6-4.1弯曲梁的正应力计算解析
合集下载
6第六章-梁的应力详解精选全文完整版

等直梁横截面上的最大正应力发生在最大弯矩所在横 截面上距中性轴最远的边缘处,而且在这些边缘处,即使 是横力弯曲情况,由剪力引起的切应力也等于零或其值很 小(详见下节),至于由横向力引起的挤压应力可以忽略不 计。因此可以认为梁的危险截面上最大正应力所在各点处 于单向应力状态。于是可按单向应力状态下的强度条件形 式来建立梁的正应力强度条件:
需要注意的是,型钢规格表中所示的x轴是我们所标示 的z轴。
Ⅱ. 纯弯曲理论的推广
工程中实际的梁大多发生横力弯曲,此时梁的横截面
由于切应力的存在而发生翘曲。此外,横向力还使各纵向
线之间发生挤压。因此,对于梁在纯弯曲时所作的平面假
设和纵向线之间无挤压的假设实际上都不再成立。但弹性
力学的分析结果表明,受分布荷载的矩形截面简支梁,当
A
将
E
y
r
代入上述三个静力学条件,有
FN
dA E
A
r
y d A ESz
A
r
0
(a)
M y
z d A E
A
r
yz d A EIyz
A
r
0
(b)
M z
y d A E
A
r
y2 d A EIz
A
r
M
(c)
以上三式中的Sz,Iyz,Iz都是只与截面的形状和尺寸相 关的几何量,统称为截面的几何性质,而
图b所示的简支梁。钢的许用弯曲正应力[]=152 MPa 。试
选择工字钢的号码。
(a)
(b)
解:在不计梁的自重的情况下,弯矩图如图所示 Mmax 375kN m
强度条件 Mmax 要求:
Wz
Wz
M max
需要注意的是,型钢规格表中所示的x轴是我们所标示 的z轴。
Ⅱ. 纯弯曲理论的推广
工程中实际的梁大多发生横力弯曲,此时梁的横截面
由于切应力的存在而发生翘曲。此外,横向力还使各纵向
线之间发生挤压。因此,对于梁在纯弯曲时所作的平面假
设和纵向线之间无挤压的假设实际上都不再成立。但弹性
力学的分析结果表明,受分布荷载的矩形截面简支梁,当
A
将
E
y
r
代入上述三个静力学条件,有
FN
dA E
A
r
y d A ESz
A
r
0
(a)
M y
z d A E
A
r
yz d A EIyz
A
r
0
(b)
M z
y d A E
A
r
y2 d A EIz
A
r
M
(c)
以上三式中的Sz,Iyz,Iz都是只与截面的形状和尺寸相 关的几何量,统称为截面的几何性质,而
图b所示的简支梁。钢的许用弯曲正应力[]=152 MPa 。试
选择工字钢的号码。
(a)
(b)
解:在不计梁的自重的情况下,弯矩图如图所示 Mmax 375kN m
强度条件 Mmax 要求:
Wz
Wz
M max
材料力学06(第六章 弯曲应力)分析

F / 4 2 103 mm 134 mm
30 MPa 5493104 mm4
F 24.6 kN
因此梁的强度由截面B上的最大拉应力控制
[F] 19.2 kN
§6-3 梁横截面上的切应力•梁的切应力强度条件
Ⅰ、梁横截面上的切应力
分离体的平衡
横截面上切应力 分布规律的假设
横截面上弯曲切 应力的计算公式
二.工字形截面梁 1、腹板上的切应力
h
d
y
d
O
y b
O
' A*
y dA
FS
S
* z
Izd
S
* z
bd
2
h
d
d 2
h 2
d
2
y2
腹板与翼缘交界处
max
min
FS Izd
bd
h d
max O
中性轴处
max
FS
S
* z,m
ax
Izd
y
min
FS
bd
h
d
d
h
d
2
I z d 2
160 MPa 148 MPa
2
Ⅲ 梁的正应力强度条件
max 材料的许用弯曲正应力
中性轴为横截面对称轴的等直梁
M max
Wz
拉、压强度不相等的铸铁等脆性材料制成的梁
为充分发挥材料的强度,最合理的设计为
t,max
M max yt,max Iz
[
t]
c,max
M max yc,max Iz
Myc,max Iz
典型截面的惯性矩与抗弯截面系数 ( d D)
b
梁的剪应力及其强度条件梁的弯曲应力与强度计算剪应力计算公式

8 梁的弯曲应力与强度计算
8.1 梁弯曲时横截面上的正应力 8.2 弯曲正应力的强度条件 8.3 梁的剪应力及其强度条件 8.4 提高弯曲强度的措施
8.1 梁弯曲时横截面上的正应力
横截面上有弯矩又有剪力。 例如:AC和DB段。 称为横力弯曲(剪切弯曲)。 横截面上有弯矩没有剪力。 例如:CD段。 称为纯弯曲。
力 max 发生在弯矩最大的截面上,且离中性轴最远处。即
引用记号 则
max
M max ymax Iz
Wz
Iz ymax
max
M max Wz
Wz 称为弯曲截面模量。它与截面的几何形状有关,单位为m3。
8.2 弯曲正应力的强度条件
对于宽为 b ,高为 h 的矩形截面
Wz
Iz ymax
bh3 /12 h/2
A
A
M
E
Iz
式中1/ρ为梁弯曲后轴线的曲率。
EIz 称为梁的弯曲刚度。
8.1 梁弯曲时横截面上的正应力
E y
(b)
由上面两式,得纯弯曲时正应力的计算公式:
将弯矩 M 和坐标 y 按规定的正负代入,所得到的正应力若为 正,即为拉应力,若为负则为压应力。
一点的应力是拉应力或压应力,也可由弯曲变形直接判定。 以中性层为界,梁在凸出的一侧受拉,凹入的一侧受压。
8.1 梁弯曲时横截面上的正应力
E y
(b)
将式(b)代入式(d),得
M y
z dA 0
A
(d)
M z
y dA M
A
(e)
z dA E y z dA 0
A
A
A y z dA I yz 0
(自然满足)
y 轴为对称轴,必然有Iyz=0。
8.1 梁弯曲时横截面上的正应力 8.2 弯曲正应力的强度条件 8.3 梁的剪应力及其强度条件 8.4 提高弯曲强度的措施
8.1 梁弯曲时横截面上的正应力
横截面上有弯矩又有剪力。 例如:AC和DB段。 称为横力弯曲(剪切弯曲)。 横截面上有弯矩没有剪力。 例如:CD段。 称为纯弯曲。
力 max 发生在弯矩最大的截面上,且离中性轴最远处。即
引用记号 则
max
M max ymax Iz
Wz
Iz ymax
max
M max Wz
Wz 称为弯曲截面模量。它与截面的几何形状有关,单位为m3。
8.2 弯曲正应力的强度条件
对于宽为 b ,高为 h 的矩形截面
Wz
Iz ymax
bh3 /12 h/2
A
A
M
E
Iz
式中1/ρ为梁弯曲后轴线的曲率。
EIz 称为梁的弯曲刚度。
8.1 梁弯曲时横截面上的正应力
E y
(b)
由上面两式,得纯弯曲时正应力的计算公式:
将弯矩 M 和坐标 y 按规定的正负代入,所得到的正应力若为 正,即为拉应力,若为负则为压应力。
一点的应力是拉应力或压应力,也可由弯曲变形直接判定。 以中性层为界,梁在凸出的一侧受拉,凹入的一侧受压。
8.1 梁弯曲时横截面上的正应力
E y
(b)
将式(b)代入式(d),得
M y
z dA 0
A
(d)
M z
y dA M
A
(e)
z dA E y z dA 0
A
A
A y z dA I yz 0
(自然满足)
y 轴为对称轴,必然有Iyz=0。
弯曲应力及强度计算

桥梁的受弯破坏问题
工程背景
第2页/共32页
1999年1月4日,我国重庆市綦江县彩虹
桥发生垮塌,造成:
40人死亡;
14人受伤;
直接经济损失631万元。
第3页/共32页
由工程实例可知:
工程中存在大量与弯曲强度有关的问题。
弯曲强度问题的研究对避免受弯结构的破坏 具有十分重要的意义。
研究弯曲强度问题
受弯构件内 应力的分布规律
12.75103 139103 403107
43.98MPa
如果T截面倒置会如何???
第19页/共32页
* 梁的剪应力强度条件
一、梁横截面上的剪应力
Q—横截面上的剪力
QS
* z
IZb
IZ—横截面对中性轴的惯性矩
S*Z—所求应力点以上或以下部分截面对中性轴的静矩 b—所求应力点的截面宽度
剪应力沿截面高度呈抛物线分布,在中性轴处最 大,在上下边缘处为零。
成变截面的。横截面沿梁轴变化的梁,称为变截面梁。
F A
F A
h(x) B
z
b
B
各个横截面具有同样强度的梁称为等强度梁,等强度梁是一种
理想的变截面梁。但是,考虑到加工制造以及构造上的需要等,实际 构件往往设计成近似等强的。
第29页/共32页
小结:
一、梁的应力:
横截面上的正应力: M y ; Iz
等直梁 max
Mmax所在横截面 离中性轴最远处
max
Mmax IZ
ymax
等直梁的最大弯曲正应力公式
第12页/共32页
* 梁的正应力强度计算
max
M max IZ
ymax
设 ymax为到中性轴的最远距离
工程背景
第2页/共32页
1999年1月4日,我国重庆市綦江县彩虹
桥发生垮塌,造成:
40人死亡;
14人受伤;
直接经济损失631万元。
第3页/共32页
由工程实例可知:
工程中存在大量与弯曲强度有关的问题。
弯曲强度问题的研究对避免受弯结构的破坏 具有十分重要的意义。
研究弯曲强度问题
受弯构件内 应力的分布规律
12.75103 139103 403107
43.98MPa
如果T截面倒置会如何???
第19页/共32页
* 梁的剪应力强度条件
一、梁横截面上的剪应力
Q—横截面上的剪力
QS
* z
IZb
IZ—横截面对中性轴的惯性矩
S*Z—所求应力点以上或以下部分截面对中性轴的静矩 b—所求应力点的截面宽度
剪应力沿截面高度呈抛物线分布,在中性轴处最 大,在上下边缘处为零。
成变截面的。横截面沿梁轴变化的梁,称为变截面梁。
F A
F A
h(x) B
z
b
B
各个横截面具有同样强度的梁称为等强度梁,等强度梁是一种
理想的变截面梁。但是,考虑到加工制造以及构造上的需要等,实际 构件往往设计成近似等强的。
第29页/共32页
小结:
一、梁的应力:
横截面上的正应力: M y ; Iz
等直梁 max
Mmax所在横截面 离中性轴最远处
max
Mmax IZ
ymax
等直梁的最大弯曲正应力公式
第12页/共32页
* 梁的正应力强度计算
max
M max IZ
ymax
设 ymax为到中性轴的最远距离
第6章 弯曲应力

称为抗弯截面系数
只有一根对称轴的横截面形状: yt,max yc,max O y
O y
z
t,max
My t ,max Iz
c,max
Myc,max Iz
z
简单截面的弯曲截面系数 b h ⑴ 矩形截面
z
bh3 Iz 12 b3h Iy 12
⑵ 圆形截面
y d
Iz bh2 Wz h/2 6 Iy b2h Wy 源自/2 63()
Ⅱ .纯弯曲理论的推广 对于细长梁( l/h > 5 ),纯弯曲时的正应力计算 公式用于横力弯曲情况,其结果仍足够精确。 F
l
M ( x) y Iz
Fl
4
max
M ( x) Wz
解:
由弯曲曲率公式 可得:
M EIz
M EI z
1
代入弯曲正应力公式:
M EIZ Ed 533.3MPa WZ WZ 2
3.正应力的正负号与弯矩 及点的坐标 y的正负号有关。实际计算中,可根 据截面上弯矩的方向,直接判断中性 轴的哪一侧产生拉应力,哪一侧产生 压应力,而不必计及M和y的正负。
三、最大弯曲正应力 有两根对称轴的横截面形状: b h
z
y y
z
max
M M Mymax I z Wz Iz y max
基本假设2:
梁内各纵向纤维无挤压 假设,纵向纤维间无正应 力。
中性层与中性轴
纵向对称面 中性层 Z 中性轴
中性层 根据变形的连续性 可知,梁弯曲时从其凹 入一侧的纵向线缩短区 到其凸出一侧的纵向线 伸长区,中间必有一层 纵向无长度改变的过渡 层,称为中性层 。 中性轴: 中性层与横截面的交 线就是中性轴。
弯曲正应力

dA
y
z
y
x
A
y 2 dA M
已知
A
y 2 dA I z
横截面对 z 轴的惯性矩
得到:
M EI z
1
Ey 代入: E
(b)
得到:
My Iz
弯曲正应力计算公式
横截面上的最大正应力Leabharlann max令: 得:
M ymax Iz
M
max
抗弯截面系数
Iz Wz ymax
尚有两个问题?
1、
?
2、中性层的位置?
三、静力关系
F
Ey
A
x
0
dA 0
A
dA
E
M
A
ydA 0
得: 而
A
A
ydA 0
z
ydA S z A y
是横截面对 z 轴的静矩
M
y
z
y
dA
x
y 0
中性轴 z 通过横截面的形心
中性轴必为形心轴
M
E
y
0
z
已知:
a 50mm
2a A
a
F C
140MPa
求: F力的最大许可值 解: 作出梁的弯矩图 梁的危险截面为B截面 B截面的弯矩为:
B
M
Fa
M B M max Fa
梁的危险截面为B截面 M B M max Fa B截面的尺寸如图
30 203 14 203 12 Iz 10 12 12 1.07 108 m 4
梁的纯弯曲正应力实验

R4 D E
R3
DR1 DR2 DR3 DR4 E U BD ( ) 4 R1 R2 R3 R4 E K ( 1 - 2 3 - 4 ) 4
梁的纯弯曲正应力实验
4、电桥接法及温度补偿 全桥接法(四个电阻均为应变片); 1.电桥接法: 半桥接法(R1、R2为应变片, R3、R4为固定电阻) 两种接法中的应变片型号、阻值尽可能相同 或接近,固定电阻与应变片阻值也应接近。 2.温度补偿:由于温度对电阻值变化影响很 大,利用电桥特性,可以采用 适当的方法消除这种影响。
化是非常敏感的,任何一点变化都会使输出结
为电量——电阻, 测量应变的精度达到 10-6, 是
一种
量的
标准
量时
线,
施。
图 2 偏心压缩试 样
பைடு நூலகம்
境变
果产
偏心拉(压)实际上是拉(压)与纯弯曲的组合,由于拉(压)和纯 生变化。如果你有实测的经历就会发现,随机干扰因素很多,刚刚预调平衡 的一个测点,当旋钮转过去再转回来时,几秒钟时间又不平衡了,往往需要 弯曲时横截面上只有正应力存在,经过叠加后横截面上只有正应力,且为 多次反复,耐心细致,才能将所有测点调平;有时虽经多次反复却无法调平 线性分布。因此只要能够测出正应力的分布规律,确定中性层位置,就可 只好保留原始误差开始测量。在实测时还会发现,同一个实验装置,同样的 求出外载和作用点位置。根据受力的不同,偏心拉(压)有单向偏心拉( 仪器和接线,不同的实验小组测量结果也不同,甚 压)(图2a)和双向偏心拉(压)(图2b)两种情况,测试时设计的贴片 部位也不同。请学生们自己设计布贴应变片并确定组桥方式。实验可用电 子万能材料试验机加载。
梁的纯弯曲正应力实验
五、实验数据的记录与计算
横力弯曲时的正应力计算公式

a/2
F
a/2
A
C
l/2 l/2
D
B
解: 分析:关键在于何为最佳,对于该题最佳就是两梁最大弯曲 应力同时达到最大。
主梁AB的最大弯矩
M maxAB
F (l a) 4
副梁CD的最大弯矩
M maxCD
Fa 4
由 即
M max AB M max CD
F Fa (l a) 4 4
得
4.纯弯曲的特点: 靠近凹入的一侧,纤维缩短,靠近凸出的一侧,纤维伸长; 由于纤维从凹入一侧的伸长或缩短到突出一侧的缩短或伸长 是连续变化的,故中间一定有一层,其纤维的长度不变,这 层纤维称为中性层。中性层与横截面的交线称为中性轴; 弯曲变形时,梁的横截面绕中性轴旋转。
中性层
中性轴
o
对称轴
z
目录
§6-3 非对称梁的纯弯曲
前面讨论的是梁上的弯曲力偶作用于纵向对称面内的情况; 下面讨论,当梁没有这样的纵向对称面时,或着虽然有纵向对称 面,但弯曲力偶并不作用于这一平面时的情况。
图6—7
如图(a)所示: Y、Z轴——横截面的形心主惯性轴
X轴——梁的轴线
My、Mz——对y轴、z轴的力偶矩
一.公式推导:
y
(6—1)
即:纵向纤维的线应变与它到中性层的距离成正比
(二) 物理关系 假设纵向纤维之间不存在相互挤压,那么当应力小于比 例极限时,可用单向拉伸时的虎克定律:
E E
y
物理意义:任意纵向纤维的正应力与它到中性层的距离成正 比,即:在横截面上的正应力沿截面高度按直线 曲率中心O 规律变化。
中性轴必然通过截面形心。 E 1 M EI z sin 0 0 (由于y 和z是形心主惯性轴,故Iyz=0)
F
a/2
A
C
l/2 l/2
D
B
解: 分析:关键在于何为最佳,对于该题最佳就是两梁最大弯曲 应力同时达到最大。
主梁AB的最大弯矩
M maxAB
F (l a) 4
副梁CD的最大弯矩
M maxCD
Fa 4
由 即
M max AB M max CD
F Fa (l a) 4 4
得
4.纯弯曲的特点: 靠近凹入的一侧,纤维缩短,靠近凸出的一侧,纤维伸长; 由于纤维从凹入一侧的伸长或缩短到突出一侧的缩短或伸长 是连续变化的,故中间一定有一层,其纤维的长度不变,这 层纤维称为中性层。中性层与横截面的交线称为中性轴; 弯曲变形时,梁的横截面绕中性轴旋转。
中性层
中性轴
o
对称轴
z
目录
§6-3 非对称梁的纯弯曲
前面讨论的是梁上的弯曲力偶作用于纵向对称面内的情况; 下面讨论,当梁没有这样的纵向对称面时,或着虽然有纵向对称 面,但弯曲力偶并不作用于这一平面时的情况。
图6—7
如图(a)所示: Y、Z轴——横截面的形心主惯性轴
X轴——梁的轴线
My、Mz——对y轴、z轴的力偶矩
一.公式推导:
y
(6—1)
即:纵向纤维的线应变与它到中性层的距离成正比
(二) 物理关系 假设纵向纤维之间不存在相互挤压,那么当应力小于比 例极限时,可用单向拉伸时的虎克定律:
E E
y
物理意义:任意纵向纤维的正应力与它到中性层的距离成正 比,即:在横截面上的正应力沿截面高度按直线 曲率中心O 规律变化。
中性轴必然通过截面形心。 E 1 M EI z sin 0 0 (由于y 和z是形心主惯性轴,故Iyz=0)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
公式适用范围: ①正应力小于比例极限σp; ②精确适用于纯弯曲梁; ③横力弯曲时,截面上有切应力,平面假设不严格成立,但当梁跨度 l 与高 度 h 之比大于5(即为细长梁)时上述公式近似成立。
使用此公式注意:公式中的M、y都用绝对值,σ的正负 由M的正负判断 M>0时:下侧受拉,中性轴以下σ>0,以上σ<0 M<0时:上侧受拉,中性轴以下σ<0,以上σ>0
32 d 式中: D
(1 - 4 )
型钢------查型钢表
组合图形
I z I zi , I yi
i 1 i 1 m
m
整个图形对某一轴的惯性矩(等于各个分图形对同 一轴的惯性矩之和。
I y1 I y b A
2
I z1 I z a A
2
举例1:
长为l的矩形截面悬臂梁,在自由端作用一集中
2、 一对称T形截面的外伸梁,梁上作用均布荷载, 梁的截面如图所示。已知: l 1.5m, q 8kN / m 求梁截面中的的最大拉应力和最压应力。
2.单向受力假设: 各纵向纤维之间互不挤压。纵向纤维均处于单向受拉或受压的状态 。因此梁横截面上只有正应力σ而无剪应力τ
纤维是天然或人工合成的细丝状物质
Z
中性轴
中性层
y
梁在弯曲变形时,上面部分纵向纤维缩短,下面部分纵向纤维伸长,必 有一层纵向纤维既不伸长也不缩短,保持原来的长度,这一纵向纤维层称为 中性层。
3 3
MA 3 106 k y 60 3.09MPa 7 IZ 5.832 10
A 截面上的弯矩为负,K 点是在中性轴的上边, 所以为拉应力。
3、图示T形截面简支梁在中点承受集中力F=32kN,梁的 长度l=2m。yc=96.4mm,横截面对于z轴的惯性矩Iz= 1.02×108mm4。求弯矩最大截面上的最大拉应力和最大压 F y 应力。
简单截面的惯性矩和抗弯截面系数计算公式
惯性矩
bh3 IZ 12
hb3 Iy 12
I Z IY
d 4
64
Iz Iy
64
(D4 - d 4 )
D 4
64
(1 - 4 )
D 3
弯曲截 面系数
bh2 Wz 6
hb2 Wy 6
Wz Wy
d 3
32
Wz W y
力F,已知b=120mm,h=180mm、l=2m,F=1.6kN,试求 B截面上a、b、c各点的正应力。 h 6 a F A z B h b C l 2 l 2 h2
FL
c
b
M B ya a IZ
b 0
1 1 h M B FL FL 2 2 3 3 1.65MPa (拉 ) 3 bh bh IZ 12 12 1 h FL M B yc 2 (压) 2 c 2 . 47 MPa 3 bh IZ 12
注:若截面对称于中性轴,则最大拉应力等于最大压应力
M M
σ-max
M
σmax
-max M
中性轴
max
空间分布图
平面分布图
二、正应力的计算公式(推导略——难点)
1.横截面上任意点正应力计算
My IZ
M为横截面的弯矩 y为计算点到中性轴的距离 Iz截面对Z轴的惯性矩,与截面形状和 尺寸有关 m4 , mm4
2.横截面上的最大正应力 M y1 M y2 t , c IZ IZ
当中性轴是横截面的对称轴时: 若:
y1 y2 ymax
则
t c max
Iz Wz y max
max
M y max M IZ WZ
Wz 称为抗弯截面系数 与截面形状和尺寸有关 M3 ,mm3
试计算图示简支矩形截面木梁平放与竖放时的最大 正应力,并加以比较。
q 2 kN m
200
4m
200
100
竖放
max
qL2 8
M max WZ
横放
qL2 8 2 6MPa bh 6
max
M max WZ
qL2 8 2 12MPa hb 6
100
作业
1、 图示悬臂梁,横截面为矩形,承受载荷F1 与F2作用,且F1=2、F2=5kN。试计算梁内的最 大弯曲正应力,及该应力所在截面上K点处的 弯曲正应力。
中性层与横截面的交线称为中性轴,中性轴通过截面形心,是一条 形心轴。且与截面纵向对称轴y垂直,将截面分为受拉区及受压区。梁弯 曲变形时,各横截面绕中性轴转动。
横截面上正应力分布规律: 1、受拉区 : 拉应力,受压区 : 压应力; 2、中性轴上应力为零; 3、沿截面高度线性分布,沿截面宽度均匀分布; 4、最大正应力发生在距中性轴最远处,即截面边缘处。
例2 图所示悬臂梁,自由端承受集中荷载F 作用,已知:h=18cm,b=12cm,y=6cm, a=2m,F=1.5KN。 计算A截面上K 点的弯曲正应力。
解: 先计算截面上的弯矩
M A -Fa -1.5 2 -3kNm
截面对中性轴的惯性矩
bh 120 180 IZ 5.832 107 m m4 12 12
横截面上正应力的计算。
回顾与比较
拉压杆
内力
轴力
应力
连接件
N A
=V/A
F F
剪力
轴 扭矩
M n IP
梁 剪力和弯矩
变形后梁的轴线所在平面与外力作用面重合的弯曲称为平面弯曲
一、梁横截面上的正应力分布规律
纯弯曲—只有M无V 平面弯曲 横力弯曲—V M同时存在
F
F
a
A
F F
Fa
a
B
F
纯弯曲:梁受力弯曲后,如其横截 面上只有弯矩而无剪力,这种弯曲称为纯 弯曲。
实验现象
F F
m n
1、变形前互相平行的纵向直线、 变形后变成弧线,且凹边纤维缩 短、凸边纤维伸长。
m
n
2、变形前垂直于纵向线的横向线 变形后仍为直线,且仍与弯曲了 的纵向线正交,但两条横向线间 相对转动了一个角度。
1、平面假设: 变形前杆件的横截面变 形后仍为平面。
A
B
150 50
l 2
l 2
96.4 C 50
200
z
M max
FL 16kNm 4
y
max max
200 50 - 96.4 153.6mm 96.4mm
max
My max IZ My max IZ
24.09MPa 15.12MPa
y
max
6-4.1梁的 正应力计算
湖北省工业建筑学校建筑工程建筑力学多媒体课件
任课 授课 授课 洪单平 12建筑工程 2013/3 教师 班级 时间 课 梁的弯曲应力(正应力) 课型 题 教学 讲练结合 方法 学 时 2
面授
教学 目的 教学 重点
教学 难点
掌握梁弯曲时横截面正应力分布规律;掌握正应力的计 算. 正应力分布规律;正应力的计算.