学生书面作业平均完成时长不超过90分钟.某市为了更好地贯彻落实“双减”工作要求,作教育决策,该市教育科学研究院就当前全市初三学生每天完成书面作业时长抽样调查,结果是学生书面作业时长(单位:分钟)都在区间[]50,100内,书面作业时长的频率分布直方图如下:(1)若决策要求:在国家政策范围内,若当前初三学生书面作业时长的中位数估计值大于或等于平均数(计算平均数时,同一组中的数据用该区间的中点值代表)估计值,则减少作业时长;若中位数估计值小于平均数,则维持现状.请问:根据这次调查,该市应该如何决策?(2)调查统计时约定:书面作业时长在区间[]90,100内的为A 层次学生,在区间[)80,90内的为B 层次学生,在区间[70,80)内的为C 层次学生,在其它区间内的为D 层次学生.现对书面作业时长在70分钟以上(含70分钟)的初三学生,按作业时长出现的频率用分层抽样的方法随机抽取8人,再从这8人中随机抽取3人作进一步调查,设这3人来自X 个不同层次,求随机变量X 的分布列及数学期望.23.国家文明城市评审委员会对甲、乙两个城市是否能入围“国家文明城市”进行走访调查.派出10人的调查组.先后到甲、乙两个城市的街道、社区进行问卷调查,然后打分(满分100分).他们给出甲、乙两个城市分数的茎叶图如图所示:(1)请你用统计学的知识分析哪个城市更应该入围“国家文明城市”,请说明理由;(2)从甲、乙两个城市的打分中各抽取2个,在已知有大于80分的条件下,求抽到乙城市的分数都小于80分的概率;(3)从对乙城市的打分中任取2个,设这2个分数中不小于80分的个数为X,求X的分布列和期望.参考答案:1.B【分析】根据排列数的运算求解即可.【详解】由332A 10A n n =得,2(21)(22)10(1)(2)n n n n n n --=--,又3,n n *≥∈N ,所以2(21)5(2)n n -=-,解得8n =, 所以正整数n 为8. 故选:B. 2.B【分析】对第一节课的安排进行分类讨论,结合分步乘法计数原理和分类加法计数原理可得结果.【详解】分以下两种情况讨论:℃若第一节课安排语文,则后面五节课的安排无限制,此时共有55A 种;℃若第一节课安排数学,则语文可安排在中间四节课中的任何一节,此时共有444A 种.综上所述,不同的排法共有54544216A A +=种.故选:B. 3.D【详解】设在一个小时内有ξ台机床需要工人照看,则ξ~B (4,0.2),所以P (ξ≤2)=04C (0.8)4+14C (0.8)3×0.2+24C (0.8)2×(0.2)2=0.972 8. 故选D 4.D【分析】利用折线图可以判断选项ABC 正确,从2021年7月至12月该市每天最高气温平均值与最低气温平均值,先上升后下降,所以选项D 错误.【详解】解:由2021年各月的每天最高气温平均值和最低气温平均值(单位:C)︒数据,绘制出的折线图,知:在A 中,各月最高气温平均值与最低气温平均值为正相关,故A 正确;在B 中,全年中,2月的最高气温平均值与最低气温平均值的差值最大,故B 正确; 在C 中,全年中各月最低气温平均值不高于10C ︒的月份有1月,2月,3月,11月,12月,共5个,故C 正确;在D 中,从2021年7月至12月该市每天最高气温平均值与最低气温平均值,先上升后下降,故D 错误. 故选:D . 5.C【分析】由题意,得(47)(2)P X P X μσμσ<≤=+<≤+,再利用3σ原则代入计算即可.【详解】℃()21,3X N ~,由()0.6827P X μσμσ-<≤+=,(22)0.9545P X μσμσ-<≤+=,℃1(47)(2)(0.95450.6827)0.13592P X P X μσμσ<≤=+<≤+=-=.故选:C 6.C【分析】利用独立性检验的基本原理即可求出答案.【详解】解:℃()200.01P K k ≥=表示“电视栏目是否优秀与改革没有关系”的概率,℃有99%的把握认为电视栏目是否优秀与改革有关系, 故选:C .【点睛】本题主要考查独立性检验的基本应用,准确的理解判断方法是解决本题的关键,属于基础题. 7.D【详解】分析:令1021001210())f x x a a x a x a x ==++++,再求f(-1)的值得解.详解:令1021001210())f x x a a x a x a x ==++++,1001210(1)1)f a a a a -==-+++.故答案为D .点睛:(1)本题主要考查二项式定理中的系数求法问题,意在考查学生对这些基础知识 的掌握水平.(2) 二项展开式的系数0123,,,,n a a a a a ⋅⋅⋅的性质:对于2012()?··n n f x a a x a x a x =++++,0123(1)n a a a a a f ++++⋅⋅⋅+=, 0123(1)(1)n n a a a a a f -+-+⋅⋅⋅+-=-.8.A【分析】利用赋值法求出展开式各项系数和,即可判断A ,根据二项式展开式的通项,即可判断B 、C 、D ;【详解】解:()72x +展开式的通项为7172rrr r T C x -+=⋅⋅,故第二项的二项式系数为177C =,故D 错误; 第三项的系数为2572C ⋅,故C 错误;()72x +的展开式的第五项为43472C x ⋅⋅,()72x +的展开式的第五项为44372C x ⋅⋅,故B 错误; 令1x =则()7723x +=,即()72x +的二项展开式的各项系数和为73,故A 正确; 故选:A 9.B【解析】将问题抽象成“向左三次,向前两次,向上三次”,计算出总的方法数,然后利用插空法计算出最近的行走路线中不连续向上攀登的事件数,最后根据古典概型概率计算公式,计算出所求概率.【详解】从A 的方向看,行走方向有三个:左、前、上. 从A 到B 的最近的行走线路,需要向左三次,向前两次,向上三次,共8次.所以从A 到B 的最近的行走线路,总的方法数有88332332560A A A A =⋅⋅种. 不连续向上攀登的安排方法是:先将向左、向前的安排好,再对向上的方法进行插空.故方法数有:53563232200A C A A ⨯=⋅.所以最近的行走路线中不连续向上攀登的概率为200556014=. 故选:B【点睛】本小题主要考查古典概型的计算,考查有重复的排列组合问题,考查插空法,属于中档题. 10.B【分析】依题意可得1113332P ABC PABV PC SPA PB -=⋅=⨯⨯⋅再利用基本不等式计算可得; 【详解】解:依题意21111132332222P ABCPABPA PB V PC S PA PB PA PB -+⎛⎫=⋅=⨯⨯⋅=⋅≤= ⎪⎝⎭,当且仅当2PA PB ==时取等号,所以()max 2P ABC V -=, 故选:B11.65【分析】由最小二乘法得到的线性回归方程过点(),x y ,代入即可解决 【详解】由5125i i x ==∑可知,数据的平均数2555x ==, 又线性回归方程ˆ23yx =+过点(),x y , 所以25313y =⨯+=,故51551365i i y y ===⨯=∑故答案为:65 12.42【分析】由题意可知,甲可排在第二、三、四、五个,再根据甲、乙相邻,分别计算. 【详解】由题意可知,甲可排在第二、三、四、五个,当甲排在第二、三、四个时,甲乙相邻,有22A 种排法,将甲乙当做一个整体,剩下三个节目全排列,共3×22A ×33A =36种当甲排在第五个时,甲乙相邻,只有一种排法,剩下三个节目全排列,共33A =6种 综上,编排方案共36+6=42种【点睛】本题考查了分类计数原理,分类时要注意不重不漏;解决排列问题时,相邻问题常用捆绑法,特殊位置要优先考虑. 13.0.2【解析】利用概率和为1可求出答案. 【详解】由随机变量X 的概率分布表得: 0.20.30.31a +++=,解得0.2a =. 故答案为:0.2【点睛】本题考查的是分布列的性质,较简单. 14.49【分析】由二项分布的特征,先求出13p =,套公式即可求出D (ξ). 【详解】因为随机变量ξ~B (2,p ),且P (ξ≥1)=59,所以P (ξ≥1)=()11P ξ-<= ()10P ξ-==()25119p --=. 解得:13p =. 所以D (ξ)()12412339np p =-=⨯⨯=.故答案为:4915.9【分析】设出公差,根据等差数列的性质,表示出15,a a ,再列式即可求得结果. 【详解】因为{}n a 是等差数列,设公差为d ,可得13532,2a a d a a d =-=+,于是得()()2153322949a a a d a d d =-+=-≤,当且仅当d =0,即153a a ==时,取得最大值. 故答案为:9.【点睛】本题考查等差数列的下标和性质,属基础题. 16.1443125##0.04608 【分析】认真分析该选手所有可能的答题情况,是本题的关键【详解】由该选手恰好回答了5个问题就晋级下一轮,说明他第4、第5两个问题是连续答对的,第3个问题没有答对,第1和第2两个问题也没有全部答对,即他答题结果可能有三种情况:⨯⨯⨯√√或⨯√⨯√√或√⨯⨯√√,根据独立事件同时发生的概率公式,可得该选手恰好回答了5个问题就晋级下一轮的概率为0.20.20.20.80.8+0.20.80.20.80.8+0.80.20.20.80.8=0.04608⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯故答案为:0.04608 17.0.74【详解】试题分析:x 表示人数,(2)(2)(3)(4)(5)P x P x P x P x P x ≥==+=+=+≥0.30.30.10.040.74=+++=.考点:互斥事件的概率.18.【分析】根据截面圆性质,先求出截面圆半径,然后由求得球半径,从而求得体积.【详解】因为2AB =,BC =90ABC ∠=︒,所以4AC ==,所以三角形外接圆半径22ACr ==,又球心O 到截面ABC 的距离为R =球体积为(334433V R ππ==⨯=.故答案为:.19.(℃)(℃)(℃)见解析【详解】试题分析:(℃)由正方形的性质得1AC AA ⊥,然后由面面垂直的性质定理可证得结果;(℃)当点E 是线段1AB 的中点时,利用中位线定理可得1DE AC ,进而得出DE 面11AAC C ;(℃)利用二面角的定义先确定11C AC ∠是二面角111C A B C --的平面角,易求得11tan C A C ∠,从而求得二面角的平面角为的度数.试题解析:(℃)因为四边形11AAC C 为正方形,所以1AC AA ⊥. 因为平面ABC ⊥平面11AAC C ,且平面ABC ⋂平面11AAC C AC =, 所以1AA ⊥平面ABC .(℃)当点E 是线段1AB 的中点时,有DE 面11AAC C , 连结1AB 交1AB 于点E ,连结BC ,因为点E 是1AB 中点,点⊄是线段DE 的中点,所以1DE AC . 又因为BC ⊂面11AAC C ,11A C 面11AAC C ,所以DE 面11AAC C .(℃)因为1AA ⊥平面ABC ,所以.又因为,所以面11AAC C ,所以11A B ⊥面11AAC C ,所以11A B ⊥1A C ,11A B ⊥11A C ,所以11C AC ∠是二面角111C A B C --的平面角, 易得,所以二面角111C A B C --的平面角为45°.考点:1、线面垂直的判定;2、线面平行的判定;2、二面角.【方法点睛】立体几何中的探索性问题主要是对平行、垂直关系的探究,对条件和结论不完备的开放性问题的探究.解决这类问题时一般根据探索性问题的设问,假设其存在并探索出结论,然后在假设下进行推理,若得到合乎情理的结论就肯定假设,若得到矛盾就否定假设. 20.12600【详解】问题等价于编号为1,2,3,10的10个小球排列,其中2,3号,4,5,6号,7,8,9,10号的排列顺序是固定的,据此可得:将这些气球都打破的不同打法数是101023423412600A A A A =⨯⨯. 21.(1)℃;(2)证明见解析;(3)125n =,证明见解析.【解析】(1)℃根据新定义直接计算.℃根据新定义,写出等式两边的表达式,观察它们是否相同,即可判断;℃由新定义写出等式()(),,d A B d A C =的表达式,观察有无AB AC =; (2)由新定义,写出不等式两边的表达式,根据绝对值的性质证明;(3)根据新定义,及绝对值的性质得P 点是以AB 为对角线的正方体的表面和内部的整数点,共125个,把它们分布在五个平面(0,1,2,3,4)z =上,这五个面一个面取3个点,相邻面上取一个点,以它们为顶点构成三棱锥(能构成时),棱锥的体积不超过83,然后任取11点中如果没有4点共面,但至少有一个平面内有3个点.根据这3点所在平面分类讨论可得. 【详解】(1)当2n =时,℃若()1,2A ,()4,6B ,则(),41627d A B =-+-=,℃正确;℃在ABC 中,若90C =∠,则222AC BC AB +=,设112233(,),(,),(,)A x y B x y C x y ,所以222222131323231212()()()()()()x x y y x x y y x x y y -+-+-+-=-+-而()2221212121221212()()()2)),((x x y y x x y y d A x B x y y =⎡⎤⎣-+-+⎦=--+--, ()()22,,d A C d C B ⎡⎤⎡⎤+=⎣⎦⎣⎦22221313232313132323()()()()2()()2()()x x y y x x y y x x y y x x y y -+-+-+-+--+--,但1313232312122()()2()()2()()x x y y x x y y x x y y --+--=--不一定成立,℃错误; ℃在ABC 中,若()(),,d A B d A C =,在℃中的点坐标,有12121313x x y y x x y y -+-=-+-,但1212131322x x y y x x y y -⋅-=-⋅-不一定成立,因此AB AC =不一定成立,从而B C ∠=∠不一定成立,℃错误.空格处填℃(2)证明:设112233(,),(,),(,)A x y B x y C x y ,根据绝对值的性质有132312x x x x x x -+-≥-,132312y y y y y y -+-≥-,所以(,)(,)(,)d A C d B C d A B +≥.,(3)(,)12d A B =,44,44,44x x y y z z +-≥+-≥+-≥,所以(,)(,)12d A P d B P +≥,当且仅当以上三个等号同时成立,(,)(,)12d A P d B P +=又由已知()()(),,,d A P d P B d A B +=,℃04,04,04x y z ≤≤≤≤≤≤, 又,,x y z Z ∈,℃,,0,1,2,3,4x y z =,555125⨯⨯=,点P 是以AB 为对角线的正方体内部(含面上)的整数点,共125个,125n =. 这125个点在0,1,2,3,4z z z z z =====这五面内.这三个平面内,一个面上取不共线的3点,相邻面上再取一点构成一个三棱锥.则这个三棱锥的体积最大为118441323V =⨯⨯⨯⨯=,现在任取11个点,若有四点共面,则命题已成立,若其中无4点共面,但11个点分在5个平面上至少有一个平面内有3个点(显然不共线),若这三点在1,2,3z z z ===这三个平面中的一个上,与这个面相邻的两个面上如果有一点,那么这一点与平面上的三点这四点可构成三棱锥的四个顶点,其体积不超过83,否则还有8个点在平面0z =和4z =上,不合题意,若这三个点在平面0z =或5z =上,不妨设在平面0z =,若在平面1z =在一个点,则同样四点构成的三棱锥体积不超过83,否则剩下的8个点在2,3,4z z z ===三个平面上,只能是3,3,2分布,不管哪一种分布都有四点构成的三棱锥体积不超过83,综上,任取11个点,其中必存在4个点,它们共面或者以它们为顶点的三棱锥体积不大于83.【点睛】关键点点睛:本题新定义距离(,)d A B ,解题关键是利用新定义转化为绝对值,利用绝对值的性质解决一些问题.本题还考查了抽屉原理,11个放在5个平面上,至少有一个平面内至少有3点,由此分类讨论可证明结论成立. 22.(1)该市应该作出减少作业时长的决策; (2)分布列见解析;期望为167.【分析】(1)根据题意,结合频率分布直方图,分别求出中位数和平均数,即可求解; (2)根据题意,结合分层抽样以及离散型随机变量的分布列与期望求法,即可求解. (1)作业时长中位数的估计值为直方图中等分面积的线对立的值,设为x .0.01100.01100.02100.5⨯+⨯+⨯<. 0.01100.01100.02100.03100.5⨯+⨯+⨯+⨯>,()0.01100.01100.02100.03800.5x ∴⨯+⨯+⨯+⨯-=.解得2503x =,即中位数的故计值2503分钟.又作业时长平均数估计值为0.0110550.0110650.021075⨯⨯+⨯⨯+⨯⨯ 2500.0310850.031095813+⨯⨯+⨯⨯=<. 因为中位数的估计值2503分钟大于平均数估计值81分钟, 所以,根据这次调查,该市应该作出减少作业时长的决策. (2)由题,作业时长在70分钟以上(含70分钟)为[90.100],[80,90),[70,80)三个区间,其频率比为3:3:2,分别对应A ,B ,C 三个层次.根据分层抽样的方法,易知各层次抽取的人数分别为3,3,2, 因此X 的所有可能值为1,2,3.因为333821(1)28C P X C ⨯===,111233389(3)28C C C P X C ⋅⋅===, 121221333232382229(2)14C C C C C C P X C ⨯⋅+⨯⋅+⨯⋅===, 所以X 的分在列为:故数学期望19916()1232814287E X =⨯+⨯+⨯=. 23.(1)乙城市更应该入围“国家文明城市”.理由见解析. (2)425; (3)分布列见解析,期望为1.【分析】(1)根据得分的平均值与方差说明,极差最值也可用来说明;(2)记抽到的数据中有大于80分为事件A ,甲城市抽到的分数有大于80分为事件B ,乙城市抽到的分数有大于80分为事件C ,由()()(|)()()P AC P C P C A P A P A ==计算; (2)X 的可能值是0,1,2,分别求得概率得概率分布列,由期望公式计算出期望. (1)乙城市更应该入围“国家文明城市”. 理由如下:由茎叶图,计算两个城市的得分的均值为 甲:6365987910x +++==,乙:6568927910y +++==,均值相等,方差为甲:222211[(16)(14)19]13610s =-+-++=, 乙:222221[(14)(11)13]59.810s =-+-++=,甲的方差远大于乙的方差,说明乙的得分较稳定,甲极其不稳定,因此乙城市更应该入围“国家文明城市”. (2)记抽到的数据中有大于80分为事件A ,甲城市抽到的分数有大于80分为事件B ,乙城市抽到的分数有大于80分为事件C ,262102()13C P B C =-=,252107()19C P C C =-=,2725()1(1)(1)3927P A =--⨯-=,7()()9P AC P C ==, 所以()()()()749(|)1(|)111252527P AC P C P C A P C A P A P A =-=-=-=-=;(3)乙城市10个人中5个大于80分,5个小于80,X 的可能是0,1,2,252102(0)9C P X C ===,11552105(1)9C C P X C ===,252102(2)9C P X C ===,所以X 的分布列为:52()12199E X =⨯+⨯=.。
2020-2021学年广西柳州市第二中学高二上学期期末考试数学(文)试题(解析版)

2020-2021学年广西柳州市第二中学高二上学期期末考试数学(文)试题一、单选题1.已知集合{}12M x x =-<<,{}1N x x =≥,求M N =( )A .[]1,2B .(]1,1-C .[)1,2D .(),1-∞-【答案】C【分析】直接利用集合的交集运算求解.【详解】因为集合{}12M x x =-<<,{}1N x x =≥, 所以M N =[)1,2故选:C 2.已知复数21iz i+=+,则z 的虚部为( ) A .12B .12i C .12-D .12i -【答案】A【分析】根据复数的除法运算法则,先化简z ,得出其共轭复数,进而可求出结果. 【详解】因为()()()()21222131111222i i i i i z i i i i +-+-++====-++-, 所以322z i =+, 因此z 的虚部为12. 故选:A.3.若0.50.4a =,0.40.5b =,0.5log 0.4c =,则实数a ,b ,c 的大小关系为( ) A .a b c >> B .a c b >> C .c a b >> D .c b a >>【答案】D【分析】寻找中间量0.50.5,结合指数函数和幂函数的性质可得1a b <<,由对数函数的性质可得1c >,进而可得结果. 【详解】0.50.50.400.50.50.40.50.50.51log 0.5log 0.40<<=<<=<,即c b a >>,故选:D.4.已知ABC ∆中,点E 在CB 的延长线上,且满足22BE AB AC =-,则AE =( ) A .32AE AB AC =- B .32AE AB AC =+ C .23AE AB AC =+ D .23AE AB AC =-【答案】A【分析】根据22BE AB AC =-,由AE AB BE =+求解.【详解】因为在ABC ∆中,点E 在CB 的延长线上,且满足22BE AB AC =-, 所以32AE AB BE AB AC =+=-, 故选:A5.已知角θ的终边在直线2y x =-上,则cos2θ=( ) A .35B .34C .34-D .35【答案】D【分析】根据角θ的终边在直线2y x =-上,得到tan 2θ=-,然后利用二倍角公式和基本关系式转化为221tan cos 21tan θθθ-=+求解. 【详解】因为角θ的终边在直线2y x =-上, 所以tan 2θ=-,所以22cos 2cos sin θθθ=- ,222222cos sin 1tan 3cos sin 1tan 5θθθθθθ--===-++ 故选:D6.若x ,y 满足约束条件220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,则32z x y =+的取值范围( )A .[]3,6-B .[]6,18C .[]3,18-D .[]18,6-【答案】D【分析】根据题意,画出约束条件的可行域,利用目标函数的几何意义求解函数的最值,即可推出结果.【详解】由实数,x y 满足约束条件作出其对应的可行域,如图中阴影部分所示,可知32z x y =+在(4,3)A --处取得最小值-18,在(2,0)处取得最大值6, 故32z x y =+的取值范围是[]18,6-. 故选:D .7.等差数列{}n a 的公差不为0,若2a ,3a ,6a 成等比数列,且234a a +=-,则{}n a 前5项的和为( ) A .24- B .15-C .20-D .30-【答案】B【分析】由题可得2326a a a =,再结合234a a +=-即可求出首项和公差,得出前5项和.【详解】设等差数列{}n a 的公差为d , ∵2a ,3a ,6a 成等比数列,2326a a a ∴=,()()()211125a +d a +d a +d ∴=,整理得212d a d =-,∵0d ≠,12d a ∴=-,∵12342+3a a d a =+=-, 则可解得11,2a d ==-,()554512152S +⨯∴=⨯⨯-=-. 故选:B.8.若函数()f x 的导函数为()f x ',且满足()()21ln 2f x f x x ='+,则()1f '=( ) A .0 B .1-C .2-D .2【答案】C【分析】求导得()f x ',再代入1x =即可计算出()1f '. 【详解】由题意()()2'1'2f f x x=+,所以()()'12'12f f =+,得()12f '=-.故选:C.9.新型冠状爆发期间,某专家为了解广西某中学学生一天自主学习的时间(单位,小时),随机抽查该校50名学生的学习时间;了解到以下数据: 学习时间(x ) (]0,1(]1,2(]3,4(]5,6(]7,8(]9,10人数24201464根据频率分布表中的数据,可以估计该校50名中学生自主学习时间的平均值x (精确到0.1)( ) A .4.7 B .4.6C .4.5D .4.4【答案】A【分析】利用每一个区间中点横坐标乘以该区间的频率,再求和即可求解. 【详解】该校50名中学生自主学习时间的平均值242014640.5 1.5 3.5 5.57.59.5 4.74 4.7505050505050x =⨯+⨯+⨯+⨯+⨯+⨯=≈, 故选:A10.已知某几何体的三视图如图所示,则该几何体的表面积是( )A .12πB .18πC .24πD .25π【答案】C【分析】由三视图得出原几何体是底面半径为3,母线长为5的圆锥,再求表面积即可.【详解】由三视图可知原几何体是底面半径为3,母线长为5的圆锥, 所以底面积为239ππ⨯=, 侧面积为:3515ππ⨯⨯=,所以该几何体的表面积为91524πππ+=, 故选:C11.运行如图所示的程序框图,若输出S 的值为224,则判断框中可以填( )A .3n <B .2n <C .4n <D .5n <【答案】D【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案. 【详解】运行该程序,第一次,72128S ==,6n =; 第二次,61282192S =+=,5n =;第三次,51922224S =+=,4n =,应满足条件,输出224,即应填5n <, 故选:D.12.设双曲线C :22221x y a b-=(0a >,0b >)的渐近线方程为03x =,则双曲线C 的离心率为( )A 2B 3C 5D .2【答案】D【分析】由双曲线的渐近线方程是0x =可知ba =离心率.【详解】因为双曲线C :22221x y a b-=(0a >,0b >)的渐近线方程为0x ±=,得ba=所以双曲线C 的离心率为2ce a===, 故选:D.二、填空题13.各项均为正数的等比数列,若19563924a a a a a a ++=,则65a a +=___________. 【答案】2【分析】根据等比数列性质化简为()2564a a +=,开方即可. 【详解】解:由各项均为正数的等比数列得()219563956252566224a a a a a a a a a a a a ++=++==+所以562a a +=. 故答案为:2【点睛】应用等比数列性质解题时的2个关注点:(1)在解决等比数列的有关问题时,要注意挖掘隐含条件,利用性质,特别是性质“若m n p q +=+,则m n p q a a a a ⋅=⋅”,可以减少运算量,提高解题速度;(2)在应用相应性质解题时,要注意性质成立的前提条件,有时需要进行适当变形.此外,解题时注意设而不求思想的运用.14.已知()1,2a =-,()2,b m =,若//a b ,则3a b +=___________.【分析】由向量平行可得4m =-,再求出3a b +,即可求出模. 【详解】//a b ,4m ∴-=,即4m =-,()()()331,2+2,41,2a b ∴+=--=-,()31a b ∴+=-=15.已知P 为抛物线C :2x my =(0m >)上一点,点P 到C 焦点的距离为1,到x 轴的距离为34,则m =___________. 【答案】1【分析】抛物线C 的准线方程为4m y =-,由抛物线的定义可得点P 到准线4m y =-的距离等于1,所以30144m ⎛⎫--=- ⎪⎝⎭,即可求出m 的值. 【详解】由抛物线C :2x my =(0m >)可得抛物线的准线为:4m y =-, 由抛物线的定义可得:点P 到准线4my =-的距离等于到焦点的距离, 所以点P 到准线4my =-的距离等于1, 又因为点P 到x 轴的距离为34,即点P 到0y =的距离为34,所以30144m ⎛⎫--=- ⎪⎝⎭,因为0m >,解得:1m = 故答案为:116.在三棱柱111ABC A B C -中侧棱垂直底面且底面是ABC 为等边三角形且12A A AB =,E 在棱1AA 上,112AE A A =,则异面直线1AC 与BE 所成角的余弦值___________.【分析】取11A C 的中点1O ,连接1EO ,1AC ,可得11//EO AC ,所以1BEO ∠或其补角即为异面直线1AC 与BE 所成角,在1BEO 中,求1cos BEO ∠即可求解.【详解】取11A C 的中点1O ,连接1EO ,11B O ,EB ,EC ,1BO ,1AC , 因为112AE A A =,所以11//EO AC 且111=2EO AC , 所以1BEO ∠或其补角即为异面直线1AC 与BE 所成角, 设1AB =,则12AA =, 所以2211115=1222EO AC =+=,112BE =+= 因为111A B C △是等边三角形,112AE A A =,所以21113122B O ⎛⎫=-= ⎪⎝⎭因为1BB ⊥平面111A B C ,11B O ⊂平面111A B C ,所以 1BB ⊥11B O , 所以2221111319422BO BB B O ⎛⎫=+=+= ⎪ ⎪⎝⎭, 在1BEO 中,2221111519231044cos 25222BE EO BO BEO BE EO +-+-∠===⨯⨯⨯, 因为异面直线所成的角为锐角或直角, 所以异面直线1AC 与BE 所成角的余弦值为31020, 故答案为:31020【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角;(3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.三、解答题17.设函数()32sin cos 62f x x x ππ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭,x ∈R . (1)求函数()f x 的对称轴方程;(2)在锐角三角形ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且()f A =2a =,ABCS,求ABC 的周长.【答案】(1)5122k x ππ=+,k ∈Z ;(2)6. 【分析】(1)化简函数()f x ,利用和差公式展开,然后再利用降幂公式降次,最后利用辅助角公式合一变换得()sin 23f x x π⎛⎫=-⎪⎝⎭,利用整体法求解对称轴即可;(2)利用锐角三角形得A 的范围,求解角A ,再利用面积公式与余弦定理结合求解出4b c +=,即可得周长.【详解】(1)因为()32sin cos 62f x x x ππ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭()212cos sin sin cos 2=x x x x x x f x ⎛⎫=+⋅= ⎪ ⎪⎝⎭11cos 2sin 222x x -=+1sin 2cos 2sin 2223x x x π⎛⎫=-=- ⎪⎝⎭, 令232x k πππ-=+,k ∈Z ,解得5122k x ππ=+,k ∈Z ,可得函数()f x 的对称轴方程为5122k x ππ=+,k ∈Z . (2)因为锐角三角形ABC ,所以,,0,2A B C π⎛⎫∈ ⎪⎝⎭所以,22,333A πππ⎛⎫⎛⎫-∈- ⎪ ⎪⎝⎭⎝⎭,又因为,()sin 23f A A π⎛⎫=-= ⎪⎝⎭, 所以,3A π=,因为1sin 2ABC S bc A ===△,所以4bc =, 又因为()2222221cos 222b c bc a b c a A bc bc +--+-===,2a =所以4b c +=,所以ABC 的周长为6a b c ++=.【点睛】思路点睛:关于三角函数解析式化简问题需要注意,一是利用和差公式或者诱导公式展开计算,化为同角;二是遇到二次方的情况,需要利用降幂公式降次,化为sin cos y a x b x ωω=+的形式;三是利用辅助角公式进行合一变换,最终将函数化为()sin y A ωx φ=+.18.现对某市工薪阶层关于“楼市限购令”的态度进行调查,随机抽调了50人,他们月收入的频数分布及对“楼市限购令”赞成人数如表:(1)由以上统计数据填下面22⨯列联表并问是否有99%的把握认为“月收入以5500为分界点”对“楼市限购令”的态度有差异;(2)若采用分层抽样在月收入在[)15,25,[)25,35的被调查人中共随机抽取6人进行追踪调查,并给予其中3人“红包”奖励,求收到“红包”奖励的3人中至少有1人收入在[)15,25的概率.参考公式:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:【答案】(1)列联表答案见解析,没有99%的把握认为“月收入以5500为分界点”对“楼市限购令”的态度有差异;(2)45. 【分析】(1)根据频率分布表中的数据,完成由22⨯列联表,再根据列联表中的数据求得2K ,然后与临界值表对照下结论.(2)用分层抽样在月收入在[)15,25,[)25,35的被调查人中共随机抽取6人,其中在[)15,25内2人,在[)25,35有4人,然后列举出从这6人中抽取3人的基本事件数,从中找出这3人中至少1人收入在[)15,25的基本事件,代入古典概型的概率公式求解. 【详解】(1)由题意填22⨯列联表如下,由表中数据,计算()2250305105 2.38 6.63540103515K ⨯-⨯==<⨯⨯⨯所以没有99%的把握认为“月收入以5500为分界点”对“楼市限购令”的态度有差异; (2)用分层抽样在月收入在[)15,25,[)25,35的被调查人中共随机抽取6人, 则月收入在[)15,25内有562510⨯=+(人)记为A 、B ,在[)25,35有624-=(人),记为c 、d 、e 、f ;从这6人中抽取3人,基本事件是ABc 、ABd 、ABe 、ABf 、Acd 、Ace 、Acf 、Ade 、Adf 、Aef 、Bcd 、Bce 、Bcf 、Bde 、Bdf 、Bef 、cde 、cdf 、cef 、def 共20种,这3人中至少收入在[)15,25的事件是ABc 、ABd 、ABe 、ABf 、Acd 、Ace 、Acf 、Ade 、Adf 、Aef 、Bcd 、Bce 、Bcf 、Bde 、Bdf 、Bef 共16种,故所求的概率值为164205P ==. 19.已知四棱锥S ABCD -中,底面ABCD 是边长为2的菱形,60BAD ∠=︒,6SA SD ==,22SB =,点E 是棱AD 的中点,点F 是棱SC 上靠近S 的一个三等分点.(1)求证:平面SBE ⊥平面ABCD ; (2)求三棱锥F SEB -的体积. 【答案】(1)证明见解析;(215. 【分析】(1)根据等腰三角形三线合一证明SE AD ⊥,BE AD ⊥,即可证明出AD ⊥平面SEB ,所以平面SBE ⊥平面ABCD ;(2)先证明出BC ⊥平面SEB ,利用三角形相似可得F 到平面SBE 的距离1233d BC ==,计算出SEB △的面积,再代入体积计算公式求解.【详解】(1)证明:∵E 是AD 的中点,6SA SD ==SE AD ⊥因为ABCD 是菱形,60BAD ∠=︒,∴BE AD ⊥, ∵BE SE E =∩∴AD ⊥平面SEB ,∵AD ⊂平面ABCD ,∴平面SBE ⊥平面ABCD .(2)连接BE ,AC 相交于点G ,则由三角形相似得2CG AG = ∵//AD BC ,∴BC ⊥平面SEB ,∵点E 是棱AD 的中点,F 是棱SC 上靠近S 的一个三等分点. ∴//SA FG ,∴21CF CG BC SF GA AE ===,∴F 到平面SBE 的距离1233d BC ==,1153522SBE S ∆=⨯⨯=∴三棱锥F SEB -的体积1153F SEB SBE V S d -∆=⨯⨯=.【点睛】方法点睛:关于三棱锥的体积的求解常见的有两种解法,一是利用等体积法,需要证明出线面垂直,再换底换高计算;二是利用空间直角坐标系,计算点到面的距离,然后代入体积计算公式即可. 20.已知函数()2xf x e x ax =--.(1)当1a =-时,求函数()f x 在()()1,1f 处的切线方程; (2)当0x >时()1f x x ≥-恒成立,求实数a 的取值范围; 【答案】(1)()11y e x =-+;(2)(],1e -∞-.【分析】(1)求导得()f x ',求出()1,(1)f f ',利用点斜式写出切线方程;(2)利用参变分离法将不等式转化为11x e a x x x ≤--+,令()11x e g x x x x=--+,即()min a g x ≤,所以对()g x 求导,判断单调性,求解最小值即可.【详解】(1)()21,(1)1xe x ef x f ''=-+=-,()1f e =,切线方程为:()()11y e e x -=--,即()11y e x =-+(2)当0x >时,()1f x x ≥-即11x e a x x x≤--+,令()11x e g x x x x =--+,(0x >),()min a g x ≤成立,()()()211x x e x g x x---'= 设()1xF x e x =--,()1xF x e '=-;()0,x ∈+∞,()10xF x e '=->,所以()min 0F x >,所以当()0,1x ∈,()0g x '<,()g x 单调递减,当()1,x ∈+∞,()0g x '>,()g x 单调递增,故()min ()11g x g e ==-,所以(],1a e ∈-∞-【点睛】方法点睛:导函数中常用的两种转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.21.已知椭圆C :22221x y a b +=(0a b >>)的左右焦点分别为12,F F ,122F F =,点31,2P ⎛⎫⎪⎝⎭在椭圆上. (1)求椭圆C 的方程;(2)设P 是椭圆C 上的一点,()2,0A ,(B ,()0,0O ,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:AN BM ⋅为定值.【答案】(1)22143x y +=;(2)证明见解析. 【分析】(1)由222a b c =+,1c =,232b a =,解得椭圆的标准方程为22143x y +=;(2)设出点()00,P x y ,表示出直线PA ,PB 的方程,再分别求出点M ,N 的坐标,表示出AN 和BM ,化简即可得定值.【详解】(1)由题意可知,222a b c =+,232b a =所以2a =,b =1c =,所以椭圆方程为22143x y +=;(2)证明:由(1)知,()2,0A ,(B ,由题意可得,因为()00,P x y ,则2200143x y +=,直线PA 的方程为()0022y y x x =--当0x =,得0022M y y x =--;从而0022M y BM y x ==+-. 直线PB的方程为0y x =+令0y =,得N x =.从而22NAN x =-=+.∴0222y AN BM x ⋅=+-===所以AN BM ⋅为定值.【点睛】关键点睛:求解椭圆动点相关问题时,一般先要设出动点坐标,得关于动点满足的方程,然后根据题意列出与动点相关的式子,再将动点满足的方程代入化简即可求解.22.已知直线l的参数方程为1212x y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2cos ρθ=. (1)求直线l 的普通方程和曲线C 的直角坐标方程;(2)设点()1,0P ,直线l 与曲线C 交于A ,B 两点,求AP PB +的值. 【答案】(1)l:10x -=,C :()2211x y -+=;(2)2.【分析】(1)对直线,消去t,可得10x -=,再根据极坐标与直角坐标方程之间的转化公式求解可得()2211x y -+=;(2)将参数方程代入圆C 的方程,得210t -=,可得122PA PB t t +=-=.【详解】(1)消去t,可得10x -=; 曲线C 的极坐标方程为2cos ρθ=.由cos x ρθ=,sin y ρθ=,222x y ρ+=,可得222x y x +=,即曲线C 的直角坐标方程为()2211x y -+=;(2)将直线l的参数方程为112x y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数)代入C 的方程()2211x y -+=,可得210t -=,1t =±设1t ,2t 是点A ,B 对应的参数值, 则122PA PB t t +=-=.【点睛】直角坐标方程转为极坐标方程的关键是利用公式cos sin x y ρθρθ=⎧⎨=⎩,而极坐标方程转化为直角坐标方程的关键是利用公式222tan x y y x ρθ⎧=+⎪⎨=⎪⎩,后者也可以把极坐标方程变形尽量产生2ρ,cos ρθ,sin ρθ以便利用公式进行转化. 23.设函数()f x =0a ≠).(1)当1a =时,求不等式()f x x <的解集; (2)若()410f x a+-≥恒成立,求a 的取值范围. 【答案】(1)()3,5;(2)()[),01,-∞+∞.【分析】(1)代入1a =,然后分类讨论1,14,4x x x ≤<<≥三种情况下的解集,最后求并集;(2)将不等式转化为()min 41f x a≥-,求()f x 的最小值,然后分类讨论求解. 【详解】(1)当1a =时,()52,1143,1425,4x x f x x x x x x -≤⎧⎪=-+-=<<⎨⎪-≥⎩,当1x ≤时,()f x x <,无解;当14x <<时,由()f x x <,可得34x <<; 当4x ≥时,由()f x x <,可得45x ≤<; 故不等式()f x x <的解集为()3,5.(2)因为()410f x a +-≥恒成立,即()min 41f x a≥-, ∵()()()444f x x a x x a x a =-+-≥---=-, ∴4441a a a a--≥-=. 当0a <或4a ≥时,不等式显然成立; 当04a <<时,44aa a--≥,得2540a a -+≤,则14a ≤<. 故a 的取值范围为()[),01,-∞+∞.【点睛】方法点睛:绝对值不等式的解法,法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想; 法二:利用“零点分段法”求解,体现了分类讨论的思想;法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.。
广西壮族自治区柳州市自治县中学2020-2021学年高二数学文上学期期末试卷含解析

广西壮族自治区柳州市自治县中学2020-2021学年高二数学文上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 当点M(x,y)在如图所示的三角形ABC内(含边界)运动时,目标函数z=kx+y取得最大值的一个最优解为(1,2),则实数k的取值范围是()A.(﹣∞,﹣1]∪[1,+∞)B.[﹣1,1] C.(﹣∞,﹣1)∪(1,+∞)D.(﹣1,1)参考答案:B【考点】简单线性规划的应用.【分析】先根据约束条件的可行域,再利用几何意义求最值,z=kx+y表示直线在y轴上的截距,﹣k 表示直线的斜率,只需求出k的取值范围时,直线z=kx+y在y轴上的截距取得最大值的一个最优解为(1,2)即可.【解答】解:由可行域可知,直线AC的斜率=,直线BC的斜率=,当直线z=kx+y的斜率介于AC与BC之间时,C(1,2)是该目标函数z=kx+y的最优解,所以k∈[﹣1,1],故选B.2. 若函数f(x)=x3+ax2+3x﹣6在x=﹣3时取得极值,则a=()A.2 B.3 C.4 D.5参考答案:D【考点】6D:利用导数研究函数的极值.【分析】先对函数进行求导,根据函数f(x)在x=﹣3时取得极值,可以得到f′(﹣3)=0,代入求a值.【解答】解:对函数求导可得,f′(x)=3x2+2ax+3∵f(x)在x=﹣3时取得极值,∴f′(﹣3)=0?a=5故选:D.3. 函数的单调递减区间是A. (0,3)B. (-∞,2)C. (1,4)D. (2,+∞)参考答案:B【分析】由题,先求得的导函数,再令导函数小于0,解集就是函数的减区间.【详解】由题令,解得所以在区间函数单调递减故选B【点睛】本题考查了导函数的应用,利用导函数求解原函数的单调性,求导是关键,属于基础题. 4. 已知函数f(x)=x2-ax+3在(0,1)上为减函数,函数g(x)=x2-a ln x在(1,2)上为增函数,则a 的值等于( ).A.1 B.2 C.0 D.参考答案:考点:1二次函数的单调性;2用导数研究函数的单调性。
广西2020学年高二数学上学期期末考试试题文_2105

高二数学上学期期末考试一试题文一、选择题 ( 本大题共12 小题,每题 5 分,共 60 分。
在每题给出的四个选项中,只有一项是切合题意的 )1、命题“若x2 1,则 1 x 1”的逆否命题是( )A.若x2 1,则x 1或 x -1 B .若 -1 x 1,则x2 1C.若x 1或x1,则x 2 1 D .若或,则 2x 1 x -1 x 12、已知函数 f ( x) ax2 c, 且 f ' (1) 2 ,则 a 的值为()A. 0 B . 1 C .﹣ 1 D .没法确立3、已知命题p :x R, x2 2x 0 ,则命题p的否认为()A. x R, x2 2x 0B. x R, x2 2x 0C. x0 R, x02 2x0 0D. x0 R, x02 2x0 04、若ab,则以下不等关系中不必定建立的是()A a c b cB ac bcC a 2 b2D a b5、等差数列a n中,已知 a1 8, a n 2, d 2 ,则 n 为()A. 3 B . 4 C .5 D . 66、ABC 中,角A、B、 C 的对边分别为a、 b 、c,若 b2 a2 c2 2ac ,则角B=()A.135 B.120 C .60 D.457、数列{ a n}的前n项之和为S n n2 2n ,那么 a6 ()A. 11 B . 12 C . 13 D .148、曲线y x3 3x2 在点(1,2)处的切线方程为()A.y 3x 5 B .y 3x 5 C. y 3x 1 D .y 2x9、设双曲线x2y 2 1( a 0,b 0) 的虚轴长为2,焦距为2 3 ,则双曲线的渐近线方程a 2 b2为()A. y2x B . y2x C .y2xD.y1 x 22x 2 y 110、设 x, y 知足拘束条件2x y 1 ,则 z 3x 2 y 的最小值为()xy 0A. 5B. 1C .113D .311、设椭圆x 2y 2 1 a b 0 的 左 右 焦 点 分 别 为 F 1 , F 2 , P 是 C 上 的 点 ,C :2b 2aPF 2F 1F 2 , PF 1F 2 30 ,则 C 的离心率为 ( )A .3B.1C .1D.3632312、设 a R ,若函数 ye x ax , x R 有大于零的极值点,则 a 的取值范围为( )A . a1B.a1 C.a1 D.1eae二、填空题 (本大题共 4 小题,每题 5 分,共 20 分,把答案写在题中的横线上)13、抛物线 y 2 2x 的准线方程为14、已知函数f (x) x 3 12x 8在区间 [ 3,3] 上的最大值与最小值分别为M ,m ,则M m.15、不等式16、不等式x1 ( x 1) 的最小值是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
)&#:+6 ( )&#
令' $"#得(A $!'!"(!"!"从而B+A B$
B槡&!(A B$B槡&2'!"(!"!B" 直线 <+ 的方程为( $ ("'!" &'2槡&"
令( $ "#得 'C $! 槡&'" "从 而B)C B
9+6 )06 $ 6#:)& ( 平面06+#
(" !槡&
9)&, 平 面 )+,&#: 平 面 0+6 ( 平 面
!'"!#"因为 $/!'"$!!# !7,8'2槡!&8'1'"
&8'1'
!
槡&
!
$
8'1'7,8'
2
槡&8'1!'
!
槡&
!
$
由表 中 数 据#计 算
%!
$
*"!&":*!#":*"! )":#":&*:#*
$ !"&3 " 2"2&* 所以没有66; 的把握认为'月收入以**""
为 分 界 点 (对 '楼 市 限 购 令 (的 态 度 有 差 异 %
!$"槡*!向 量 的 平 行 关 系 和 模 长 运 算#! 5
$)%5 $!)&%$-2%$4$ !!##!""" !%"#!考查抛物线 定义#到焦 点 的距离 等于
不赞成 合计
#" )"
*
#*
#"
*"
到 准 线 的 距 离 ""
!&"!&!槡"#" 考查异面直线所成的角#过 6
点67 平行 ),##在 三 角 形 +67 的 余 弦 定 理 中 求 解 ""
&
&
!#!"# &&
&"(!考查线 性 规 划#作 出 满 足 '#( 的 约 束 条件 的 图 像 的 到 & 个 端 点#)!!##""#*) $ !&#+!!#""#*+ $2#,!!)#!&"##*, !#3""
'"4!考查等 比 等 差 数 列 的 交 汇 问 题 -! & $ -!"-2 得. $!!- 计算出首项和公差即可""
$
+, )6
$
!# #
'!"(!"!B
:7
到 平 面0+6
的 距 离.
$
# &+,
$
!# &
:
三棱锥 7!06+
的 体 积>7!06+
$
# &
:
B
$B&'! " 2)(! " 2)槡&'"(" !#!'" !3槡&(" 2#! '"(" !槡&'" !!(" 2!槡&
0'0+6 :. $
槡#*
6
$B)槡&'"(" !#!'" !3槡&(" 2!)B$)槡&" '"(" !槡&'" !!(" 2!槡&
柳州二中!"!"!!"!#学年上学期期末考试试题
文科数学参考答案
!!!"$!考 查 集 合 的 交 并 补 运 算 根 据 并 集 关 系 ""
28!#8 & +#
""%!考查复数除法#复数运算#$
& !
!
'!""
可得函数/!'"的对称轴方程为 ' $ *#!2
#"(!考查 指 数 对 数 名 幂 函 数 单 调 性 " " "")""* " ""*""* " ""*"") " # $ +,-" """** "
为9*.*3*/% 从这 2 人 中 抽 取 & 人#基 本 事 件 是 )+9*
槡!&7,8!'
$ 8'1!!' !
"# &
令 !'!
&
$
!
28#8 &
+#解 得 '
$
* #!
)+.*)+3*)+/*)9.*)93*)9/*).3*)./* )3/*
+9.*+93*+9/*+.3*+./*+3/*9.3*9./* 93/*.3/ 共!"种#
)+,& " !!"解$9)&--+,#:+, ( 平面06+# 9 点 6 是棱)& 的中点#点 7 在棱0, 上#
满足0) * 平面 +67#
$B!!'C B$B!2 槡&'" B" (" !槡&
:B)CB&B+A B$B!2 槡&'" B&B槡&2 (" !槡&
:0)
* 7=#:0,77
$ =,=)
又
因为
#/!)"$ 8'1!!)
!
&"$
槡&#
!
所以
)
$
# &
("$!考查求导公式/!'"为常数#对' 进行 求导#令' $#即可 ,""
因为0')+, $ # !498'1) $ 槡)&49 $ 槡&#所以
)"%!)"5#各组组中值与各组相应频率之积 49 $)#
的 和 "" !*"$!考 查 三 视 图 #三 视 图 为 圆 锥 ""
8!#8 & +"
+,-"""")*(."
!!"因为锐角三角形 ')+,#
$"%!考 查 平 面 向 量 线 性 运 算 #$!!#然 后 三 角 形 法 则 ""
所以#) & !"#!"
%"(!考查倍角 公 式 和 弦 切 互 化#% $ ! 得 /01$!弦化切即可 &""
所 以 #!)
! "用 分 层 抽 样 在 月 收 入 在 )#*#!*"#)!*# &*"的 被 调 查 人 中 随 机 抽 取 2 人 #
则
月
收
入
在
)#*#!*"内
有
2
:
* *2#"
$
!!人 "记 为)*+#在 )!*#&*"有2!!$)!人 "#记
#8'1!' !
2
槡&&#!7!,8!'
!
槡&
!
$
# !8'1!' !
又 因 为 7,8)
$
4! 29! !-! !49
$
!!"(!考查程序框图#解$运行该 程序#第 一 次#0 $!5$#!3#1 $2%
!429"! !!49!-! !49
$
## !
第二次#0 $#!32!2$#6!#1 $*%
所 以429 $ )#
第三次#0 $#6!2!*$!!)#1 $)%"
所以 ')+, 的周长为-2429$2"
所以B)C B&B+A B为定值"
"""!#"当- $#时 #/!'"$B'!#B2B'!
)B$ ./0&!*'#!#!!"'*'##''"-,)# )#
当' -#时#/!'""'#无解%
当#"' ")时#由/!'""'#可得&"'
!""(!考 查 圆 锥 曲 线 离 心 率 的 运 算#3 $
!("! "由 题 意 填 !:! 列 联 表 如 下 #