数学建模论文
大学数学建模论文范文3000字(汇总5篇)

大学数学建模论文范文3000字第1篇一、小学数学建模_数学建模_已经越来越被广大教师所接受和采用,所谓的_数学建模_思想就是通过创建数学模型的方式来解决问题,我们把该过程简称为_数学建模_,其实质是对数学思维的运用,方法和知识解决在实际过程中遇到的数学问题,这一模式已经成为数学教育的重要模式和基本内容。
叶其孝曾发表《数学建模教学活动与大学数学教育改革》,该书指出,数学建模的本质就是将数学中抽象的内容进行简化而成为实际问题,然后通过参数和变量之间的规律来解决数学问题,并将解得的结果进行证明和解释,因此使问题得到深化,循环解决问题的过程。
二、小学数学建模的定位1.定位于儿童的生活经验儿童是小学数学的主要教学对象,因此数学问题中研究的内容复杂程度要适中,要与儿童的生活和发展情况相结合。
_数学建模_要以儿童为出发点,在数学课堂上要多引用发生在日常生活中的案例,使儿童在数学教材上遇到的问题与现实生活中的问题相结合,从而激发学生学习的积极性,使学生通过自身的经验,积极地感受数学模型的作用。
同时,小学数学建模要遵循循序渐进的原则,既要适合学生的年龄特征,赋予适当的.挑战性;又要照顾儿童发展的差异性,尊重儿童的个性,促进每一个学生在原有的基础上得到发展。
2.定位于儿童的思维方式小学生的特点是年龄小,思维简单。
因此小学的数学建模必须与小学生的实际情况相结合,循序渐进的进行,使其与小学生的认知能力相适应。
实际情况表明,教师要想使学生能够积极主动的思考问题,提高他们将数学思维运用到实际生活中的能力,就必须把握好儿童在数学建模过程中的情感、认知和思维起点。
我们以《常见的数量关系》中关于速度、时间和路程的教学为例,有的老师启发学生与二年级所学的乘除法相结合,使乘除法这一知识点与时间、速度和路程建立了关联,从而使_数量关系_与数学原型_一乘两除_结合起来,并且使学生利用抽象与类比的思维方法完成了_数量关系_的_意义建模_,从而创建了完善的认知体系。
2024研究生数学建模优秀论文

2024研究生数学建模优秀论文近年来,研究生数学建模领域涌现出了许多优秀的论文。
这些论文通过对实际问题的建模和求解,为相关领域的研究和实践提供了有力的支持。
一篇优秀的研究生数学建模论文是《基于改进的模拟退火算法的机器调度问题》,该论文通过对机器调度问题进行建模,并采用改进的模拟退火算法进行求解。
在问题建模方面,该论文提出了一种新的机器调度模型,该模型包括了机器的技术约束、资源约束和任务约束。
在算法设计方面,该论文通过对模拟退火算法的改进,提高了算法的收敛速度和求解质量。
通过大量的实验验证,该论文的结果表明,该算法在求解机器调度问题上具有较好的性能和可行性。
另一篇优秀的研究生数学建模论文是《基于网络流的城市交通优化研究》,该论文针对城市交通拥挤问题进行建模和优化方案设计。
在问题建模方面,该论文采用了网络流模型来描述城市交通情景,对城市交通流动进行了量化分析,并提出了一种基于网络流的城市交通优化算法。
在算法设计方面,该论文通过对交通流量的调整和限制,优化了城市交通系统的整体效率。
通过实验验证,该论文的结果表明,该算法能够有效地缓解城市交通拥堵问题,并提高交通系统的运行效率。
此外,还有一篇优秀的研究生数学建模论文是《基于支持向量机的股票价格预测模型》,该论文针对股票价格预测问题进行建模和预测模型设计。
在问题建模方面,该论文采用了支持向量机模型来对股票价格进行预测。
在模型设计方面,该论文基于支持向量机模型,通过对历史数据的学习和分析,构建了一种适合股票价格预测的模型。
通过实验验证,该论文的结果表明,该模型能够较为准确地预测股票价格的变动趋势,对于投资者进行股票投资决策具有较好的参考价值。
综上所述,这些优秀的研究生数学建模论文通过对实际问题的建模和求解,为相关领域的研究和实践提供了有力的支持。
通过不断地创新和实践,研究生们不仅在数学建模领域取得了突破,也为社会的发展和进步做出了贡献。
优秀的数学建模论文范文(通用8篇)

优秀的数学建模论文范文第1篇摘要:将数学建模思想融入高等数学的教学中来,是目前大学数学教育的重要教学方式。
建模思想的有效应用,不仅显著提高了学生应用数学模式解决实际问题的能力,还在培养大学生发散思维能力和综合素质方面起到重要作用。
本文试从当前高等数学教学现状着手,分析在高等数学中融入建模思想的重要性,并从教学实践中给出相应的教学方法,以期能给同行教师们一些帮助。
关键词:数学建模;高等数学;教学研究一、引言建模思想使高等数学教育的基础与本质。
从目前情况来看,将数学建模思想融入高等教学中的趋势越来越明显。
但是在实际的教学过程中,大部分高校的数学教育仍处在传统的理论知识简单传授阶段。
其教学成果与社会实践还是有脱节的现象存在,难以让学生学以致用,感受到应用数学在现实生活中的魅力,这种教学方式需要亟待改善。
二、高等数学教学现状高等数学是现在大学数学教育中的基础课程,也是一门必修的课程。
他能为其他理工科专业的学生提供很多种解题方式与解题思路,是很多专业,如自动化工程、机械工程、计算机、电气化等必不可少的基础课程。
同时,现实生活中也有很多方面都涉及高数的运算,如,银行理财基金的使用问题、彩票的概率计算问题等,从这些方面都可以看出人们不能仅仅把高数看成是一门学科而已,它还与日常生活各个方面有重要的联系。
但现在很多学校仍以应试教育为主,采取填鸭式教学方式,加上高数的教材并没有与时俱进,将其与生活的关系融入教材内,使学生无法意识到高数的重要性以及高数在日常生活中的魅力,因此产生排斥甚至对抗的心理,只是在临考前突击而已。
因此,对高数进行教学改革是十分有必要的,而且怎么改,怎么让学生发现高数的魅力,并积极主动学习高数也是作为教师所面临的一个重大问题。
三、将数学建模思想融入高等数学的重要性第一,能够激发学生学习高数的兴趣。
建模思想实际上是使用数学语言来对生活中的实际现象进行描述的过程。
把建模思想应用到高等数学的学习中,能够让学生们在日常生活中理解数学的实际应用状况与解决日常生活问题的方便性,让学生们了解到高数并不只是一门课程,而是整个日常生活的基础。
数学模型方面的论文

数学模型方面的论文数学模型方面的论文数学模型方面的论文一摘要:有一句话说得好“生活处处有数学”,其实数学并不只是书本中的公式计算,也是联系实际生活的重要桥梁。
而如何用数学的数据来表达现实生活中的实际问题,“数学建模”解决了这个问题。
如今,“数学建模”被社会上各个领域所使用,体现了它的重要价值。
关键词:实际问题;数学建模;教学模式;探索这几年来,社会经济飞速发展,高新技术产业在社会上占领主导地位,而数学也成为了推动高新技术发展强有力的推手。
而数学建模是数学解决实际问题的关键,所以,在社会各个领域,都对数学建模加以高度重视。
数学人才的培养依赖于高校的教育,于是乎高校便开始开展数学建模教学,为国家培养应用型数学人才。
1数学建模概述通过运用数学的数据,公式,思维等方法,将现实生活中的实际问题笼统话,简单化,将问题转化成数学语言,建立数学模型,来解决实际问题,这就是数学建模的构建。
虽然在国外数学建模炙手可热,但是在中国依旧是个新型学科。
在20世纪八十年代,中国才渐渐开始开展数学建模课堂。
现在由于高等教育的普遍化,数学建模教学渐渐出现在人们视野中,开始大热。
2高校对于数学建模教学的探索因为数学建模课程是一个非常抽象的课程[1],对于非专业的学生来说难度很大,不是那么容易被理解的。
同样,对于老师的标准也严苛了许多。
因为要用语言去描述抽象的理论课程,对老师的语言表达能力是个挑战。
而且在课堂上老师不能像传统教学那样一味教理论,应该将数学和实际生活有机结合起来,所以增大了老师授课难度。
在对数学建模教学的探索上,学校同样下了不少的功夫。
一方面加大对数学建模教学的宣传力度,鼓励学生们利用自己的数学思维和建模思想来进行实际问题的解决,例如,学校举办讲座可以让学生更好的了解建模的重要性,举办一些数学建模大赛,通过激烈的赛制和诱惑性的奖品,最大程度地激发学生的无限潜能。
又或者带领学生到高新技术产业基地进行参观,让学生更加切身的体会到数学建模的对社会,对于高新技术的重要性。
数学建模经典论文五篇

1、 血样的分组检验在一个很大的人群中通过血样检验普查某种疾病,假定血样为阳性的先验概率为p(通常p 很小).为减少检验次数,将人群分组,一组人的血样混合在一起化验.当某组的混合血样呈阴性时,即可不经检验就判定该组每个人的血样都为阴性;而当某组的混合血样呈阳性时,则可判定该组至少有一人血样为阳性,于是需要对这组的每个人再作检验.(1)、当p 固定时(如0.01%,…,0.1%,…,1%)如何分组,即多少人一组,可使平均总检验次数最少,与不分组的情况比较. (2)、当p 多大时不应分组检验.(3)、当p 固定时如何进行二次分组(即把混合血样呈阳性的组再分成小组检验,重复一次分组时的程序).模型假设与符号约定1 血样检查到为阳性的则患有某种疾病,血样呈阴性时的情况为正常2 血样检验时仅会出现阴性、阳性两种情况,除此之外无其它情况出现,检验血样的药剂灵敏度很高,不会因为血样组数的增大而受影响. 3 阳性血样与阳性血样混合也为阳性 4 阳性血样与阴性血样混合也为阳性 5 阴性血样与阴性血样混合为阴性 n 人群总数 p 先验概率血样阴性的概率q=1-p血样检验为阳性(患有某种疾病)的人数为:z=np 发生概率:x i P i ,,2,1, = 检查次数:x i R i ,,2,1, = 平均总检验次数:∑==xi i i R P N 1解1设分x 组,每组k 人(n 很大,x 能整除n,k=n/x ),混合血样检验x 次.阳性组的概率为k q p -=11,分组时是随机的,而且每个组的血样为阳性的机率是均等的,阳性组数的平均值为1xp ,这些组的成员需逐一检验,平均次数为1kxp ,所以平均检验次数1kxp x N +=,一个人的平均检验次数为N/n,记作:k k p kq k k E )1(1111)(--+=-+=(1) 问题是给定p 求k 使E(k)最小. p 很小时利用kp p k -≈-1)1(可得kp kk E +=1)( (2) 显然2/1-=p k 时E(k)最小.因为K 需为整数,所以应取][2/1-=p k 和1][2/1+=-p k ,2当E (k )>1时,不应分组,即:1)1(11>--+k p k,用数学软件求解得k k p /11-->检查k=2,3,可知当p>0.307不应分组.3将第1次检验的每个阳性组再分y 小组,每小组m 人(y 整除k,m=k/y ).因为第1次阳性组的平均值为1xp ,所以第2次需分小组平均检验1yxp 次,而阳性小组的概率为m q p -=12(为计算2p 简单起见,将第1次所有阳性组合在一起分小组),阳性小组总数的平均值为21yp xp ,这些小组需每人检验,平均检验次数为21yp mxp ,所以平均总检验次数211yp mxp yxp x N ++=,一个人的平均检验次数为N/n,记作(注意:n=kx=myx)p q q q mk p p m p k m k E m k -=-+-+=++=1),1()1(111),(211 (3) 问题是给定p 求k,m 使E (k,m )最小.P 很小时(3)式可简化为21),(kmp mkpk m k E ++≈ (4)对(4)分别对k,m 求导并令其等于零,得方程组:⎪⎪⎩⎪⎪⎨⎧=+-=++-0012222kp m kp mp mp k 舍去负数解可得:2/14/3,21--==p m p k (5)且要求k,m,k/m 均为整数.经在(5)的结果附近计算,比较E(k,m),得到k,m 的最与表1比较可知,二次分组的效果E(k,m)比一次分组的效果E(k)更好.2、铅球掷远问题铅球掷远比赛要求运动员在直径2.135m 的圆内将重7.257kg 的铅球投掷在 45的扇形区域内,建立模型讨论以下问题1.以出手速度、出手角度、出手高度 为参数,建立铅球掷远的数学模型;2.考虑运动员推铅球时用力展臂的动 作,改进以上模型.3.在此基础上,给定出手高度,对于 不同的出手速度,确定最佳出手角度 问题1模型的假设与符号约定1 忽略空气阻力对铅球运动的影响.2 出手速度与出手角度是相互独立的.3 不考虑铅球脱手前的整个阶段的运动状态. v 铅球的出手速度 θ 铅球的出手角度 h 铅球的出手高度 t 铅球的运动时间 L 铅球投掷的距离g 地球的重力加速度(2/8.9s m g=)铅球出手后,由于是在一个竖直平面上运动.我们,以铅球出手点的铅垂方向为y 轴,以y 轴与地面的交点到铅球落地点方向为x 轴构造平面直角坐标系.这样,铅球脱手后的运动路径可用平面直角坐标系表示,如图.因为,铅球出手后,只受重力作用(假设中忽略空气阻力的影响),所以,在x 轴上的加速度0=,在y 轴上的加速度g a y -=.如此,从解析几何角度上,以时间 t 为参数,易求得铅球的运动方程:⎪⎩⎪⎨⎧+-==h gt t v y t v x 221sin cos θθ 对方程组消去参数t ,得h x x v gy ++-=)(tan cos 2222θθ……………………………………………(1) 当铅球落地时,即是0=y ,代入方程(1)解出x 的值v ggh gh v g v x θθθθθ2222sin 22cos sin cos sin 2-++=对以上式子化简后得到铅球的掷远模型θθθ22222cos 22sin 222sin g v h g v g v L +⎪⎪⎭⎫ ⎝⎛+=………………………………(2) 问题2我们观察以上两个阶段,铅球从A 点运动到B 点,其运动状态是匀加速直线运动的,加速距离是2L 段.且出手高度与手臂长及出手角度是有一定的联系,进而合理地细化各个因素对掷远成绩的约束,改进模型Ⅰ.在投掷角度为上进行受力分析,如图(3)由牛顿第二定 律可得,ma mg F =-θsin 再由上式可得,θsin g mFa -=………………………………………(3) 又,22022aL v v =-,即22022aL v v += (4)将(3)代入(4)可得,θsin 2222202g L m FL v v -⎪⎭⎫⎝⎛+= ………………………(5) (5)式进一步说明了,出手速度v 与出手角度θ有关,随着θ的增加而减小.模型Ⅰ假设出手速度与出手角度相互独立是不合理的. 又根据图(2),有θsin 1'L h h += (6)由模型Ⅰ,同理可以得到铅球脱手后运动的距离θθθ22222cos 22sin 222sin g v h g v g v L +⎪⎪⎭⎫ ⎝⎛+= 将 (4)、(5)、(6)式代入上式整理,得到铅球运动的距离()⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡-⎪⎭⎫⎝⎛++++-⎪⎭⎫ ⎝⎛+=θθθθθ22220'2220sin sin 22sin 2112sin 2sin 22g L m FL v h g g g L m FL v L 对上式进行化简:将m=7.257kg,2/8.9s m g = 代入上式,再令m h 60.1'= (我国铅球运动员的平均肩高),代入上式进一步化简得,()⎪⎪⎭⎫ ⎝⎛-++-++⨯θθθθθ2222232222sin sin 6.192756.06.19sin 6.19sin 2756.0sin 1L FL v L FL v ………………(7) 所以,运动员投掷的总成绩θcos 1L L S +=问题3给定出手高度,对于不同的出手速度,要确定最佳的出手角度.显然,是求极值的问题,根据微积分的知识,我们要先求出驻点,首先,模型一中L 对θ求导得,g hv g v g hv v g v d dL θθθθθθθθ22224242cos 82sin sin cos 42cos 2sin 2cos +-+=令0=θd dL,化简后为, 0sin cos 42cos 2sin cos 82sin 2cos 2422242=-++θθθθθθθhgv v hgv v v根据倍角与半角的三角关系,将以上方程转化成关于θ2cos 的方程,然后得,hv g g vgh gh222cos +=+=θ (3)()θθ2sin sin 6.192756.051.0222L FL v L -+=从(3)式可以看出,给定铅球的出手高度h ,出手速度v 变大,相应的最佳出手角度θ也随之变大.对(3)式进行分析,由于0,0>>θh ,所以02cos >θ,则40πθ≤<.所以,最佳出手角度为)arccos(212vgh gh +=θ θ是以π2为周期变化的,当且仅当N k k ∈⎪⎭⎫⎝⎛∈±,4,02ππθ时,πθk 2±为最佳出手角度.特别地,当h=0时(即出手点与落地点在同一高度),最佳出手角度︒=45α3、零件的参数设计粒子分离器某参数(记作y )由7个零件的参数(记作x x 12,,…x 7)决定,经验公式为:y x x x x x x x x x x x =⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪⨯--⎛⎝ ⎫⎭⎪⎡⎣⎢⎢⎤⎦⎥⎥⎛⎝ ⎫⎭⎪-17442126210361532108542056324211667......y 的目标值(记作y 0)为1.50。
大学生数学建模论文(专业推荐范文10篇)

大学生数学建模是一项基础性得学科竞赛,可以交流更多得经验,学习更多得知识,所以大学生数学建模很受学者们得欢迎,本篇文章就向大家介绍一些大学生数学建模论文,供给大家作为一个参考。
大学生数学建模论文专业推荐范文10篇之第一篇:数学建模对大学生综合素质影响得调查研究---------------------------------------------------------------------------------------------------------------------感谢使用本套资料,希望本套资料能带给您一些思维上的灵感和帮助,个人建议您可根据实际情况对内容做适当修改和调整,以符合您自己的风格,不太建议完全照抄照搬哦。
---------------------------------------------------------------------------------------------------------------------摘要:文章通过问卷网以调查问卷得形式和线下访谈得方法 ,对笔者所在学校参加过数学建模竞赛得同学和未参加过数学建模竞赛得同学对数学建模对自身综合素质得影响进行了调查研究。
调查表明,大部分学生都能认识到数学建模学习和竞赛对其自身综合素质得提升是有帮助得,但是大多数学生对数学建模得意义认识还不到位。
文章对调查结果进行分析,结合笔者得切身体会对地方高校数学建模课程教学及学生参加竞赛提出某些建议。
关键词:数学建模; 大学生; 综合素质; 研究;一、前言随着社会得不断进步和发展,大学生想要在激烈得人才竞争中脱颖而出,就必须要不断提高自己得综合素质,而良好得综合素质不仅应具有坚实得理论基础,扎实得专业知识,还应该具有较强得创新能力、与他人合作得能力、较强得语言表达能力、以及稳定得心理状态。
许多科学家断言未来科学技术得竞争是数学技术得竞争,这无疑对数学能力提出了更高得要求,不可否认数学建模课程教学及建模竞赛是提升大学生数学能力得有效途径。
数学建模论文(最新9篇)

数学建模论文(最新9篇)大学数学具有高度抽象性和概括性等特点,知识本身难度大再加上学时少、内容多等教学现状常常造成学生的学习积极性不高、知识掌握不够透彻、遇到实际问题时束手无策,而数学建模思想能激发学生的学习兴趣,培养学生应用数学的意识,提高其解决实际问题的能力。
数学建模活动为学生构建了一个由数学知识通向实际问题的桥梁,是学生的数学知识和应用能力共同提高的最佳结合方式。
因此在大学数学教育中应加强数学建模教育和活动,让学生积极主动学习建模思想,认真体验和感知建模过程,以此启迪创新意识和创新思维,提高其素质和创新能力,实现向素质教育的转化和深入。
一、数学建模的含义及特点数学建模即抓住问题的本质,抽取影响研究对象的主因素,将其转化为数学问题,利用数学思维、数学逻辑进行分析,借助于数学方法及相关工具进行计算,最后将所得的答案回归实际问题,即模型的检验,这就是数学建模的全过程。
一般来说",数学建模"包含五个阶段。
1、准备阶段主要分析问题背景,已知条件,建模目的等问题。
2、假设阶段做出科学合理的假设,既能简化问题,又能抓住问题的本质。
3、建立阶段从众多影响研究对象的因素中适当地取舍,抽取主因素予以考虑,建立能刻画实际问题本质的数学模型。
4、求解阶段对已建立的数学模型,运用数学方法、数学软件及相关的工具进行求解。
5、验证阶段用实际数据检验模型,如果偏差较大,就要分析假设中一些因素的合理性,修改模型,直至吻合或接近现实。
如果建立的模型经得起实践的检验,那么此模型就是符合实际规律的,能解决实际问题或有效预测未来的,这样的建模就是成功的,得到的模型必被推广应用。
二、加强数学建模教育的作用和意义(一)加强数学建模教育有助于激发学生学习数学的兴趣,提高数学修养和素质数学修养和素质自然而然得以培养并提高。
(二)加强数学建模教育有助于提高学生的分析解决问题能力、综合应用能力因此通过数学建模活动学生的视野将会得以拓宽,应用意识、解决复杂问题的能力也会得到增强和提高。
数学建模论文(精选4篇)

数学建模论文(精选4篇)数学建模论文模板篇一1数学建模竞赛培训过程中存在的问题1.1学生数学、计算机基础薄弱,参赛学生人数少以我校理学院为例,数学专业是本校开设最早的专业,面向全国28个省、市、自治区招生,包括内地较发达地区的学生、贫困地区(包括民族地区)的学生,招收的学生数学基础水平参差不齐.内地较发达地区的学生由于所处地区的经济文化条件较好,教育水平较高,高考数学成绩普遍高于民族地区的学生.民族地区由于所处地区经济文化较落后,中小学师资力量严重不足,使得少数民族学生数学基础薄弱,对数学学习普遍抱有畏难情绪,从每年理学院新生入学申请转系的同学较多可以窥见一斑.虽然学校每年都组织学生参加全国大学生数学建模竞赛,但人数都不算多.从专业来看,参赛学生主要以数学系和计算机系的学生为主,间有化学、生科、医学等理工科学生,文科学生则相对更少.理工科类的学生基本功比较扎实,他们在参赛过程中起到了重要作用.文科学生数学和计算机功底大多薄弱,更多的只是一种参与.从年级来看,参赛学生以大二的学生居多;大一的学生已学的数学和计算机课程有限,基本功还有些欠缺;大三、大四的学生忙着考研和找工作,对数学建模竞赛兴趣不大.从参赛的目的来看,有20%左右的学生是非常希望通过数学建模提高自己的综合能力,他们一般能坚持到最后;还有50%的学生抱着试试看的态度参加培训,想锻炼但又怕学不懂,觉得可以坚持就坚持,不能则中途放弃;剩下的30%的学生则抱着好奇好玩的态度,他们大多早早就出局了.学生的参赛积极性不高,是制约数学建模教学及竞赛有效开展的不利因素.1.2无专职数学建模培训教师,培训教师水平有限,培训方法落后数学建模的培训教师主要由理学院选派数学老师临时组成,没有专职从事数学建模的教师.由于学校扩招,学生人数多,教师人数少,数学教师所承担的专业课和公共课课程多,授课任务重;备课、授课、批改作业占用了教师的大部分工作时间,并且还要完成相应的科研任务.而参加数学建模教学及竞赛培训等工作需要花费很多时间和精力,很多老师都没有时间和精力去认真从事数学建模的教学工作.培训教师队伍整体素质不够强、能力欠缺,指导起学生来也不是那么得心应手,且从事数学建模教学的老师每年都在调整,不利于经验的积累.另外,学校对参与数学建模教学及竞赛培训的教师的鼓励措施还不是十分到位和吸引人,培训教师对数学建模相关的工作热情不够,缺乏奉献精神.在2011年以前,数学建模培训主要采用教师授课的方式进行,但各位老师授课的内容互不联系.比如说上概率论的老师就讲概率论的内容,上常微分方程的老师就讲常微分的内容.学生学习了这些知识,不知道有什么用,怎么用,不能将这些知识联系起来转化为数学建模的能力.这中间缺少了很重要的一个环节,就是没有进行真题实训.结果就是学生既没有运用这些知识构建数学模型的能力,也谈不上数学建模论文写作的技巧.虽然学校年年都组织学生参加全国大学生数学建模竞赛,但结果却不尽如人意,获奖等次不高,获奖数量不多.1.3学校重视程度不够,相关配套措施还有待完善任何一项工作离开了学校的支持,都是不可能开展得好的,数学建模也不例外.在前些年,数学建模并没有引起足够的重视,学校盼望出成绩但是结果并不理想,对老师和学生的信心不足.由于经费紧张,并未专门对数学建模安排实验室,图书资料很少,学生用电脑和查资料不方便,没有学习氛围.每年数学建模竞赛主要由分管教学的副院长兼任组长,没有相应专职的负责人,培训教师去参加数学建模相关交流会议和学习的机会很少.学校和二级学院对参加数学建模教学、培训的老师奖励很少,学生则几乎没有.在课程的开设上也未引起重视,虽然理学院早在1997年就将数学实验和数学建模课列为专业必修课,但非数学专业只是近几年才开始列为公选课开设,且选修率低.2针对存在问题所采取的相应措施2.1扩大宣传,重视数学和计算机公选课开设,举办数学建模学习讨论班最近两年,学院组建了数学建模协会,负责数学建模的宣传和参赛队员的海选,通过各种方式扩大了对数学建模的宣传和影响,安排数学任课教师鼓励数学基础不错的学生参赛.同时邀请重点大学具有丰富培训经验的老师来做数学建模专题讲座,交流经验.学院重视数学专业的基础课程、核心课程的教学,选派经验丰富的老教师、青年骨干教师担任主讲,随时抽查教学质量,教学效果.严抓考风学风,对考试作弊学生绝不姑息;学生上课迟到、早退、旷课一律严肃处理.通过这些举措,学生学习态度明显好转,数学能力慢慢得到提高.学校有意识在大一新生中开设数学实验、数学建模和相关计算机公选课,让对数学有兴趣的学生能多接触这方面的知识,减少距离感.选用的教材内容浅显而有趣味,主要目的是让同学们感受到数学建模并非高不可攀,数学是有用的,增加学生学习数学的热情和参加数学建模竞赛的可能性.为了解决学生学习数学建模过程中的遇到的困难,学院组织老师、学生参加数学建模周末讨论班,老师就学生学习过程中遇到的普遍问题进行讲解,学生分小组相互讨论,尽量不让问题堆积,影响后续学习积极性.通过这些措施,参赛学生的人数比以往有了大的改观,参赛过程中退赛的学生越来越少,参赛过程中的主动性也越来越明显.2.2成立数学建模指导教师组,分批培养培训教师,改进培训方法近年来,学院开始重视对数学建模培训教师的梯队建设,成立了数学建模指导教师组.把培训教师分批送出去进修,参加交流会议,学习其它高校的经验,并安排老教师带新教师,培训教师队伍越来越稳定、壮大.从去年开始,理学院组织学生进行了为期一个月的暑期数学建模真题实训,从8月初到8月底,培训共分为7轮.学生首先进行三天封闭式真题训练———其次答辩———最后交流讨论.效果明显,学生的数学建模能力普遍得到了提高,学习积极性普遍高涨.9月份顺利参加了全国大学生数学建模竞赛.从竞赛结果来看,比以前有了比较大的进步,不管是获奖的等次还是获奖的人数上都取得了历史性突破.有了这些可喜的变化,教师和学生的积极性都得到了提高,对以后的数学建模教学和培训工作将起着极大的促进作用.除了这种集训,今后,数学建模还需要加强平时的教学和培训工作.2.3学校逐渐重视,加大了相关投入,完善了激励措施最近几年,学校加大了对数学建模教学和培训工作的相关投入和鼓励措施.安排了专门的数学建模实验室,配备了学院最先进的电脑、打印机等设备,购买了数学建模相关的书籍.划拨了数学建模教学和培训专项经费.虽然数学建模教学还没有计入教学工作量,但已经考虑计入职称评定的相关工作量中,对参加数学建模教学和培训的老师减少了基本的教学工作量,使他们有更多的时间和精力投入到数学建模的相关工作中去.对参加全国大学生数学建模竞赛获奖的老师和学生的奖励额度也比以前有了很大的提高,老师和学生的积极性得到了极大的提高.3结束语对我们这类院校而言,最重要的数学建模赛事就是一年一度的全国大学生数学建模竞赛了.竞赛结果大体可以衡量老师和学生的付出与收获,但不是绝对的,教育部组织这项赛事的初衷主要是为了促进各个院校数学建模教学的有效开展.如果过分的看重获奖等次和数量,对学校的数学建模教学和组织工作都是一种伤害.参赛的过程对学生而言,肯定是有益的,绝大多数参加过数学建模竞赛的学生都认为这个过程很重要.这个过程可能是四年的大学学习过程中体会最深的,它用枯燥的理论知识解决了活生生的现实中存在的问题,虽然这种解决还有部分的理想化.由于我校地处偏远山区,教育经费相对紧张,投入不可能跟重点院校的水平比,只能按照自身实际来.只要学校、老师、学生三方都重视并积极参与这一赛事,数学建模活动就能开展的更好.数学建模论文模板篇二培养应用型人才是我国高等教育从精英教育向大众教育发展的必然产物,也是知识经济飞速发展和市场对人才多元化需求的必然要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
潍坊学院数学与信息科学学院数学建模实训论文实训题目:2012医疗制度改革探究学生姓名、学号、专业班级1、雒方梅10051140120 应用数学10级1班2、张宝兄10051140136 应用数学10级1班3、郑文奇10051140143 应用数学10级1班指导教师:王家玉2012年12月2012医疗制度改革探讨摘要随着我国经济的不断发展,“看病难、看病贵”是当前群众呼声很高的热点问题之一,一旦解决好此类问题,将对整个国家产生很大的益处。
针对这一热点问题,本文结合我国实际部分省市的改革情况,通过合理的假设和数学模型得到了2012年医疗制度改革探讨问题的数学模型,利用Matlab数学软件,利用层次分析法,线性规划,一般形式拟合实现方法等数学方法进行了求解。
在此基础上,我们不仅可以给出评价医疗改革的指标,还可以预测2013年及其以后的医疗改革对群众的影响,同时给出了不同地区的群众受益情况所使用的层次分析法,以及对该方法的评价。
第一部分,要建立群众“看病难”的评价体系,我们采用层次分析模型,通过查询相关资料,找出“看病难”的原因,确定一级指标:城市人群,农村人群;二级指标:城市人群中得挂专家号难、手续繁琐、候诊时间,农村人群中的等候时间长、交通不方便、挂号困难、医生服务态度差和其他。
从而建立层次结构。
第二部分为了建立描述群总在国家医疗进程中不断收益的模型,通过在卫生统计中心查找的数据我们制定出几个表格,运用插值法与多项式拟合法可以找到群众的参保情况和国家对群众的补助随着时间的增长而增长的图像,通过图像可以看出群众在国家医改进程中不断受益,通过函数表达式可以预测出未来的情况。
第三部分主要一般形式实现方法、以及网上搜索的实际例子进行分析,比较出了去除“以药补医”前后医疗费用的变化。
第四部分主要通过卫生部网站和相关文献资料的数据,找到医疗保障最好的5个省,将相关数据均值化后,运用matlab,计算出综合评价值,将其排序后排序找出我国医疗保障最好的5个城市,由高到低依次为:北京,天津,宁夏,上海,陕西。
最后,结合实际给出了医疗制度改革切实可行的建议与意见,并对模型作出了分析评价。
分析第5问中医疗保障排名前5省市的数据,给政府写了一封关于医疗改革和制度实施的建议的信。
关键词:看病难看病贵医疗改革以药补医一.问题的背景与提出医疗问题是一根敏感的“社会神经”,牵动千家万户。
这个问题解决得好不好,直接关系到经济社会发展的全局,关系到社会和谐稳定。
看病难主要指群众基本医疗服务需求难以得到满足,通过医疗体制改革提升群众对基本医疗服务需求的可及性,解决群众“看病难”问题,是目前理论研究和实践探索的一大课题。
根据现有国家有关医疗改革政策及医疗服务体系,建立群众“看病难”的评价体系,并利用这个体系建立衡量群众就医难易程度的数学模型;在群众的医疗保障越来越完善的情况下,建立描述群众在国家医疗改革进程中不断受益的数学模型。
通过合理的提高诊疗费、手术费、护理费等医疗技术服务价格比例及政府对医院进行补贴的比例,使得在医院的整体经济收入不出现大的波动的情况下,降低患者经济负担;针对某类具体病例比较去除“以药补医”后治疗费用的变化。
在我国的医疗改革不断发展过程中,各省、市也出台了有关医疗改革政策,应用数学建模的方法,给出我国医疗保障最好的五个省市。
并根据自己的研究结论,对我国医疗改革和制度实施的建议。
二、问题分析(一)问题1的分析首先我们要清楚评价我国医疗制度中“看病难”机制的六个指标,即:缺少医药、结构失衡、良医难觅、距离可及性、经济可及性、时间可及性。
用层次分析法确定出特征值和最大特征向量,进而求得各评价指标权重。
建立隶属度函数,确立模糊关系矩阵,得到模糊综合关系评价矩阵,最后确定出就医难的评价指数。
结合了评价百姓看病难评价指标之间的模糊关系,指标评价影响力的模糊性及影响力等级的模糊性等特点,运用模糊数学模型,合理的采用模糊综合分析方法对“看病难”程度进行了比较精确的分析,得出难度等级。
(二)问题2的分析为描述群众在医疗改革中的收益情况,我们通过国家对卫生医疗方面的国民支出以及个人在医疗中所出的费用占全部费用的比重为变量建立了医疗改革受益模型。
通过建立的函数数学模型对我国群众在医疗改革中所获得的受益指数z进行分析,利用表格和matlab数据拟合作图更好的描述出群众在医疗改革过程中不断受益的情况。
建立模型确定出我国群众在医疗改革中的受益情况。
(三)问题3的分析原有医疗机制中“以药补医”政策加重了群众看病负担,医疗制度改革后,为了不使医院整体收益有大的波动,必须要在手术费、诊疗费、护理费、政府补助等占总治疗费用比例上有所提高。
我们考虑就手术类疾病的花费费用低于1万5、介于1万5到5万之间和5万以上三个层次分别建立多元线性优化模型,得出取消“以药补医”后,新的合理的各项花费占总治疗费用的比例。
再在几种常例病患,如冠心病、粉碎性骨折、心脏病中选其一来就改革前后的医疗花费进行对比。
(四)问题4的分析首先若要对某个地区的基本医疗保障水平及其影响因素进行分析,可运用多元统计分析方法,其次选择出对各地基本医疗保障水平具有影响力的多项指标,然后对初选的目标进行筛选。
再选择因子分子模型建模方法,即可确定影响该问题的主因子以及构成各主因子的基础指标的载荷,构建了较为独特的且具有很强客观性的“整体效应评价模型”,并根据综合得分情况对全国31个省市自治区进行排序即可求出所要求的结果。
(五)问题5的分析由前4个问得到相关得结论,再给相关部门一封关于医疗改革和制度实施的建议写信。
三.建模过程1)问题一1 .模型假设:本文解决问题的主要方法是层次分析法(AHP),层次分析法是Saaty于1970年代提出的,AHP——一种定性与定量相结合的、系统化、层次化的分析方法,它分析问题的主要步骤为:(1)建立层次分析结构模型深入分析实际问题,将有关因素自上而下分层(目标—准则或指标—方案或子指标),上层受下层影响,而层内各因素基本上相互独立.(2)构造成对比较阵用成对比较法和1~9尺度,构造各层对上一层每一因素的成对比较阵.(3)计算权向量并作一致性检验对每一成对比较阵计算最大特征根和特征向量,作一致性检验,若通过,则特征向量为权向量.(4)计算组合权向量(作组合一致性检验)组合权向量可作为决策的定量依据.2.定义符号说明:符号符号说明A 医疗改革的评价体系[B1,…….B6] 准则层的准则C1,……..C6] 方案层的实施方案λ最大特征根C.I. 一致性指标C.R. 一致性比率ω权重向量R.I. 随机一致性指标3.模型的建立:3.1问题(1)的模型建立与求解在确定医疗制度改革的方案时,主要遵循群众的受益原则和国家的负担能力原则,医疗问题关系到亿万群众的健康和幸福,关系到社会的发展和稳定,同时加重了群众的生活负担,医疗制度改革的不完善势必会影响社会的和谐发展,影响党和政府在人民群众中的形象,所以既要考虑群众的利益和国家的负担能力。
在医疗制度改革的方案中群众是受益者,因为我国的经济发达地区的经济发展水平较高,因此投入的医疗经济相对较多,医疗的投入不均致使不发达地区的群众需要到很远的地方就医,因此把发展不协调的权重定为最大;又由于医疗资源不足,导致医疗资源无法运到经济不发达地区,致使医疗水平和资源有限的不发达地区无法进行医疗,所以将医疗资源不足的权重定为第二高;对公立医院投入不足,致使资源缺乏,技术水平落后,使不少病患为了治疗不得不支付更高的费用去私立医院治疗,同时增加群众的经济负担,因此把投入不足的权重定为第三高;医生的知识、经验、技术也是群众医疗的关键,由于医生知识、技术、经验的欠缺,让群众不得不去选择名医医治,所以技术欠缺的权重定为第四高;因为医生自己提高药物的价格也让群众买不起药,因此将以药养医的权重定为第五高;由于医院的医疗流程过多,流程过于复杂,延长病人的候诊时间,增加很多不必要的诊疗行为,增加了医疗费用,所以将流程优化的权重定为第六高。
于是准则层C 的六个因素(C1,C2,C3,C4,C5,C6)的两两判断矩阵设定如表1.1所示。
表1.1 两两判断矩阵上图中由于某些措施不能解决所提出的所有建议,由权重的计算方法可知,若第K 层中有N 个元素不受第K-1层第J 个元素支配,则取不受J 元素支配的元素的权重为0。
从而得到其相对应的成对比较矩阵如下所示。
A=⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫117/1317/917/717/417/213/1719/79/59/49/29/177/917/67/47/27/175/96/715/45/34/174/94/74/514/32/172/92/73/53/41 从理论上讲,如果O 是完全一致的成对比较矩阵,应该有.,,,ik jk ij k j i A A A =∀但实际上在构造成对比较矩阵时要求满足上述众多等式是不可能的。
因此往往退而求其次,只要求对比权重 发展不协调 医疗资源不足 投入不足 技术欠缺 以药养医 流程的优化发展不协调1 4/3 5/3 7/2 9/2 17/2 医疗资源不足3/4 1 5/4 7/4 9/4 17/4 投入不足 3/5 4/5 1 7/6 9/5 17/7 技术欠缺 2/7 4/7 6/7 1 9/7 17/9 以药养医 2/9 4/9 5/9 7/9 1 17/13 流程的优化2/17 4/17 7/17 9/17 13/17 1较矩阵有一定的一致性,即可以允许对比较矩阵存在一定程度的不一致性。
检验对比较矩阵A 一致性的步骤如下:3.1.1计算衡量一个对比矩阵A(n 阶方阵)不一致程度的指标C.I.如下所示,其中)(A λ为矩阵A 的最大特征值: C.I==--1)(n nA λ0.0086.3.1.2查找相应的平均随机一致性指标R.I.,得六级R.I.=1.26.计算一致性比率: C.R=1.00068253.026.10086.0....<==I R I C 权重向量: ∑∑===n j n k kjij i a a n 111ω ,i=1,2,3,……,n. C.R 说明矩阵A 的不一致程度是可以接受的。
此时矩阵A 最大特征值对应的特征向量为U. 构造B-C 层对比较矩阵为:B1=⎪⎩⎪⎨⎧⎪⎭⎪⎬⎫15/45/24/513/22/52/31 B2=⎪⎩⎪⎨⎧⎪⎭⎪⎬⎫111/711/47/1115/24/112/51B3=⎪⎩⎪⎨⎧⎪⎭⎪⎬⎫13/22/12/314/323/41 B4=⎪⎩⎪⎨⎧⎪⎭⎪⎬⎫15/25/12/515/353/51B5=⎪⎩⎪⎨⎧⎪⎭⎪⎬⎫19/79/27/917/22/92/71 B6=⎪⎩⎪⎨⎧⎪⎭⎪⎬⎫111/911/79/1119/77/117/91由上式可知,其一致性C.R 均小于0.1,可以判断矩阵具有很难的一致性。