高二数学期末复习知识点总结(完整资料)
高二数学知识点全归纳

高二数学知识点全归纳数学作为一门基础学科,在高中阶段占据重要位置。
高二是学生们备战高考的关键时期,数学知识点的全面归纳对于学生们的复习备考至关重要。
在本文中,将全面总结高二数学的各个知识点,帮助学生们加深对数学的理解和掌握。
一. 代数与函数1.1. 等式与方程等式的性质及等式解法:加法公式、减法公式、乘法公式、方程的加减法、方程的乘除法以及其他等式解法。
解一元一次方程:去括号、移项、合并同类项、消去分数、整理得到方程的解。
解一元二次方程:配方法、公式法、完全平方式以及方程的解的性质。
1.2. 函数与方程函数的定义与性质:函数的概念、定义域、值域和主值域、奇偶性、单调性,函数图像及函数图像的性质。
一次函数与二次函数:一次函数的图像、性质、方程以及与坐标轴的关系;二次函数的图像、性质、方程、顶点、对称轴与零点等。
1.3. 不等式不等式的性质及不等式解法:加法性质、乘法性质,解不等式的基本步骤,解一元一次不等式、解一元二次不等式。
二. 解析几何2.1. 坐标系与坐标变换笛卡尔坐标系:横坐标、纵坐标、象限及各象限的特点。
极坐标系:极径、极角的概念及与直角坐标系的转换。
2.2. 点、线、面与方程点的共线性与距离公式:计算点的距离,判定点的共线性。
线段、直线的性质:线段的中点、平分线,直线的长度、方程及斜率等。
2.3. 图形的特点与判定平行线与垂直线:判定平行线及垂直线的几何条件与性质。
三角形的基本性质:内角和为180°,等腰三角形、等边三角形,直角三角形及勾股定理。
三. 概率与统计3.1. 随机事件与概率随机事件的定义:样本空间、事件、必然事件与不可能事件。
概率的计算:频率、几何概率与古典概型。
加法公式与乘法公式:事件的并、交以及两事件相互独立的概率计算。
3.2. 统计与抽样调查统计指标的计算:平均数、中位数、众数,数据的分布形态。
抽样调查的方法与误差:随机抽样、系统抽样、整群抽样及抽样误差的计算。
高二数学期末考知识点

高二数学期末考知识点高二数学的期末考试,是对学生数学能力的综合考核,涵盖了各个知识点。
下面将介绍高二数学期末考的知识点,以供同学们复习参考。
1. 一元二次方程一元二次方程是高中数学的基础知识点之一。
考试中常见的问题包括求解一元二次方程、判断一元二次方程的解的性质以及应用题等。
在复习过程中,同学们需要重点掌握配方法、因式分解、求根公式等解方程的方法,并能熟练运用到具体问题中。
2. 三角函数三角函数也是高中数学的重要知识点之一。
考试中常见的问题包括三角函数的定义、性质、图像变换以及解三角函数方程等。
在复习过程中,同学们需要重点掌握正弦、余弦、正切等三角函数的定义和性质,并能运用到解题中。
3. 平面向量平面向量是高中数学的难点知识点之一。
考试中常见的问题包括向量的加减、数量积、向量的共线与垂直、平面向量的应用等。
在复习过程中,同学们需要掌握向量的基本运算法则,熟练应用向量求解几何问题。
4. 导数与微分导数与微分是高中数学的重要知识点之一,也是初步接触微积分的基础。
考试中常见的问题包括导数的定义与计算、函数的单调性、极值与最值、函数图像的形态等。
在复习过程中,同学们需要熟悉导数与微分的概念,灵活应用导数与微分解决实际问题。
5. 空间几何空间几何是高中数学的重要内容之一。
考试中常见的问题包括空间平面与直线的位置关系、空间向量的夹角与垂直、空间几何体的体积与表面积等。
在复习过程中,同学们需要熟练运用空间几何的基本性质,解决与实际问题相关的空间几何题目。
6. 概率论与数理统计概率论与数理统计是高中数学的一门较为复杂的知识点。
考试中常见的问题包括概率计算、随机变量的概率分布、均值与方差等。
在复习过程中,同学们需要掌握概率论与数理统计的基本概念及计算方法,并能应用到实际问题中。
以上就是高二数学期末考知识点的概述。
同学们在复习过程中要注重理解各个知识点的定义和性质,强化基础知识的掌握。
同时,要注重做题技巧的训练与应用,通过大量的练习提高解题水平。
高二数学知识点总结大全

高二数学知识点总结大全一、集合与函数1. 集合的概念和表示方法2. 集合的运算:交集、并集、差集、补集3. 集合的基本性质和运算规律4. 函数的概念和表示方法5. 函数的性质:定义域、值域、单调性、奇偶性6. 函数的图像、反函数和复合函数二、平面几何1. 直线与射线的性质与关系2. 角的概念、性质和分类:锐角、直角、钝角3. 举例说明平行线和垂直线的判定方法4. 三角形的分类:按角度分类、按边长分类5. 三角形的面积与周长的计算方法6. 三角形内角和、外角和的计算与性质7. 三角形相似性质与判定8. 三角形的中线、高线和垂心、重心的概念与性质三、数列与数列的极限1. 数列的概念与表示方法2. 等差数列与等比数列的性质3. 数列的通项公式与前n项和的公式4. 数列极限的定义与性质5. 数列极限的计算方法:夹逼定理、单调有界准则6. 数列极限存在的判定7. 数列极限与数列的收敛性和发散性的关系四、函数的导数与应用1. 函数的导数与导数的基本性质2. 基本初等函数的导数3. 导数的四则运算法则与复合函数的求导法则4. 高阶导数与隐函数求导5. 函数的单调性与极值点的判定6. 函数的凹凸性与拐点的判定7. 泰勒公式与函数图像的描绘8. 最值问题与最速下降问题的应用五、概率统计1. 随机事件与样本空间的概念2. 概率的定义、性质和计算方法3. 条件概率和乘法定理4. 全概率公式和贝叶斯定理5. 随机变量与概率密度函数的概念6. 二项分布、正态分布和泊松分布的性质与应用7. 抽样调查与统计推断的方法六、立体几何1. 空间几何体的基本概念与性质:点、线、面、体2. 空间几何体的投影、截面和旋转3. 圆柱体、圆锥体、棱锥体、棱柱体的特征与计算4. 球的性质与计算5. 空间向量的概念与基本运算法则6. 向量与几何体的应用:平面的方程、直线的方程七、三角函数1. 弧度与角度的转化关系2. 基本三角函数的定义与性质3. 三角函数图像的性质与变换4. 和差化积公式、倍角公式、半角公式的推导与应用5. 三角方程的解法与求解区间以上为高二数学知识点总结的大致内容,希望对你的学习有所帮助。
高二数学知识点总结(8篇)

高二数学知识点总结一、集合、简易逻辑(14课时,8个)1.集合;2.子集;3.补集;4.交集;5.并集;6.逻辑连结词;7.四种命题;8.充要条件。
二、函数(30课时,12个)1.映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩充;7.有理指数幂的运算;8.指数函数;9.对数;10.对数的运算性质;11.对数函数.12.函数的应用举例。
三、数列(12课时,5个)2.等差数列及其通项公式;3.等差数列前n项和公式;4.等比数列及其通顶公式;5.等比数列前n项和公式。
四、三角函数(46课时,17个)1.角的概念的推广;2.弧度制;3.任意角的三角函数;4.单位圆中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式;7.两角和与差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.周期函数;11.函数的奇偶性;12.函数的图象;13.正切函数的图象和性质;14.已知三角函数值求角;15.正弦定理;16.余弦定理;17.斜三角形解法举例。
五、平面向量(12课时,8个)2.向量的加法与减法;3.实数与向量的积;4.平面向量的坐标表示;5.线段的定比分点;6.平面向量的数量积;7.平面两点间的距离;8.平移。
六、不等式(22课时,5个)1.不等式;2.不等式的基本性质;3.不等式的证明;4.不等式的解法;5.含绝对值的不等式。
七、直线和圆的方程(22课时,12个)1.直线的倾斜角和斜率;2.直线方程的点斜式和两点式;3.直线方程的一般式;4.两条直线平行与垂直的条件;5.两条直线的交角;6.点到直线的距离;7.用二元一次不等式表示平面区域;8.简单线性规划问题;9.曲线与方程的概念;10.由已知条件列出曲线方程;11.圆的标准方程和一般方程;12.圆的参数方程。
八、圆锥曲线(18课时,7个)1.椭圆及其标准方程;2.椭圆的简单几何性质;3.椭圆的参数方程;4.双曲线及其标准方程;5.双曲线的简单几何性质;6.抛物线及其标准方程;7.抛物线的简单几何性质。
高二数学期末考试复习知识点总结

数学是利用符号语言研究数量、结构、变化以及空间模型等概念的一门学科。
小编准备了高二数学期末考试复习知识点,希望你喜欢。
《不等等式》解不等式的途径,利用函数的性质。
对指无理不等式,化为有理不等式。
高次向着低次代,步步转化要等价。
数形之间互转化,帮助解答作用大。
证不等式的方法,实数性质威力大。
求差与0比大小,作商和1争高下。
直接困难分析好,思路清晰综合法。
非负常用基本式,正面难则反证法。
还有重要不等式,以及数学归纳法。
图形函数来帮助,画图建模构造法。
《立体几何》点线面三位一体,柱锥台球为代表。
距离都从点出发,角度皆为线线成。
垂直平行是重点,证明须弄清概念。
线线线面和面面、三对之间循环现。
方程思想整体求,化归意识动割补。
计算之前须证明,画好移出的图形。
立体几何辅助线,常用垂线和平面。
射影概念很重要,对于解题最关键。
异面直线二面角,体积射影公式活。
公理性质三垂线,解决问题一大片。
《平面解析几何》有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称典范。
笛卡尔的观点对,点和有序实数对,两者一来对应,开创几何新途径。
两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想。
三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。
四件工具是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求。
解析几何是几何,得意忘形学不活。
图形直观数入微,数学本是数形学《排列、组合、二项式定理》加法乘法两原理,贯穿始终的法则。
与序无关是组合,要求有序是排列。
两个公式两性质,两种思想和方法。
归纳出排列组合,应用问题须转化。
排列组合在一起,先选后排是常理。
特殊元素和位置,首先注意多考虑。
不重不漏多思考,捆绑插空是技巧。
排列组合恒等式,定义证明建模试。
关于二项式定理,中国杨辉三角形。
两条性质两公式,函数赋值变换式。
《复数》虚数单位i一出,数集扩大到复数。
一个复数一对数,横纵坐标实虚部。
对应复平面上点,原点与它连成箭。
高二数学期末考知识点总结

高二数学期末考知识点总结在高二数学期末考前夕,为了帮助同学们更好地复习和总结知识点,我将对本学期所学的数学知识点进行总结。
以下是我对本学期高二数学知识点的梳理和总结:一、函数与方程1. 一元函数的概念和性质:定义域、值域、奇偶性等;2. 二次函数:顶点坐标、轴对称、图像特征等;3. 指数函数与对数函数:定义、性质、图像、指数对数变换等;4. 三角函数:正弦函数、余弦函数、正切函数等的概念和性质;5. 方程的解法与不等式求解;二、几何与向量1. 平面向量的定义、性质与运算;2. 向量的数量积与向量积:定义、性质与应用;3. 直线与圆的方程及其性质;4. 三角形与四边形的性质与判定;5. 空间几何体的性质与计算;三、概率与统计1. 事件与概率:基本概念、概率运算与实际应用;2. 随机变量:离散型和连续型随机变量的概念与性质;3. 概率分布函数与密度函数:离散型分布与连续型分布的概念和应用;4. 统计量与统计分布:均值、方差、正态分布等的概念和计算方法;5. 数据处理与分析:频数表、频率分布直方图等的绘制与解读;四、解析几何1. 直线与平面的方程与性质;2. 点、直线、平面的位置关系与距离计算;3. 空间直角坐标系与坐标变换;4. 球面与球面上点、直线与平面的位置关系;5. 球面上的距离计算与解题方法;五、导数与微分1. 函数的极限与连续性:极限定义、无穷小与无穷大的性质;2. 导数的概念与计算方法;3. 高阶导数与导数的应用:中值定理、极值与拐点等;4. 特殊函数的导数:反函数、复合函数、隐函数等的求导法则;5. 微分的概念与应用:近似计算、微分方程与变化率;综上所述,高二数学是一门涵盖广泛的学科,其中包含了函数与方程、几何与向量、概率与统计、解析几何和导数与微分等多个模块,需要我们充分理解每个知识点的定义、性质和计算方法,并能够熟练地应用于实际问题的解决中。
希望同学们通过对本学期所学知识点的全面总结和复习,能够在数学期末考试中取得优异的成绩。
高二数学期末重点知识点

高二数学期末重点知识点一、函数与方程1. 函数的定义及性质函数是一种特殊的关系,可以将一个自变量的值映射到一个唯一的因变量的值。
函数的定义域、值域、单调性、奇偶性等是我们在分析函数特性时需要关注的方面。
2. 一次函数与二次函数一次函数的表达式为y = kx + b,其中k和b分别为常数,表示斜率和截距。
二次函数的表达式为y = ax^2 + bx + c,其中a、b和c为常数,a不为0。
这两种函数在图像特性上有很大的差别,需要通过求解方程、图像变换等方法进行分析。
3. 指数与对数函数指数函数的一般形式为y = a^x,其中a为底数,x为指数。
对数函数是指数函数的反函数,常见的有以10为底的对数函数y = log10x和以e为底的自然对数函数y = ln x。
指数与对数函数在科学计算、生物学、经济学等领域有广泛的应用。
4. 三角函数三角函数包括正弦函数、余弦函数和正切函数等。
它们在几何学、物理学、信号处理等领域中起着重要的作用。
掌握三角函数的定义、性质以及图像特征,能够帮助我们解决相关的问题。
二、平面几何1. 平面图形的性质熟悉各种平面图形的定义及其基本性质,如线段、射线、直线、角等。
此外,要了解平面图形之间的关系,如相似、共面、垂直等,以及相关的证明方法。
2. 三角形与四边形熟悉三角形的内角和、全等条件、相似条件等基本概念和定理。
掌握各种类型的三角形,如等腰三角形、直角三角形、等边三角形等的性质。
对于四边形,要掌握平行四边形、矩形、菱形、正方形等的特性。
3. 圆的性质与相关定理了解圆的性质,如半径、直径、弧长等。
同时要掌握圆的切线、弦、弧之间的关系以及圆与其他图形的关系。
三、立体几何1. 空间图形的表示方法了解空间图形的表示方法,如投影、剖面、透视等。
学会通过平面图形的特征来推断空间图形的性质。
2. 空间几何体熟悉三维图形,如球体、棱柱、棱锥、圆锥等的性质。
了解它们的表面积、体积计算方法,并能灵活运用。
高二数学期末知识点

高二数学期末知识点高二数学是学生们在数学学科中的一个重要阶段,是为高三的学习打下坚实基础的阶段。
在高二数学学习中,有许多重要的知识点需要学生们掌握和理解。
本文将详细介绍高二数学期末知识点,帮助学生们复习和巩固相关知识。
一、函数与方程在高二数学中,函数与方程是一个重要的知识点。
学生们需要掌握函数的概念、性质及其在实际问题中的应用。
函数的概念是指,对于每一个自变量,都能找到唯一对应的因变量。
通过掌握函数的性质,学生们能够解决函数的定义域、值域、单调性等问题。
此外,方程也是高二数学的重要内容。
学生们需要了解一元二次方程、一元三次方程等,以及方程的解的计算方法和应用。
在解题过程中,学生们需要灵活运用因式分解、配方法等解方程的技巧,使得解题更加简便和高效。
二、平面向量平面向量是高二数学中的另一个重要知识点。
学生们需要了解向量的定义、性质和基本运算法则。
掌握向量的基本概念有助于学生们解决平面向量的坐标表示、模长、方向角等问题。
在实际问题中,向量也具有重要的应用,如力的合成、向量共线、垂直等。
学生们需要掌握这些应用技巧,使得解题更加灵活和准确。
三、三角函数三角函数是高二数学中的核心知识点之一。
学生们需要掌握正弦、余弦、正切等基本三角函数的定义、性质和基本关系式。
此外,学生们需要理解三角函数的周期性和图像特征,以及解决三角函数基本方程等问题。
通过灵活应用三角函数的性质,学生们能够解决三角恒等式、三角不等式等高级问题。
掌握这些知识点对于高三的学习和应用非常重要。
四、导数与微分导数与微分是高二数学中的重点知识点之一。
学生们需要了解导数的定义、性质和求导法则。
通过掌握导数的相关知识,学生们能够解决函数的极值、最值问题,以及函数的图像的研究。
此外,学生们还需要掌握微分的定义和运算法则。
灵活应用微分的知识,可以解决曲线的切线方程、最优化问题等高级题目。
五、概率与统计概率与统计是高二数学中的最后一个重要知识点。
学生们需要掌握随机事件、概率计算、条件概率等基本概念,并能够解决与概率相关的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学期末复习知识点总结一、直线与圆:1、直线的倾斜角α的范围是[0,π)在平面直角坐标系中,对于一条与x 轴相交的直线l ,如果把x 轴绕着交点按逆时针方向转到和直线l 重合时所转的最小正角记为α,α就叫做直线的倾斜角。
当直线l 与x 轴重合或平行时,规定倾斜角为0;2、斜率:已知直线的倾斜角为α,且α≠90°,则斜率k =tan α.过两点(x 1,y 1),(x 2,y 2)的直线的斜率k=( y 2-y 1)/(x 2-x 1),另外切线的斜率用求导的方法。
3、直线方程:⑴点斜式:直线过点00(,)x y 斜率为k ,则直线方程为00()y y k x x -=-, ⑵斜截式:直线在y 轴上的截距为b 和斜率k ,则直线方程为y kx b =+ 4、111:l y k x b =+,222:l y k x b =+,①1l ∥2l 21k k =⇔,21b b ≠;②12121l l k k ⊥⇔=-.直线1111:0l A x B y C ++=与直线2222:0l A x B y C ++=的位置关系: (1)平行⇔ A 1/A 2=B 1/B 2 注意检验 (2)垂直⇔ A 1A 2+B 1B 2=05、点00(,)P x y 到直线0Ax By C ++=的距离公式d两条平行线10Ax By C ++=与20Ax By C ++=的距离是d =6、圆的标准方程:222()()x a y b r -+-=.⑵圆的一般方程:220x y Dx Ey F ++++=注意能将标准方程化为一般方程7、过圆外一点作圆的切线,一定有两条,如果只求出了一条,那么另外一条就是与x 轴垂直的直线. 8、直线与圆的位置关系,通常转化为圆心距与半径的关系,或者利用垂径定理,构造直角三角形解决弦长问题.①d r >⇔相离 ②d r =⇔相切 ③d r <⇔相交9、解决直线与圆的关系问题时,要充分发挥圆的平面几何性质的作用(如半径、半弦长、弦心距构成直角三角形) 直线与圆相交所得弦长||AB =二、圆锥曲线方程:1、椭圆: ①方程1by a x 2222=+(a>b>0)注意还有一个;②定义: |PF 1|+|PF 2|=2a>2c ; ③ e=22ab 1ac -=④长轴长为2a ,短轴长为2b ,焦距为2c ; a 2=b 2+c 2 ; 2、双曲线:①方程1by a x 2222=-(a,b>0) 注意还有一个;②定义: ||PF 1|-|PF 2||=2a<2c ; ③e=22ab 1ac +=;④实轴长为2a ,虚轴长为2b ,焦距为2c ; 渐进线0b y a x 2222=-或x a b y ±= c 2=a 2+b 23、抛物线 :①方程y 2=2px 注意还有三个,能区别开口方向; ②定义:|PF|=d 焦点F(2p ,0),准线x=-2p ;③焦半径2px AF A +=; 焦点弦AB =x 1+x 2+p ;4、直线被圆锥曲线截得的弦长公式:5、注意解析几何与向量结合问题:1、11(,)a x y =r ,22(,)b x y =r . (1)1221//0a b x y x y ⇔-=r r;(2)121200a b a b x x y y ⊥⇔⋅=⇔+=r r r r.2、数量积的定义:已知两个非零向量a 和b ,它们的夹角为θ,则数量|a ||b |cos θ叫做a 与b 的数量积,记作a ·b ,即1212||||cos a b a b x x y y θ⋅==+r r r r3、模的计算:|a |=2a. 算模可以先算向量的平方4、向量的运算过程中完全平方公式等照样适用:如()a b c a c b c +•=•+•r rr r r r r三、直线、平面、简单几何体:1、学会三视图的分析:2、斜二测画法应注意的地方:(1)在已知图形中取互相垂直的轴Ox 、Oy 。
画直观图时,把它画成对应轴 o'x'、o'y'、使∠x'o'y'=45°(或135° ); (2)平行于x轴的线段长不变,平行于y轴的线段长减半.(3)直观图中的45度原图中就是90度,直观图中的90度原图一定不是90度. 3、表(侧)面积与体积公式:⑴柱体:①表面积:S=S 侧+2S 底;②侧面积:S 侧=rh π2;③体积:V=S 底h ⑵锥体:①表面积:S=S 侧+S 底;②侧面积:S 侧=rl π;③体积:V=31S 底h :⑶台体①表面积:S=S 侧+S 上底S 下底②侧面积:S 侧=l r r )('+π⑷球体:①表面积:S=24R π;②体积:V=334R π 4、位置关系的证明(主要方法):注意立体几何证明的书写(1)直线与平面平行:①线线平行⇒线面平行;②面面平行⇒线面平行。
(2)平面与平面平行:①线面平行⇒面面平行。
(3)垂直问题:线线垂直⇒线面垂直⇒面面垂直。
核心是线面垂直:垂直平面内的两条相交直线 5、求角:(步骤-------Ⅰ.找或作角;Ⅱ.求角)⑴异面直线所成角的求法:平移法:平移直线,构造三角形; ⑵直线与平面所成的角:直线与射影所成的角四、导数: 导数的意义-导数公式-导数应用(极值最值问题、曲线切线问题)1、导数的定义:()f x 在点0x 处的导数记作00000()()()limx x x f x x f x xy f x =∆→+∆-∆''==.2. 导数的几何物理意义:曲线()y f x =在点00(,())P x f x 处切线的斜率①k =f /(x 0)表示过曲线y=f(x)上P(x 0,f(x 0))切线斜率。
V =s /(t) 表示即时速度。
a=v /(t) 表示加速度。
3.常见函数的导数公式: ①'C 0=;②1')(-=n n nx x ;③x x cos )(sin '=x x sin )(cos '-=; ⑤a a ax x ln )('=;⑥x x e e =')(;⑦a x x a ln 1)(log '=;⑧xx 1)(ln '= 。
4.导数的四则运算法则:;)(;)(;)(2vv u v u v u v u v u uv v u v u '-'=''+'=''±'='± 5.导数的应用:(1)利用导数判断函数的单调性:设函数()y f x =在某个区间内可导,如果()0f x '>,那么()f x 为增函数;如果()0f x '<,那么()f x 为减函数;注意:如果已知()f x 为减函数求字母取值范围,那么不等式()0f x '≤恒成立。
(2)求极值的步骤:①求导数)(x f ';②求方程0)(='x f 的根;③列表:检验)(x f '在方程0)(='x f 根的左右的符号,如果左正右负,那么函数()y f x =在这个根处取得极大值;如果左负右正,那么函数()y f x =在这个根处取得极小值;(3)求可导函数最大值与最小值的步骤: ⅰ求0)(='x f 的根; ⅱ把根与区间端点函数值比较,最大的为最大值,最小的是最小值。
五、常用逻辑用语:1、四种命题:⑴原命题:若p 则q ;⑵逆命题:若q 则p ;⑶否命题:若⌝p 则⌝q ;⑷逆否命题:若⌝q 则⌝p注:1、原命题与逆否命题等价;逆命题与否命题等价。
判断命题真假时注意转化。
2、注意命题的否定与否命题的区别:命题p q ⇒否定形式是p q ⇒⌝;否命题是p q ⌝⇒⌝.命题“p 或q ”的否定是“p ⌝且q ⌝”;“p 且q ”的否定是“p ⌝或q ⌝”. 3、逻辑联结词:⑴且(and) :命题形式 p ∧q ; p q p ∧q p ∨q ⌝p⑵或(or ): 命题形式 p ∨q ; 真 真 真 真 假 ⑶非(not ):命题形式⌝p . 真 假 假 真 假 假 真 假 真 真 假 假 假 假 真“或命题”的真假特点是“一真即真,要假全假”; “且命题”的真假特点是“一假即假,要真全真”; “非命题”的真假特点是“一真一假” 4、充要条件由条件可推出结论,条件是结论成立的充分条件;由结论可推出条件,则条件是结论成立的必要条件。
5、全称命题与特称命题:短语“所有”在陈述中表示所述事物的全体,逻辑中通常叫做全称量词,并用符号∀表示。
含有全体量词的命题,叫做全称命题。
短语“有一个”或“有些”或“至少有一个”在陈述中表示所述事物的个体或部分,逻辑中通常叫做存在量词,并用符号∃表示,含有存在量词的命题,叫做存在性命题。
全称命题p :)(,x p M x ∈∀; 全称命题p 的否定⌝p :)(,x p M x ⌝∈∃。
特称命题p :)(,x p M x ∈∃;特称命题p 的否定⌝p :)(,x p M x ⌝∈∀;考前寄语:①先易后难,先熟后生;②一慢一快:审题要慢,做题要快;③不能小题难做,小题大做,而要小题小做,小题巧做;④我易人易我不大意,我难人难我不畏难;⑤考试不怕题不会,就怕会题做不对;⑥基础题拿满分,中档题拿足分,难题力争多得分,似曾相识题力争不失分;⑦对数学解题有困难的考生的建议:立足中下题目,力争高上水平,有时“放弃”是一种策略.。