数学模型_回归分析

合集下载

回归分析

回归分析
它应满足式(3.2.1),即
,
,
y1 0 1 x11 2 x12 p x1 p 1 y x x x 2 0 1 21 2 22 p 2p 2 y n 0 1 x n1 2 x n 2 p x np n
(1)建立非线性回归模型1/y=a+b/x; (2)预测钢包使用x0=17次后增大的容积y0; (3)计算回归模型参数的95%的置信区间。
初始值要先计算,先选择已知数据中的两点( 2,6.42)和(16,10.76)代入设定方程,得到方程组
2 6.42 6.42(2a b) 2 2a b 16 10.76(16a b) 16 10.76 16a b
ˆ 2.7991 y x 23.5493
解释:职工工资总额每增加1亿元,社会商品零售总额将增加 2.80亿。
2、一元多项式回归模型
(1) 多项式回归的基本命令 在一元回归模型中,如果变量y与x的关系是n次多项式,即
y an x an1x
n
n1
... a1x a0
试求:① 给出y与t的回归模型; ② 在同一坐标系内做出原始数据与拟合结果的散点图 ③ 预测t=16时残留的细菌数;
ex006
三、多元线性回归模型 (略)
多元线性回归模型及其表示
对于总体
( X 1 , X 2 ,, X p ;Y ) 的n组观测值
( xi1 , xi 2 ,, xip ; yi )(i 1,2,, n; n p)
例为了分析X射线的杀菌作用,用200千伏的X射线来照射细 菌,每次照射6分钟用平板计数法估计尚存活的细菌数,照 射次数记为t,照射后的细菌数y如表3.3所示。

数学建模——线性回归分析82页PPT

数学建模——线性回归分析82页PPT

2019/11/15
zhaoswallow
2
表1 各机组出力方案 (单位:兆瓦,记作MW)
方案\机组 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1
2
3
4
5
6
7
8
120
73
180
80
125
125
81.1
90
133.02 73
180
80
125
125
81.1
90
3 -144.25 -145.14 -144.92 -146.91 -145.92 -143.84 -144.07 -143.16 -143.49 -152.26 -147.08 -149.33 -145.82 -144.18 -144.03 -144.32
4 119.09 118.63 118.7 117.72 118.13 118.43 118.82 117.24 117.96 129.58 122.85 125.75 121.16 119.12 119.31 118.84
5 135.44 135.37 135.33 135.41 135.41 136.72 136.02 139.66 137.98 132.04 134.21 133.28 134.75 135.57 135.97 135.06
6 157.69 160.76 159.98 166.81 163.64 157.22 157.5 156.59 156.96 153.6 156.23 155.09 156.77 157.2 156.31 158.26
ˆ0

ˆ1 xi )2

min
0 ,1

考研统计学掌握统计分析的五个常用模型

考研统计学掌握统计分析的五个常用模型

考研统计学掌握统计分析的五个常用模型统计学是一门应用广泛的学科,其研究对象是数据和变异性。

在考研统计学中,学生需要掌握各种统计分析方法,以便能够准确分析和解释数据,为决策提供依据。

本文将介绍考研统计学中五个常用的统计分析模型。

一、回归分析模型回归分析是研究数据间关系的一种常用方法。

它通过建立变量之间的数学函数关系,来分析自变量对因变量的影响程度。

回归分析可以帮助我们预测和控制变量,进而做出合理的决策。

在考研统计学中,回归分析被广泛应用于解决实际问题,如经济学、企业管理、市场营销等。

二、方差分析模型方差分析是比较两个或多个组之间差异的一种统计方法。

它通过比较组内的差异和组间的差异,来判断因素之间是否存在显著差异。

方差分析在考研统计学中经常用于实验设计和质量控制等领域中,可以帮助我们评估因素对结果的影响程度,从而做出相应的调整和改进。

三、因子分析模型因子分析是一种通过降维技术来简化数据的方法。

它可以将大量变量归纳为少数几个隐含因子,从而减少数据的复杂性。

因子分析在考研统计学中被广泛应用于心理学、社会学、教育学等领域,可以帮助我们识别出潜在的变量,并得出相应的结论。

四、时间序列分析模型时间序列分析是一种研究时间序列数据的方法。

它通过分析过去的数据,来推断未来的趋势和模式。

时间序列分析在考研统计学中被广泛应用于经济学、金融学、气象学等领域,可以帮助我们做出准确的预测和决策。

五、生存分析模型生存分析是一种处理生存时间数据的方法。

它可以分析个体在给定时间段内的生存情况,并推断其生存函数和风险函数。

生存分析在考研统计学中主要应用于医学、生物学、社会科学等领域,可以帮助我们评估治疗效果、预测风险和制定干预策略。

以上,我们简要介绍了考研统计学中五个常用的统计分析模型:回归分析、方差分析、因子分析、时间序列分析和生存分析。

掌握这些模型,可以帮助我们更好地理解和解释数据,从而做出准确和可靠的决策。

希望本文对你在考研统计学中的学习有所帮助。

数学建模-回归分析

数学建模-回归分析
回归分析
一、变量之间的两种关系 1、函数关系:y = f (x) 。
2、相关关系:X ,Y 之间有联系,但由 其中一个不能唯一的确定另一个的值。 如: 年龄 X ,血压 Y ; 单位成本 X ,产量 Y ; 高考成绩 X ,大学成绩 Y ; 身高 X ,体重 Y 等等。
二、研究相关关系的内容有
1、相关分析——相关方向及程度(第九章)。 增大而增大——正相关; 增大而减小——负相关。 2、回归分析——模拟相关变量之间的内在 联系,建立相关变量间的近似表达式 (经验 公式)(第八章)。 相关程度强,经验公式的有效性就强, 反之就弱。
三、一般曲线性模型 1、一般一元曲线模型
y = f ( x) + ε
对于此类模型的转换,可用泰勒展开 公式,把 在零点展开,再做简单的变 f ( x) 换可以得到多元线性回归模型。 2、一般多元曲线模型
y = f ( x1 , x2源自,⋯ , xm ) + ε
对于此类模型也要尽量转化为线性模 型,具体可参考其他统计软件书,这里不 做介绍。
ˆ ˆ ˆ ˆ y = b0 + b1 x1 + ⋯ + bm x m
2、利用平方和分解得到 ST , S回 , S剩。 3、计算模型拟合度 S ,R ,R 。 (1)标准误差(或标准残差)
S =
S剩 ( n − m − 1)
当 S 越大,拟合越差,反之,S 越小, 拟合越好。 (2)复相关函数
R =
2
仍是 R 越大拟合越好。 注: a、修正的原因:R 的大小与变量的个数以及样本 个数有关; 比 R 要常用。 R b、S 和 R 是对拟合程度进行评价,但S与 R 的分 布没有给出,故不能用于检验。 用处:在多种回归模型(线性,非线性)时, 用来比较那种最好;如:通过回归方程显著性检验 得到:

回归分析线性回归Logistic回归对数线性模型

回归分析线性回归Logistic回归对数线性模型
模型
逻辑回归的模型为 (P(Y=1) = frac{1}{1+e^{-z}}),其中 (z = beta_0 + beta_1X_1 + beta_2X_2 + ... + beta_nX_n)。
逻辑斯蒂函数
பைடு நூலகம்
定义
逻辑斯蒂函数是逻辑回归模型中用来描述自变量与因变量之 间关系的函数,其形式为 (f(x) = frac{1}{1+e^{-x}})。

在样本量较小的情况下, logistic回归的预测精度可能高 于线性回归。
线性回归的系数解释较为直观 ,而logistic回归的系数解释相 对较为复杂。
对数线性模型与其他模型的比较
对数线性模型假设因变量和自变量之间存在对 数关系,而其他模型的假设条件各不相同。
对数线性模型的解释性较强,可以用于探索自变量之 间的交互作用和效应大小。
THANKS
感谢您的观看
预测市场细分中的消费者行为等。
对数线性模型还可以用于探索性数据分析,以发现数 据中的模式和关联。
Part
04
比较与选择
线性回归与logistic回归的比较
线性回归适用于因变量和自变 量之间存在线性关系的场景, 而logistic回归适用于因变量为
二分类或多分类的场景。
线性回归的假设条件较为严格 ,要求因变量和自变量之间存 在严格的线性关系,而logistic 回归的假设条件相对较为宽松
最小二乘法
最小二乘法是一种数学优化技术,用于最小化预测值与实际观测值之间的平方误差总和。
通过最小二乘法,可以估计回归系数,使得预测值与实际观测值之间的差距最小化。
最小二乘法的数学公式为:最小化 Σ(Yi - (β0 + β1X1i + β2X2i + ...))^2,其中Yi是实际观 测值,X1i, X2i, ...是自变量的观测值。

回归分析

回归分析

Regression Analysis 回归分析
y







x
5
Regression Analysis
变量间的关系
(函数关系)
函数关系的例子
回归分析
某种商品的销售额 (y) 与销售量 (x) 之间的关 系可表示为 y = p x (p 为单价) 圆的面积(S)与半径之间的关系可表示为S = r2
样本相关系数的定义公式是:
r
( X X )(Y Y ) ( X X ) (Y Y )
t t 2 t t
2
上式中, X 和 Y 分别是X和Y的样本平均数。 样本相关系数是根据样本观测值计算的,抽取的样本不同, 其具体的数值也会有所差异。 容易证明,样本相关系数是总体相关系数的一致估计量。
r的取值 相关程度
|r|<0.3 不线性相关
0.3≤|r|<0.5 0.5≤|r|<0.8
|r|≥0.8
低度线性相 中度线性相 高度线性 关 关 相关
23
Regression Analysis 回归分析

3.如果|r|=1,则表明X与Y完全线性相关,当 r=1时,称为完全正相关, 而r=-1时,称为完全负相关。
相关分析(Correlation Analysis)是用于度量两个
数值变量间的关联程度
3
Regression Analysis 回归分析
一、函数关系与相关关系
1.函数关系
当一个或几个变量取一定的值 时,另一个变量有确定值与之 相对应,我们称这种关系为确 定性的函数关系。
4
(函数关系)
(1)是一一对应的确定关系 (2)设有两个变量 x 和 y , 变量 y 随变量 x 一起变化 ,并完全依赖于 x ,当变 量 x 取某个数值时, y 依 确定的关系取相应的值, 则称 y 是 x 的函数,记为 y = f (x),其中 x 称为自变 量,y 称为因变量 (3)各观测点落在一条线上

回归分析模型

回归分析模型

定义
TSS y i y
i 1
n
2
称因变量 y 的总变差平方。它刻画了因变量取值总的波动程度。
TSS 作适当分解 y 波动的两方面原因对 我们希望能根据导致
ˆi y ˆ i y RSS SS回 TSS y i y y i y
这表明回归函数 f x1 , x 2 , , x p 实质上就是在自变量 x1 , x 2 , , x p
根据回归函数 f x1 , x 2 , , x p 的不同数学形式,对回归模型可作 如下大致分类: 若 f x1 , x 2 , , x p 是自变量的线性函数,称线性回归模型
b0 b1 x1 b2 x 2 b p x p
能最大限度地解释
就第i 次试验而言,因变量的实际观测值yi 与可以通过回归函数加以解释的量
b0 b1 x i1 b2 x i 2 b p x ip 之间的偏差为 y i b0 b1 x i1 b2 x i 2 b p x ip .
R b0 , b1 , , b p y i b0 b1 xi1 b2 xi 2 b p xip
n i 1
2
y 的取值,很自然地取使残差平方和 为了使回归函数能最大限度地解释因变量 ˆ ,b ˆ ,b ˆ , , b ˆ R b0 , b1 , , b p b 0 1 2 p 达到最小的 作为回归系数的估计。 这种方法称最小二乘
回归方程的显著性检验 从 回 归 系 数 的 求 法 , 原 则 上 , 对 任 何n 组 观 测 数 据 xi1 , xi 2 , , xip ; yi ,i 1,2,, n (无论 y 与x1 , x 2 , , x p 是否有 线性相关关系)都可以得到一个经验回归方程。但是,只有 当 y 与 x1 , x 2 , , x p 确实具有线性相关关系时,相应的经验回 y 与x1 , x 2 , , x p 是否确实具有 归方程才有意义。因此,考查 线性相关关系, 是能否进一步将所得经验回归方程用于预测 或控制的前提。

回归分析

回归分析

逐步回归的基本思想和步骤:
开始
对不在方程中的变 量考虑能否引入?

引入变量

对已在方程中的变
量考虑能否剔除?
能 剔除变量
否 筛选结束
例2、大春粮食产量的预报模型
某地区大春粮食
产量 y 和大春粮 食播种面积x1、 化肥用量x2、肥 猪发展头数x3、
水稻抽穗扬花期
降雨量x4的数据
如下表,寻求大
春粮食产量的预
变量筛选方法的选择应注意
• 1.变量选择不仅仅是数学问题,不能脱离研究的目的进行。 • 2.最好多做尝试,对不同方法之间所结果的差异认真思考。
Statistics 对话框
X轴或Y轴中有一 个是因变量
标准化的预测值 标准化的残差 删除的残差 修正后的预测值。 用户的残差
用户的删除的残 差
Plots 对话框
报模型。
Y 309.0 400.0 454.0 520.0 516.0 459.0 531.0 558.0 607.0 541.0 597.0 558.0 619.0 618.0 742.0 805.0 859.0 855.0
X1 137.0 148.0 154.0 157.0 153.0 151.0 151.0 154.0 155.0 155.0 156.0 155.0 157.0 156.0 159.0 164.0 164.0 156.0
操作步骤:Analyze→Regression →Linear… →Statistics→Model fit Descriptives
衡量多元线性回归方程的标准
• 1.复相关系数R与校正复相关系数Rad • 2.剩余标准差S
强影响点的诊断及对策
诊断方法: • 1.散点图 • 2.残差诊断指标 • 3.稳健回归方法的使用 • 对策: • 1.去除 • 2.变量变换 • 3.非参数分析 • 4.采用加权最小二乘法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
回归分析是一种重要的数学模型,用于研究变量之间的关系。文档首先概述了回归分析的基本内容和理论,进而详细阐述了一元线性回归和多元线性回归的模型ቤተ መጻሕፍቲ ባይዱ在一元线性回归部分,通过具体实例,展示了如何根据试验数据估计回归系数,构建回归方程,并对回归方程进行显著性检验。同时,文档还介绍了如何利用回归方程进行预测和控制,以及对回归系数进行置信区间估计的方法。这些内容共同构成了回归分析模型的核心知识体系,为实际应用提供了坚实的理论基础和操作方法。
相关文档
最新文档