压电式加速度传感器的使用
压电式传感器的应用

F
石石石石
上上
绝绝绝
压电
基基
图1 压力式单向测力传感器结构图
压电式传感器的应用 传感器上盖为传力元件,它的外缘壁厚为 0.1~0.5mm, 外力作用使它产生弹性变形 , 将力传 mm , 外力作用使它产生弹性变形, 递到石英晶片上。石英晶片采用xy切型, 递到石英晶片上。石英晶片采用xy切型, 利用其纵向 xy切型 实现力—电转换。 压电效应, 压电效应, 通过d11实现力—电转换。
压电陶瓷圆环 铝头
压电式传感器的应用 当一定频率的声频信号加在换能器上时,换能器上的 当一定频率的声频信号加在换能器上时, 压电陶瓷片受到外力作用而产生压缩变形,由于压电 压电陶瓷片受到外力作用而产生压缩变形, 陶瓷的正压电效应,压电陶瓷上将出现充、放电现象, 陶瓷的正压电效应,压电陶瓷上将出现充、放电现象, 即将声频信号转换成了交变电信号。这时的声传感器 即将声频信号转换成了交变电信号。 就是声频信号接收器。 就是声频信号接收器。 如果换能器中压电陶瓷的振荡频率在超声波范围,则 如果换能器中压电陶瓷的振荡频率在超声波范围, 其发射或接收的声频信号即为超声波, 其发射或接收的声频信号即为超声波,这样的换能器 称为压电超声换能器 称为压电超声换能器。 压电超声换能器。
信号发生器 游标卡尺 图5 超声速测量实验装置
压电式传感器的应用 当信号发生器产生的正弦交流信号加在压电陶瓷片两端 面时,压电陶瓷片将产生机械振动, 面时,压电陶瓷片将产生机械振动,在空气中激发出声 波。所以,换能器S1是声频信号发生器。 所以,换能器 是声频信号发生器。 当S发出的声波信号经过空气传播到达换能器 2时,空 发出的声波信号经过空气传播到达换能器S 发出的声波信号经过空气传播到达换能器 气振动产生的压力作用在S 气振动产生的压力作用在 2的压电陶瓷片上使之出现 充、放电现象,在示波器上就能检测出该交变信号。 放电现象,在示波器上就能检测出该交变信号。 所以,换能器 是声频信号接收器。 所以,换能器S2是声频信号接收器。
压电式加速度传感器

摘要现代工业和自动化生产过程中,非电物理量的测量和控制技术会涉及大量的动态测试问题。
所谓动态测试是指量的瞬时值以及它随时间而变化的值的确定,也就是被测量为变量的连续测量过程。
它以动态信号为特征,研究了测试系统的动态特性问题。
而动态测试中振动和冲击的精确测量又显得尤其重要。
振动与冲击测量的核心是传感器,对于冲击和振动信号的获取,最常见的是用压电加速度传感器。
世界各国作为量值传递标准的高频和中频振动基准的标准加速度传感器就是压电式加速度传感器。
由此可见,质量优良的压电加速度传感器在精度、长时间稳定性等方面都是有独到之处的。
压电加速度传感器可以看作是一个能产生电荷的高内阻发电元件。
但是此电荷量很小,不能用一般的测量电路来进行测量,因为一般的测量电路的输入阻抗总是较小的,压电片上的电荷通过测量电路时会被输入电阻迅速泄漏引入测量误差,影响测量效果。
如果压电加速度传感器没有与之配套的测量电路一起配合使用,那么压电加速度传感器的广泛应用就会受到非常大的限制。
因此,与之配套的测量电路的研究及其硬件实现就显得非常重要。
目前最常用的压电加速度传感器的测量电路就是电荷放大器,它能得到与输入电荷成比例的电压输出。
它的特点之一就是使传感器的灵敏度和电缆长度无关,电缆可长达几千米,而在被测对象附近只有一个小的传感器。
这对使用者来说非常方便。
但是现在的电荷放大器电路都比较复杂,机器价格都比较高,性价比不是很理想,这些因素都严重影响了压电加速度传感器的广泛使用,所以研制一种性价比较高的、实用的电荷放大器就非常的有必要。
本文针对上述情况,对传感器的测量电路做了深入的研究工作,分析了各种测量电路的特点,提出采用一种集成芯片来取代大量分离元件实现电荷转换电路的设想,通过实验验证本设计的可行性和可靠性,对存在的干扰信号做了细致的理论分析,并采取相关办法进行解决,最后和标准电荷放大器的性能进行对比。
实验结果表明本设计是可行的。
关键词:压电加速度传感器测量电路电荷放大器 TLO8AbstractModern industrial and automation of the production process, non-electric physical measurement and control technology will involve a large number of Dynamic test. The so-called dynamic testing means to determine the amount of the instantaneous value and its value varies with time is measured for the continuous measurement of the process variable. It is characterized by dynamic signal, the test system Dynamic characteristics. Dynamic test accurate measurement of vibration and shock is particularly important. Vibration and Chong Chance measured core is a sensor for shock and vibration signal acquisition, the most common is to use a piezoelectric accelerometer Sensors. The world as a value transfer standards high and medium frequency reference standard acceleration sensor Piezoelectric acceleration sensor. Thus, the excellent quality of the piezoelectric acceleration sensor accuracy, long Time stability is something unique to offer. The piezoelectric acceleration sensor can be regarded as a generating High internal resistance of the charge generating components. However, this very small amount of electric charge, and not use the measuring circuit to be measured, Usually the input impedance of the measuring circuit are always smaller, when the charge on the piezoelectric sheet by the measurement circuit Is input resistor leak rapidly introduce measurement errors affecting the measurement results. If the piezoelectric acceleration sensor is not The ancillary measurement circuit used in conjunction with a wide range of applications of piezoelectric accelerometer would be Very large limitations. Therefore, the the accompanying measurement circuit and its hardware implementation is very important.Currently, the most commonly used piezoelectric acceleration sensor measuring circuit is a charge amplifier can be obtained input power Charge proportional to the voltage output. One of its features is to makethe sensitivity of the sensor and cable regardless of the length of the electrical The cable can be up to several kilometers, while in the vicinity of the object to be measured, only a small sensor. This user is very Convenient. But now the charge amplifier circuit is more complex, higher than the price of the machine, the price is not very satisfactory, these factors have a serious impact on the widespread use of the piezoelectric acceleration sensor, and so develop a higher bid, practical charge amplifier is very necessary. For the above, the sensor The measuring circuit to do a thorough research work, the analysis of the characteristics of the various measurement circuit is proposed to adopt a set Into the chip to replace a large number of separate components to achieve the charge conversion circuit is envisaged that the present design can be verified by experiment Feasibility and reliability, a detailed theoretical analysis of the existence of the interference signal, and take approach solutionSummary, the final performance of the amplifier and the standard charge of contrast. The experimental results indicate that the present design is feasible.Key words:Piezoelectric acceleration sensor measuring circuit charge amplifier TLO8图表清单图1-1 测试系统的组成------------------------- 图1-2 压电加速度传感器动态测量系统----------- 图2-1 电桥电路-------------------------------- 图2-2 四个桥臂同时工作的直流电桥------------- 图2-3 两个相邻臂工作的电桥---------------图2-4 两个相对臂工作的电桥------------------ 图2-5 变压器式电桥电路图2-6 紧祸合电感臂电桥图2-7 紧祸合电感臂四端网络和T型网路图2-8 紧祸合电感臂等效电路图2-9 电容式传感器的等效电路图2-10 双T二极管交流电桥图2-11 双T二极管电桥等效电路图2-12 运算放大器式电路图2-13 调频一鉴频电路原理图图3-1 晶体的压电效应图3-2 压电加速度传感器原理图图3-3 作用于压电元件两边的力图3-4 压电加速度传感器的等效电路图3-5 压电加速度传感器测试系统等效电路图3-6 压电加速度传感器简化电路图3-7 简化后的压电加速度传感器电压等效电路图3-8 电荷放大器示意图图4-1 传感器与电荷放大器连接的等效电路图图4-2 电荷放大器电压源实际等效测量电路图4-3 电荷放大器等效电路图图4-4 输入电缆影响的等效电路图4-5 电荷放大器框图图4-6 电荷转换部分电路图4-7 干扰源等效电路图图4-8 适调放大电路原理图4-9 电荷转换电路及适调放大电路图4-10 有源滤波电路原理图图4-11 无源滤波器原理图图4-12 有源滤波器电流回路图图4-13 高通滤波和同相放大电路原理图图4-14 过载指示电路原理图图4-15 过载电路输出特性图4-16 稳压电源电路图4-17 本电荷放大器的主要电路图4-18 ICL7135和ICM7212的接口电路图图5-1 实验装置框图图5-2 实验波形和标准电荷放大器输出波形图5-3 有工频干扰下的信号频谱图5-4 标准电荷放大器TS5865的信号频谱图5-5 屏蔽工频干扰后的信号频谱图5-6 未加低通滤波时本设计的信号频谱图5-7 标准电荷放大器低通上限截止频率为lOK Hz时的信号频谱图5-8 加了1K Hz有源低通滤波器后本设计的信号频谱图5-9 标准电荷放大器低通上限截止频率为1KHz时的信号频谱图5-10 都有1KHz低通滤波的两路信号波形图5-11 标准电荷放大器的直流分量分析图5-12 本设计未加高通滤波器时信号图5-13 本设计加高通滤波器后的信号表1 在不同加速度下本设计和TS5865的电压值比较表2 在不同频率下本设计和标准电荷放大器的灵敏度比值1 前言1. 1 压电加速度传感器在动态测试中的意义随着现代科学技术的迅猛发展,非电物理量的测量与控制技术,已越来越广泛地应用于航天、航空、常规武器、船舶、交通运输、冶金、机械制造、化工、轻工、生物医学工程、自动检测与计量等技术领域,而且也正在逐步引入人们的日常生活中。
压电式压力传感器原理及应用

压电式压力传感器原理及应用自动化研1302班王民军压电式压力传感器是工业实践中最为常用的一种传感器。
而我们通常使用的压力传感器主要是利用压电效应制造而成的,这样的传感器也叫压电式压电传感器。
压电式压力传感器可以用来测量发动机内部燃烧压力的测量与真空度的测量。
也可以用于军事工业,例如用它来测量枪炮子弹在膛中击发的一瞬间的膛压的变化和炮口的冲击波压力。
它既可以用来测量大的压力,也可以用来测量微小的压力。
一、压电式传感器的工作原理1、压电效应某些离子型晶体电介质(如石英、酒石酸钾钠、钛酸钡等)沿着某一个方向受力而发生机械变形(压缩或伸长)时,其内部将发生极化现象,而在其某些表面上会产生电荷。
当外力去掉后,它又会重新回到不带电的状态,此现象称为“压电效应”。
压电式传感器的原理是基于某些晶体材料的压电效应。
2、压电式压力传感器的特点压电式压力传感器是基于压电效应的传感器。
是一种自发电式和机电转换式传感器。
它的敏感元件由压电材料制成。
压电材料受力后表面产生电荷。
此电荷经电荷放大器和测量电路放大和变换阻抗后就成为正比于所受外力的电量输出。
压电式压力传感器用于测量力和能变换为力的非电物理量,如压力、加速度等(见压电式压力传感器、加速度计)。
压电式压力传感器是利用压电材料的压电效应将被测压力转换为电信号的。
由压电材料制成的压电元件受到压力作用时产生的电荷量与作用力之间呈线性关系:Q=k*S*p。
式中 Q为电荷量;k为压电常数;S为作用面积;p为压力。
通过测量电荷量可知被测压力大小。
压电式压力传感器的工作原理与压电式加速度传感器和力传感器基本相同,不同的是弹性元件是由膜片等把压力转换成集中力,再传给压电元件。
为了保证静态特性及稳定性,通常多采用压电晶片并联。
在压电式压力传感器中常用的压电材料有石英晶体和压电陶瓷,其中石英晶体应用得最为广泛。
二、压电压力传感器等效电路和测量电路在校准用的标准压力传感器或高精度压力传感器中采用石英晶体做压电元件外,一般压电式压力传感器的压电元件材料多为压电陶瓷,也有用高分子材料(如聚偏二氟乙稀)或复合材料的合成膜的。
压电加速度传感器原理

压电加速度传感器原理压电加速度传感器是一种利用压电效应来测量加速度的传感器。
压电效应是指某些晶体或陶瓷材料在受到外力作用时,会产生电荷分布不均匀的现象,从而产生电压。
压电传感器利用这一效应来测量加速度,具有灵敏度高、频率响应广、体积小、重量轻等优点,广泛应用于汽车、航空航天、工业生产等领域。
压电加速度传感器的工作原理是利用压电材料的压电效应来感知外界的加速度变化。
压电材料在受到外力作用时会产生电荷分布不均匀的现象,从而产生电压信号。
传感器中包含压电材料的敏感部分,当受到加速度作用时,压电材料产生电荷分布不均匀的变化,从而产生电压信号。
通过测量这一电压信号的变化,就可以得到加速度的大小。
压电材料通常是一些晶体或陶瓷材料,比如氧化锆、铅钛酸锆、硼酸锂等。
这些材料有一个共同的特点,就是在受到外力作用时会产生电荷分布不均匀的现象,从而产生电压信号。
这种压电效应能够使得压电加速度传感器对加速度变化产生很高的灵敏度,同时具有很宽的频率响应范围。
压电加速度传感器通常由压电材料、传感器壳体、导电粘合剂、电缆和接头等部分组成。
压电材料通常被固定在传感器壳体中,然后通过导电粘合剂和电缆连接到外部的电路中。
当受到加速度作用时,压电材料产生电荷分布不均匀的变化,从而产生电压信号,通过电缆和接头传输到外部的电路中进行处理。
压电加速度传感器的灵敏度主要取决于压电材料的性能和传感器的结构设计。
选择合适的压电材料、优化传感器的结构设计、合理布置传感器的电路等都能够提高传感器的灵敏度。
此外,压电加速度传感器还可以通过外部的放大电路和滤波电路来进一步提高其灵敏度和信噪比。
压电加速度传感器在实际应用中具有一定的局限性。
比如,在温度变化较大的环境中,压电材料的性能会发生变化,从而影响传感器的测量精度。
此外,在高加速度、高频率振动等特殊环境中,传感器也会受到一定的限制。
因此,在实际应用中需要根据具体的情况选择合适的压电加速度传感器,并进行必要的补偿和调校。
加速度传感器原理、结构、使用说明、校准和参数解释

根据牛顿第二定律F=m*a;惯性力等于质量快质量乘以加速度。 将以上两个公式进行组合可得到Q=d*m*a;其中,d和m在当加速度传 感器的压电陶瓷材料和质量块的质量确定之后就是固定值。
在传感器的可测范围之内,Q和a呈线性关系,可通过电荷Q来表征加 速度值。
质量块
压电 陶瓷
结构与特征
11、耐冲击性 对于物理冲击的界限值。
12、传感器质量 传感器质量最好小于待测物的十分之一。
压电型振动传感器分类
压电型加速度传感器
电荷输出型 电压输出型
通用型 小型 高灵敏度型 高/低温型 防水绝缘型 3轴加速度
电荷输出型部分型号
电压输出型部分型号
三轴加速度传感器部分型号
防水绝缘加速度传感器部分型号
6、接地噪音 如果有两个或两个以上的接地端的时候,那么噪音可能从接地端引入,系统只设一个
接地端或者使用绝缘加速度传感器/绝缘螺栓可消除。 7、热电灵敏度
压电陶瓷和热电传感器用的元件有相同的组成,温度变化会产生电荷,几Hz以下的测 定必须注意。 8、最大使用加速度
压电型加速度传感器的动态范围很宽。最大使用加速度需满足两个条件:1是保证加速 度和输出为线性,2是内藏放大器最大输出电压是否饱和。
与声发射传感器比较 检测低频信号 检测更强的信号 信号具有指向性 非内置放大加速度传感器为电荷输出
压电型加速度传感器原理
压电元件是受到惯性力F后会产生电荷的功能材料,其压电常数的定义如下:
所以,电荷Q=d*F;其中Q为电荷量,d为压电常数,F为受到的力。 压电型加速度传感器的机构如右图所示,压电陶瓷受到的力主要是质
接近螺钉固定的效果 胶带固定:适用于振动频率低振幅小时的一种便利方法 绝缘螺栓固定:绝缘螺栓使加速度传感器和被测物电气
EN060压电式加速度传感器使用说明书

力变形时,其极化面会产生与应力相应的电荷。 则有: Q= d F
其中 Q 为电荷量,d 为压电晶体的压电常数,F 为作用力 我们一般在晶体上加一惯性质量,则根据牛顿第二定律
F=ma 其中 m 为质量,a 为加速度 将此公式带入上式,在晶体的两端即可得到与加速度成正比的电荷 量,这就实现了加速度的测量。 为提高环境性能,国际上大都使用先进的剪切敏感原理,该产品也 使用了剪切原理。 压电敏感件在承受外力时就产生电荷,当压电元件电极表面聚集电荷 时,它又相当于一个以压电材料为电介质的电容器 C1——敏感件电容 C2——放大器反馈电容 R——放大器反馈电阻 A——运放的开环增益 为防止传感器在实际现场测量时地回路干扰,我们在其内部对敏感 件及电路进行了隔离悬浮处理,这样,传感器的外壳仅是一个屏蔽外壳 直接接地回路,从结构设计上保证减少地回路影响。 由于二线制负恒电流电压源供电,其输出是一带负直流偏置的交流 动态信号,其直流偏置电压为-10 ~ -12VDC,这样在不感受振动加速度 时传感器亦应有-10 ~ -12VDC 的直流电压(零点输出),以此为参考点,其 交流输出幅度为±5Vp,频响低端实测可至 0.3Hz,对应灵敏度 500mv/g。
2、 电缆 (一头 5/8-24 两芯屏蔽线 L=3 米,密封整体线、线质、
长度另外特定,可定制铠装接线)。
3、 安装钢螺栓 1/4-28×10 1 只
4、 产品出厂检验合格证
1份
5、 使用说明书
1份
9
10
检查 安装 紧固 接线 模拟、敲击、观察 使用 9、该加速度传感器为计测产品,年灵敏度变化<1%,在需精确测量时, 应一年检定一次,可选择计量部门或生产厂用比较法进行检定。 10、用户不得自行随意拆卸、更换产品的电气元件。 11,接线示意图
压电式传感器介绍

R(Ca Cc Ci )
相对幅频特性
U im ( ) K1 2 U im () 1 ( )
2
tan ( )
1
(90 70 )
6.4 等效电路与测量电路 6.4.2 测量电路(1)电压放大器(阻抗变换器)
讨论:
压电传感器不能测量静态物理量(ω=0时,Uim=0); 当ωτ≥3时,Uim输入与信号频率无关,高频响应特性好; 提高低频响应的办法是增大时间常数,但不能靠输入电容。实际办法:是增大前 置输入回路电阻,所以电压放大器响应差,要求前置电路具有高输入阻抗; 电压放大器的缺点:从传感器电压灵敏度 Ku可见,连接电缆的分布电容 Cc影响传感 器灵敏度,使用时更换电缆就要求重新标定,测量系统对电缆长度变化很敏感。
6.5 压电传感器的应用
晶体
点火器
外形结构
6.2 压电材料 6.2.1 石英晶体
• 压电元件受力后,表面电荷与外力成正比关系:
Q dF
d为压电系数
• 在X轴方向施力时,产生电荷大小为: σ 1为X方向应力 • 在Y轴方向施力时,产生电荷大小为: σ 2为Y方向应力 • 压电系数 d11=d12 为常数
qx d111
q y d12 b 2 a
缺点是电路复杂,价格昂贵,使用电荷放大器, 电缆长度变化影响可忽略,并且允许使用长电缆 工作。
6.5 压电传感器的应用 压电式玻璃破碎报警器
6.5 压电传感器的应用 压电式压力传感器
6.5 压电传感器的应用 压电式加速度传感器
6.5 压电传感器的应用
压电元件产品
压电加速度计
振 动 式 液 位 开 关 超声波传感器
压电式传感器及应用解读

23
压电元件的等效电路
压电元件等效为一个与电容相并联的电荷源,也 可以等效为一个与电容相串联的电压源,
47
休息一下!!
48
30
8.3压电式传感器的应用 8.3.1 压电传感器的基本结构
在压电式传感器中,为了提高灵敏度,往往采用多片压电 晶片粘结在一起。其中最常用的是两片结构。由于压电元 件上的电荷是有极性的,因此接法有串联和并联两种 串联接法输出电压高,本身电容小,适用于以电压为输出 量及测量电路输入阻抗很高的场合;并联接法输出电荷大, 本身电容大,因此时间常数也大,适用于测量缓变信号, 并以电荷量作为输出的场合。
24
压电元件实际的等效电 路图
压电式传感器不能用于静态测量。压电元件只有 在交变力的作用下,电荷才能源源不断地产生, 可以供给测量回路以一定的电流,故只适用于动 态测量。
25
8.2.2 压电式传感器测 量电路
压电式传感器的内阻很高,要求与高输入阻抗的 前置放大电路配合,与一般的放大、检波、显示、 记录电路连接,防止电荷的迅速泄漏而使测量误 差减少。 压电式传感器的前置放大器的作用有两个:一是 把传感器的高阻抗输出变为低阻抗输出;二是把 传感器的微弱信号进行放大。
45
本章小结 某些电介质,当沿着一定方向对它施加压力时, 内部就产生极化现象,同时在它的两个表面上产 生相反的电荷;当外力去掉后,电介质又重新恢 复为不带电状态;当作用力方向改变时,电荷的 极性也随着改变;晶体受力所产生的电荷量与外 力的大小成正比,这种现象被称为压电效应。相 反,当在电介质极化方向施加电场, 这些电介质 也会产生变形,这种现象称为“逆压电效应” (电致伸缩效应)。 在自然界中大多数晶体具有压电效应, 但压电效 应十分微弱。应用于压电式传感器中的压电元件 材料一般有三类:石英晶体、经过极化处理的压 电陶瓷、高分子压电材料。