2-2-3 不定方程与不定方程组.教师版

合集下载

八年级数学下册-2.3 不等式的解集北师大版八年级下册数学 2.3 不等式的解集 教案

八年级数学下册-2.3 不等式的解集北师大版八年级下册数学 2.3 不等式的解集  教案

2.3 不等式的解集1.理解并掌握不等式解和解集的概念;2.学会用数轴表示不等式的解集.(重点,难点)一、情境导入 东东和小明、小红三人在公园里玩跷跷板,东东体重最重,坐在跷跷板的一端,小明坐在另一端,这时东东的一端着地,当体重比东东轻4公斤的小红和小明坐在一端时,东东被翘起离地.同学们,你们能算出小红的体重大约是多少吗?二、合作探究探究点一:不等式的解和解集下列说法中,错误的是( )A .不等式x <3有两个正整数解B .-2是不等式2x -1<0的一个解C .不等式-3x >9的解集是x >-3D .不等式x <10的整数解有无数个 解析:A.不等式x <3有两个正整数解1,2,故A 正确;B.-2是不等式2x -1<0的一个解,故B 正确;C.不等式-3x >9的解集是x <-3,故C 正确;D.不等式x <10的整数解有无数个,故D 正确;故选C.方法总结:判断某个数值是否是不等式的解,就是用这个数值代替不等式中的未知数,看不等式是否成立.若不等式成立,则该数是不等式的一个解;若不成立,该数值就不是不等式的解.变式训练:见《学练优》本课时练习“课后巩固提升”第2题探究点二:用数轴表示不等式的解集 【类型一】 在数轴上表示不等式的解集不等式3x +5≥2的解集在数轴上表示正确的是( )A.B. C.D.解析:解3x +5≥2,得x ≥-1,故选B.方法总结:注意在表示解集时大于等于,小于等于要用实心圆点表示;大于、小于要用空心圆点表示.变式训练:见《学练优》本课时练习“课堂达标训练”第4题【类型二】 根据数轴求不等式的解关于x 的不等式x -3<3+a2的解集在数轴上表示如图所示,则a 的值是()A .-3B .-12C .3D .12 解析:化简不等式,得x <9+a2.由数轴上不等式的解集,得9+a=12,解得a=3,故选C.方法总结:本题考查了在数轴上表示不等式的解集,利用不等式的解集得关于a的方程是解题关键.变式训练:见《学练优》本课时练习“课后巩固提升”第3题三、板书设计1.不等式的解和解集2.用数轴表示不等式的解集本节课学习不等式的解和解集,利用数轴表示不等式的解,让学生体会到数形结合的思想的应用,能够直观的理解不等式的解和解集的概念,为接下来的学习打下基础.在课堂教学中,要始终以学生为主体,以引导的方式鼓励学生自己探究未知,提高学生的自我学习能力.。

《不定方程》专题教师版

《不定方程》专题教师版

不定方程精选题型(第一课时)一.例题精析:例1.一个水池装一个进水管和三个同样的出水管,先打开进水管,等水池存一些水后再打开出水管(进水管不关闭).若同时打开2个出水管,那么8分钟后水池空;如果同时打开3个出水管,则5分钟后水池空.那么出水管比进水管晚开40分钟.【分析】设出水管比进水管晚开x分钟,进水管的速度为y,出水管的速度为z,再根据进水量=出水量列出方程求解即可.解:例2.某果蔬饮料由果汁、疏菜汁和纯净水按一定质量比配制而成,纯净水、果汁、蔬菜汁的价格比为1:2:2,因市场原因,果汁、蔬菜汁的价格涨了15%,而纯净水的价格降了20%,但并没有影响该饮料的成本(只考虑购买费用),那么该种饮料中果汁与蔬菜汁的质量和与纯净水的质量之比为2:3.【分析】设纯净水、果汁、蔬菜汁的价格为a,2a,2a,设纯净水、果汁、疏菜汁按一定质量比为x:y;z,根据因市场原因,果汁、蔬菜汁的价格涨了15%,而纯净水的价格降了20%,但并没有影响该饮料的成本(只考虑购买费用),可列出方程求解.解:例3.某班有若干人参加一次智力竞赛,共a、b、c三题,每题或者得满分或者得0分.其中题a、题b、题c满分分别为20分、30分、40分.竞赛结果,每个学生至少答对了一题,三题全答对的有1人,只答对其中两道题的有15人,答对题a的人数与答对题b的人数之和为29,答对题a的人数与答对题c的人数之和为25,答对题b的人数与答对题c的人数之和为20,则这个班参赛同学的平均成绩是51分.【分析】设答对a的人数为x,答对b的人数为y,答对c 的人数为z,根据题意可得三元一次方程组,解出可得出x、y、z的值,进而算出参加竞赛的总人数,让总分数除以总人数即为竞赛的平均成绩.解:例4.山脚下有一个池塘,山泉以固定的流量向池塘里流淌,现在池塘中有一定的水,若一台A型抽水机1小时刚好抽完,若两台A型抽水机20分钟刚好抽完,若三台A型抽水机同时抽12分钟可以抽完.【分析】设池塘中的水有a,山泉每小时的流量是b,一台A 型抽水机每小时抽水量是x.根据一台A型抽水机则1小时后正好能把池塘中的水抽完,得x=a+b;根据用两台A型抽水机则20分钟正好把池塘中的水抽完,得×2x=a+b,用x表示a和b.设若用三台A型抽水机同时抽,则需要t小时恰好把池塘中的水抽完,再进一步根据3tx=a+bt求解解:二.课堂精练:1.古人对付秋燥的饮食良方:“朝朝淡盐水,晚晚蜂蜜水”.秋天即将来临时,某商人抓住商机购进甲、乙、丙三种蜂蜜,已知销售每瓶甲蜂蜜的利润率为10%,每瓶乙蜂蜜的利润率为20%,每瓶丙蜂蜜的利润率为30%.当售出的甲、乙、丙蜂蜜瓶数之比为1:3:1时,商人得到的总利润率为22%;当售出的甲、乙、丙蜂蜜瓶数之比为3:2:1时,商人得到的总利润率为20%.那么当售出的甲、乙、丙蜂蜜瓶数之比为5:6:1时,这个商人得到的总利润率为.2.我校创造节插花艺术比赛中同学们制作了若干个甲、乙、丙三种造型的花篮.甲种花篮由9朵玫瑰花、16朵水仙花和10朵百合花搭配而成,乙种花篮由6朵玫瑰花、8朵水仙花搭配而成.丙种花篮由6朵玫瑰花、12朵水仙花和10朵百合搭配而成.这些花篮一共用了240朵玫瑰花,300朵百合花,则水仙花一共用了朵.3.冬季降至,贫困山区恶劣的地理环境加之其落后的交通条件,无疑将使得山区在漫长冬季里物资更加匮乏,“让冬天不冷让爱心永驻”,重庆市公益组织心驿家号召全市人民为贫困山区的孩子们捐赠过冬衣物,本次捐赠共收集了11600件棉衣、7500件羽绒服及防寒服若干,自愿者将所有衣物分成若干A、B、C类组合,由自愿者们分别送往交通极其不便利的各个山区,一个A类组合含有60件棉衣,80件防寒服和50件羽绒服;一个B类组合含有40件棉衣,40件防寒服;一个C类组合含有40件棉衣,60件防寒服,50件羽绒服;求防寒服一共捐赠了件.三.课后巩固:1.某超市销售水果时,将A、B、C三种水果采用甲、乙、丙三种方式搭配装箱进行销售,每箱的成本分别为箱中ABC三种水果的成本之和,箱子成本忽略不计.甲种方式每箱分别装A、B、C三种水果6kg,3kg,1kg,乙种方式每箱分别装A、B、C三种水果2kg,6kg,2kg.甲每箱的总成本是每千克A成本的12.5倍,每箱甲的销售利润率为20%,每箱甲比每箱乙的售价低25%,丙每箱在成本上提高40%标价后,打八折销售获利为每千克A成本的1.2倍,当销售甲、乙、丙三种方式的水果数量之比为2:3:3时,则销售的总利润率为.2.2018年9月,为鼓励学生努力学习,将来为国家作出更大贡献,重庆二外设立了“力宏奖学金”其中科技创新发明奖共有60人获奖,原计划一等奖5人,二等奖15人,三等奖40人,后来经校长会研究决定,在奖项总奖金不变的情况下,各顶级获奖人数实际调整为:一等奖10人,二等奖20人,三等奖30人.调整后一等奖每人奖金降低80元,二等奖每人奖金降低50元,三等奖每人奖金降低30元.调整前二等奖每人奖金比三等奖每人奖金多70元,则调整后一等奖每人奖金比二等奖每人奖金多元.3.A,B,C三种大米的售价分别为40元/kg、50元/kg、70元/kg,其中B,C两种大米的进价为40元/kg、50元/kg,经核算,三种大米的总利润相同,且A,B两种大米的销售量之和是C种大米之和的6倍,则A种大米的进价是.不定方程精选题型(第二课时)一.例题精析:例 1. 有铅笔、练习本、圆珠笔三种学习用品,若购铅笔3支,练习本7本,圆珠笔1支共需3.15元;若购铅笔4支,练习本10本,圆珠笔1支共需4.2元,那么,购铅笔、练习本、圆珠笔各1件共需 1.05元.【分析】等量关系为:3×铅笔的单价+7×练习本的单价+1×圆珠笔的单价=3.15;4×铅笔的单价+10×练习本的单价+1×圆珠笔的单价=4.2,把两个方程相减后乘3,再让第2个方程减去得到的方程可得购铅笔、练习本、圆珠笔各1件共需的钱数.例2.晨光文具店有一套体育用品:1个篮球,1个排球和1个足球,一套售价300元,也可以单独出售,小攀同学共有50元、20元、10元三种面额钞票各若干张.如果单独出售,每个球只能用到同一种面额的钞票去购买.若小面额的钱的张数恰等于另两种面额钱张数的乘积,那么所有可能中单独购买三个球中所用到的钱最少的一个球是60元.【分析】设50元、20元、10元的钞票分别有x、y、z张,然后根据总售价列出一个方程,再根据三者之间的关系列出一个方程组成三元一次方程组,整理消掉z,再根据x、y都是整数讨论求解即可.例3.一辆客车、一辆货车和一辆小轿车在一条笔直的公路上朝同一方向匀速行驶,在某一时刻,客车在前,小轿车在后,货车在客车与小轿车的正中间,过了10分钟,小轿车追上了货车;又过了5分钟,小轿车追上客车;再过t 分钟,货车追上了客车,则t=15.【分析】由于在某一时刻,货车在前,小轿车在后,客车在货车与小轿车的中间,所以设在某一时刻,货车与客车、小轿车的距离均为s千米,小轿车、货车、客车的速度分别为a、b、c(千米/分),由过了10分钟,小轿车追上了客车可以列出方程10(a﹣b)=s,由又过了5分钟,小轿车追上了货车列出方程15(a﹣c)=2s,由再过t分钟,客车追上了货车列出方程(t+10+5)(b﹣c)=s,联立所有方程求解即可求出t的值.例4.一次数学比赛,有两种给分方法:一种是答对一题给5分,不答给2分,答错不给分;另一种是先给40分,答对一题给3分,不答不给分,答错扣1分,用这两种方法评分,某考生都得81分,这张试卷共有22题.【分析】此题可以设答对a题,未答b题,答错c题未知数,列出方程组,进行推理可得:5a+2b=81①,40+3a﹣c=81②,由①②推出a的取值范围,并确定处a 的值,从而推出b、c的值,解决问题.二.课堂精练:1.某超市分两次购进一批月饼礼盒.第一次购买了A、B两种月饼礼盒,用去17670元;第二次购买了C、D两种月饼礼盒,用去11310元,其中A、B两种月饼礼盒的数量分别与C、D两种礼盒的数量相等,且A种月饼礼盒与D种礼盒的进价相同,B种月饼礼盒与C种礼盒的进价相同.若A、B两种礼盒的进价之和为315元,则该超市购进的这批礼盒一共有盒.2.我国的经济总量已居世界第二,人民富裕了,很多家庭都拥有多种车型.小明家有A、B、C三种车型,已知3辆A型车的载重量与4辆B型车的载重量之和刚好等于2辆C型车的载重量;4辆B型车的载重量与1辆C型车的载重量之和刚好等于6辆A型车的载重量,现有一批货物,原计划用C型车5次可全部运完,由于C型车另有运输任务,现在安排A型车单独装运9次,余下的货物由B型车单独装运刚好可以全部运完,则B型车需单独装运次(每辆车每次都满载重量).3.今年是天猫双十一创立以来的第11年,现在,已经彻底改变了中国人这一天的生活.某商家为迎接双十一活动准备购进一批服装,清理库存有A,B,C三种服装,其中服装C的数量为总库存数的,根据市场预测再购进A,B,C三种服装的数量之比为5:4:7,则购进后A的总数量为购进后三种服装总量的,B的新购数量与购进后三种服装总数量之比为2:17,则购进后B的总数量与购进后C的总数量之比为.三.课后巩固:1.春节即将来临时,某商人抓住商机购进甲、乙、两三种糖果,已知销售甲糖果的利润率为10%,乙糖果的利润率为20%,丙糖果的利润率为30%,当售出的甲、乙、丙糖果重量之比为1:3:1时,商人得到的总利润率为22%;当售出的甲、乙、丙糖果重量之比为3:2:1时,商人得到的总利率为20%.那么当售出的甲、乙、丙糖果重量之比为5:1:1时,这个商人得到的总利润率为.2.育德文具厂生产的一种文具套装深受学生喜爱,已知该文具套装一套包含有1个笔袋,2只笔,3个笔记本,巅峰文具超市向该厂订购了一批文具套装,需要厂家在15天内生产完该套装并交货.育德文具厂将员工分为A、B、C三个组,分别生产笔袋、笔、笔记本,他们于某天零点开始工作,每天24小时轮班连续工作(假设每小时工作效率相同),若干天后的零点A组完成任务,再过几天后(不少于一天)的中午12点B组完成低务,再过几天(不少于一天)后的6时C组完成任务.已知A、B、C三个组每天完成的任务数分别是270个、360个、360个,则巅峰文具超市一共订购了套文具套装.3.某水稻种植中心培育了甲、乙、丙三种水稻,将这三种水稻分别种植于三块大小各不相同的试验田里.去年,三种水稻的平均亩产量分别为300kg,500kg,400kg,总平均亩产量为450kg,且丙种水稻的的总产量是甲种水稻总产量的4倍,今年初,研究人员改良了水稻种子,仍按去年的方式种植,三种水稻的平均亩产量都增加了.总平均亩产量增长了20%,甲、丙两种水稻的总产量增长了30%,则乙种水稻平均亩产量的增长率为.不定方程精选题型(第三课时)一.例题精析:例1.购买甲7件,乙3件,丙4件商品共需25元.若购买甲5件,乙1件,丙商品2件共需13元.那么购买甲乙丙商品各一件需6元.【分析】先设一件甲商品x元,乙y元,丙z元,然后根据题意列出方程,再解方程即可.例2.2015年5月18日华中旅游博览会在汉召开.开幕式上用到甲、乙、丙三种造型的花束,甲种花束由3朵红花、2朵黄花和1朵紫花搭配而成,乙种花束由2朵红花和2朵黄花搭配而成,丙种花束由2朵红花、1朵黄花和1朵紫花搭配而成.这些花束一共用了580朵红花,150朵紫花,则黄花一共用了430朵.【分析】题中有两个等量关系:甲种盆景所用红花的朵数+乙种盆景所用红花的朵数+丙种盆景所用红花的朵数=580朵,甲种盆景所用紫花的朵数+丙种盆景所用紫花的朵数=150朵.据此可列出方程组,设步行街摆放有甲、乙、丙三种造型的盆景分别有x盆、y盆、z盆,用含x的代数式分别表示y、z,即可求出黄花一共用的朵数.例3.重庆修建园博园期间,需要A、B、C三种不同的植物,如果购买A种植物3盆、B种植物7盆、C种植物1盆,需付人民币315元;如果购买A种植物4盆、B种植物10盆、C种植物1盆,需付人民币420元;某人想购买A、B、C各1盆,需付人民币105元.【分析】设A种植物x元一盆、B种植物y元一盆、C种植物z元一盆,就可以得出3x+7y+z=315,4x+10y+z=420,再由这两个方程构成方程组,再解这个不定方程组求出其解即可.例4.一家小吃店原有三个品种的馄饨,其中菜馅馄饨售价为3元/碗,鸡蛋馅馄饨售价为4元/碗,肉馅馄饨售价为5元/碗,现该店新增了由上述三个品种搭配而成的混合馄饨,每碗都有10个馄饨.那么共有3种搭配得到定价是3.8元的混合馄饨(每种馄饨至少有一个).【分析】设菜馅馄饨x个,鸡蛋馅馄饨y个,鸡蛋馅馄饨z 个,根据题意列出方程组,解方程组即可.二.课堂精练:1.过年了,甲、乙、丙三人相约去买坚果,甲买了3袋A 坚果、3袋B坚果和1袋C坚果,乙买了4袋A坚果、1袋B坚果和1袋C坚果,丙买了3袋B坚果和7袋C坚果.三人结账时发现:甲和乙总共消费200元,丙比乙多消费100元,如果A、B、C三种坚果各3袋组合成坚果礼盒出售,每种坚果均可在原价的基础上打九折,则每盒坚果礼盒的售价是元.2. 甲、乙、丙三人到商店去买东西,每人都花了整数元,他们一共花了32元.甲、乙两人花费的差额(即两人所花钱的差的绝对值,下同)是19元,乙、丙两人花费的差额是7元,甲、丙两人花费的差额是12元,则甲花费了21元.【分析】由于19=7+12,则分两种情况:1、甲比乙少19,则乙比丙多7元,甲比丙少12元,2、甲比乙多19,则乙比丙少7元,甲比丙多12元,进而得出答案.3.现有甲、乙、丙三种含铜比例不同的合金.若从甲、乙、丙三种合金中各切下一块重量相等的合金,并将切下来的三块合金放在一起熔炼后就成为含铜量为12%的合金;若从甲、乙、丙三种合金中按3:2:5的重量之比各切取一块,将其熔炼后就成为含铜量为9%的合金.那么若从甲、乙两种合金中按重量之比为2:3各切取一块将其熔炼后的合金的含铜百分比是18%.【分析】设甲合金含铜量为x%、乙合金含铜量为y%、丙合金含铜量为z%.则依据“三块合金放在一起熔炼后就成为含铜量为12%的合金、甲、乙、丙三种合金中按3:2:5的重量之比各切取一块,将其熔炼后就成为含铜量为9%的合金.”列出方程组并解答.三.课后巩固:1.有甲、乙、丙三种货物,若购甲3件,乙7件,丙1件共需630元;若购甲4件,乙10件,丙1件共需840元,现购甲、乙、丙各一件共需210元.【分析】假设购甲每件x元,购乙每件y元,购丙每件z元.列方程组得:,然后求得x+y+z的值.2.有甲、乙、丙三种商品,如果购甲3件、乙2件,丙1件共需315元钱,购甲1件、乙2件、丙3件共需285元钱,那么购甲、乙、丙三种商品各一件共需150元钱.【分析】设出购甲、乙、丙三种商品各一件的未知数,建立方程组,整体求解.3.某商店将录音机、钢笔、书包三种物品降价促销.若购买录音机3台,钢笔6支,书包2个,共需302元;若买录音机5台,钢笔11支,书包3个,共需508元.则购买录音机1台、钢笔1支、书包1个共需96元.【分析】设收录机、钢笔和书包三种物品的单价分别为x、y 和z元,继而根据购买收录机3台,钢笔6支,书包2个共需302元,购买收录机5台,钢笔11支,书包3个共需508元,列出方程组,进而求解即可.第一课时参考答案与试题解析1.古人对付秋燥的饮食良方:“朝朝淡盐水,晚晚蜂蜜水”.秋天即将来临时,某商人抓住商机购进甲、乙、丙三种蜂蜜,已知销售每瓶甲蜂蜜的利润率为10%,每瓶乙蜂蜜的利润率为20%,每瓶丙蜂蜜的利润率为30%.当售出的甲、乙、丙蜂蜜瓶数之比为1:3:1时,商人得到的总利润率为22%;当售出的甲、乙、丙蜂蜜瓶数之比为3:2:1时,商人得到的总利润率为20%.那么当售出的甲、乙、丙蜂蜜瓶数之比为5:6:1时,这个商人得到的总利润率为19%.【分析】设甲、乙、丙三种蜂蜜的进价分别为a、b、c,丙蜂蜜售出瓶数为cx,则当售出的甲、乙、丙蜂蜜瓶数之比为1:3:1时,甲、乙蜂蜜售出瓶数分别为ax、3bx;当售出的甲、乙、丙蜂蜜瓶数之比为3:2:1时,甲、乙蜂蜜售出瓶数分别为3ax、2bx;当售出的甲、乙、丙蜂蜜瓶数之比为5:6:1时,甲、乙蜂蜜售出瓶数分别为5ax、6bx;列出方程,解方程求出,即可得出结果.【解答】解:设甲、乙、丙三种蜂蜜的进价分别为a、b、c,丙蜂蜜售出瓶数为cx,由题意得:,解得:,∴===19%,故答案为:19%.2.我校创造节插花艺术比赛中同学们制作了若干个甲、乙、丙三种造型的花篮.甲种花篮由9朵玫瑰花、16朵水仙花和10朵百合花搭配而成,乙种花篮由6朵玫瑰花、8朵水仙花搭配而成.丙种花篮由6朵玫瑰花、12朵水仙花和10朵百合搭配而成.这些花篮一共用了240朵玫瑰花,300朵百合花,则水仙花一共用了440朵.【分析】根据题意,可以列出相应的方程组,然后变形,即可求得水仙花一共用了多少朵.【解答】解:设甲种花篮a个,乙种花篮b个,丙种花篮c个,,化简,得,(①+②)×4,得16a+8b+12c=440,∵水仙花一共用了:16a+8b+12c,∴水仙花一共用了440朵,故答案为:440.3.冬季降至,贫困山区恶劣的地理环境加之其落后的交通条件,无疑将使得山区在漫长冬季里物资更加匮乏,“让冬天不冷让爱心永驻”,重庆市公益组织心驿家号召全市人民为贫困山区的孩子们捐赠过冬衣物,本次捐赠共收集了11600件棉衣、7500件羽绒服及防寒服若干,自愿者将所有衣物分成若干A、B、C类组合,由自愿者们分别送往交通极其不便利的各个山区,一个A类组合含有60件棉衣,80件防寒服和50件羽绒服;一个B类组合含有40件棉衣,40件防寒服;一个C类组合含有40件棉衣,60件防寒服,50件羽绒服;求防寒服一共捐赠了14600件.【分析】根据题意,可以先设A类组合x个,B类组合y 个,C类组合z个,然后根据题意可以列出三元一次方程组,从而可以得到x、z与y的关系,然后即可求得需要防寒服多少件,本题得以解决.【解答】解:设A类组合x个,B类组合y个,C类组合z 个,,化简,得,∴需要的防寒服为:80x+40y+60z=80(280﹣2y)+40y+60(2y﹣130)=22400﹣160y+40y+120y﹣7800=14600,故答案为:14600.4.某超市销售水果时,将A、B、C三种水果采用甲、乙、丙三种方式搭配装箱进行销售,每箱的成本分别为箱中ABC三种水果的成本之和,箱子成本忽略不计.甲种方式每箱分别装A、B、C三种水果6kg,3kg,1kg,乙种方式每箱分别装A、B、C三种水果2kg,6kg,2kg.甲每箱的总成本是每千克A成本的12.5倍,每箱甲的销售利润率为20%,每箱甲比每箱乙的售价低25%,丙每箱在成本上提高40%标价后,打八折销售获利为每千克A成本的1.2倍,当销售甲、乙、丙三种方式的水果数量之比为2:3:3时,则销售的总利润率为23.6%.【分析】分别设每千克A、B、C三种水果的成本为x、y、z,设丙每箱成本为m,然后根据题意将甲、乙、丙三种方式的每箱成本和利润用x表示出来即可求解.【解答】解:设每千克A、B、C三种水果的成本分别为x、y、z,依题意得:6x+3y+z=12.5x,∴3y+z=6.5x,∴每箱甲的销售利润=12.5x•20%=2.5x乙种方式每箱成本=2x+6y+2z=2x+13x=15x,乙种方式每箱售价=12.5x•(1+20%)÷(1﹣25%)=20x,∴每箱乙的销售利润=20x﹣15x=5x,设丙每箱成本为m,依题意得:m(1+40%)•0.8﹣m=1.2x,解得m=10x.∴当销售甲、乙、丙三种方式的水果数量之比为2:3:3时,总成本为:12.5x•2+15x•3+10x•3=100x,总利润为:2.5x•2+5x•3+1.2x•3=23.6x,销售的总利润率为=23.6%,故答案为:23.6%.5.2018年9月,为鼓励学生努力学习,将来为国家作出更大贡献,重庆二外设立了“力宏奖学金”其中科技创新发明奖共有60人获奖,原计划一等奖5人,二等奖15人,三等奖40人,后来经校长会研究决定,在奖项总奖金不变的情况下,各顶级获奖人数实际调整为:一等奖10人,二等奖20人,三等奖30人.调整后一等奖每人奖金降低80元,二等奖每人奖金降低50元,三等奖每人奖金降低30元.调整前二等奖每人奖金比三等奖每人奖金多70元,则调整后一等奖每人奖金比二等奖每人奖金多370元.【分析】设原来一等奖为x元,二等奖为y元,三等奖为z元,则调整后一等奖为(x﹣80)元,二等奖为(y﹣50)元,三等奖为(z﹣30)元.构建方程组,求出x﹣y即可解决问题.【解答】解:设原来一等奖为x元,二等奖为y元,三等奖为z元,则调整后一等奖为(x﹣80)元,二等奖为(y ﹣50)元,三等奖为(z﹣30)元.由题意:,整理得,∴x﹣y=400,∴调整后一等奖每人奖金比二等奖每人奖金多:(x﹣80)﹣(y﹣50)=x﹣y﹣30=370(元),故答案为370.6.A,B,C三种大米的售价分别为40元/kg、50元/kg、70元/kg,其中B,C两种大米的进价为40元/kg、50元/kg,经核算,三种大米的总利润相同,且A,B两种大米的销售量之和是C种大米之和的6倍,则A种大米的进价是35.【分析】可设A种大米的进件是m元/kg,且A种大米销售了xkg,B大米销售了ykg,则C大米销售了(x+y)kg,根据三种大米的总利润相同,列出方程.先解方程得出x =3y,从而求出m的值.【解答】解:设A种大米的进件是m元/kg,且A种大米销售了xkg,B大米销售了ykg,则C大米销售了(x+y)kg,三种大米每千克的利润分别是(40﹣m)元、10元、20元,根据题意知:10y=(40﹣m)x=20×(x+y),即由10y=(x+y),解得x=2y,代入10y=(40﹣m)x中,解得m=35.故答案为:35.第二课时1.某超市分两次购进一批月饼礼盒.第一次购买了A、B 两种月饼礼盒,用去17670元;第二次购买了C、D两种月饼礼盒,用去11310元,其中A、B两种月饼礼盒的数量分别与C、D两种礼盒的数量相等,且A种月饼礼盒与D种礼盒的进价相同,B种月饼礼盒与C种礼盒的进价相同.若A、B两种礼盒的进价之和为315元,则该超市购进的这批礼盒一共有184盒.【分析】根据A、B两种礼盒的进价之和为315元,设A 种月饼礼盒的进价为x元/盒,可以表示B种月饼礼盒的进价,因为A种月饼礼盒与D种礼盒的进价相同,B种月饼礼盒与C种礼盒的进价相同,可以表示C和D礼盒的进价,根据A、B两种月饼礼盒的数量分别与C、D两种礼盒的数量相等,再设两个未知数表示A种月饼礼盒和B种月饼礼盒,列方程组,根据题意可知:只要知道2y+2z的值就可以,因此将方程组相加可得结论.【解答】解:设A种月饼礼盒的进价为x元,则B种月饼礼盒与C种礼盒的进价都是(315﹣x)元,D种月饼礼盒的进价为x元,设购进y盒A种月饼礼盒,z盒B种月饼礼盒,则购进y 盒C种月饼礼盒,z盒D种月饼礼盒,根据题意得:,化简得:,①+②得:315z+315y=28980,y+z=92,∴2y+2z=184,答:则该超市购进的这批礼盒一共有184盒.故答案为:184.2.我国的经济总量已居世界第二,人民富裕了,很多家庭都拥有多种车型.小明家有A、B、C三种车型,已知3辆A型车的载重量与4辆B型车的载重量之和刚好等于2辆C型车的载重量;4辆B型车的载重量与1辆C型车的载重量之和刚好等于6辆A型车的载重量,现有一批货物,原计划用C型车5次可全部运完,由于C型车另有运输任务,现在安排A型车单独装运9次,余下的货物由B型车单独装运刚好可以全部运完,则B型车需单独装运8次(每辆车每次都满载重量).【分析】设每辆A型车满载重量为a,设每辆B型车满载重量为b,设每辆C型车满载重量为c,原计划用C型车5次可全部运完,由于C型车另有运输任务,现在安排A型车单独装运9次,余下的货物由B型车单独装运刚好可以全部运完,则B型车需单独装运x次,根据题意列出方程组解得x便可.【解答】解:设每辆A型车满载重量为a,设每辆B型车满载重量为b,设每辆C型车满载重量为c,原计划用C 型车5次可全部运完,由于C型车另有运输任务,现在安排A型车单独装运9次,余下的货物由B型车单独装运刚好可以全部运完,则B型车需单独装运x次,根据题意得,,②﹣①,得9a=3c,∴a=c,。

北师大版八年级数学(下册)2.3不等式的解集 教案设计

北师大版八年级数学(下册)2.3不等式的解集 教案设计
(2)有“=”用实心点,没有“=”用空心圈.
以上两个解集正确的表示方法为:
根据不等式的基本性质求不等式的解集,并把解集表示在数轴上。
(1)x-2≥-4(2)2x≤8(3)-2x-2>-10
解:(1)x≥-2
(2)x≤4
(3)x<4
课堂练习
1、判断正误:
(1)不等式x-1﹥0有无数个解(2)不等式2x-3≤0的解集为x≥
师:确实,“能使不等式成立的未知数的值,叫做不等式的解。”
燃放某种礼花弹时,为了确保安全,人在点燃导火线后要在燃放前转移到10m以外的安全区域,已知导火线的燃烧速度为0.02 m/s,燃放者离开的速度为4 m/s,那么导火线的长度应为多少厘米?
引导分析:设导火线长度为x cm,燃放者转移到安全区域需要的时间最少为 (s),导火线燃烧的时间为 s,要使燃放者转移到安全地带,必须有: > 。
生:答(略)。(多媒体呈现)
师:我们已学习了不等式的基本概念和性质。这节课我们来研究不等式的解的相关知识。
师:方程的解的定义是什么?
生:使得方程左右两边的值相等的未知数的值,叫做方程的解。
师:换句话说,方程的解是使得方程成立的未知数的值。
师:类似地,你认为什么是不等式的解?
生:能够使不等式成立的未知数的值就是不等式的解。
生1:x=6、8是不等式x>5的解。x=-2、1、5不是不等式x>5的解。
生2:x=12、6.3、20是不等式x>5的解。不等式x>5的解有无数个。它们都比5大。
(二)导入新知:
通过对以上问题情境的探究,我们不难看出只要比5大的数都能使不等式x>5成立.那么,大家能否根据方程的解来类推出不等式的解呢?不等式的解唯一吗?
解:设导火线的长度为x㎝,则:

新浙教版八年级上册初中数学 3-2 不等式的基本性质 教学课件

新浙教版八年级上册初中数学 3-2 不等式的基本性质 教学课件
知识点3 不等式的基本性质3
完成下列填空:
2×(-1)___>____3×(-1); 2×(-5)___>____3×(-5);
2 ( 1 ) __>____3 ( 1 ); 你发现2了什么?请再举2几例试一试,还有类似的结
论吗?与同伴交流.
第十六页,共二十四页。
新课讲解
不等式的基本性质3 不等式两边都乘(或除以)同一个负数,不等
号的方向改变.
第十七页,共二十四页。
新课讲解
典例分析
例 将下列不等式化成“x>a”或“x<a”的形式: -2x>3.
解:根据不等式的基本性质3,两边都除以-2,得
x < -.3
2
第十八页,共二十四页。
新课讲解
典例分析
例 已知m<6,解关于x的不等式(m-6)x<m-6.
分析:∵m<6,∴m-6<0,即m-6为负数. 解:∵m<6, ∴m-6<0,即m-6为负数. ∴将(m-6)x<m-6两边同除以(m-6),得x >1.
第十九页,共二十四页。
新课讲解
练一练
将下列不等式化成“x>a”或“x<a”的形式:
(1) x-1>2; (2)-x< 5; (3) x1<3.1 解:(1)x-1>2.根据不等式的基6本性质1,2两边都加上1,
得x-1+1>2+1,即x>3.
(2)-x< 5 .根据不等式的基本性质3,两边都除
6
以-1,得x>-
新课导入
你还记得等式的基本性质吗?
第四页,共二十四页。
新课讲解
知识点1 不等式的基本性质1
如果在不等式的两边都加或都减同一个整式,
那么结果会怎样?请举几例试一试,并与同伴交流.

(完整版)小学奥数-不定方程(教师版)

(完整版)小学奥数-不定方程(教师版)

不定方程如$知识梳理]在列方程组解答应用题时,有两个未知数,就需要有两个方程。

有三个未知数,就需要有三个 方程。

当未知数的个数多于方程的个数时, 这样的方程称为不定方程,为纪念古希腊数学家丢番图,不定方程也称为丢番图方程。

不定方程在小学奥数乃至以后初高中数学的进一步学习中,有着举足 轻重的地位。

而在小学阶段打下扎实的基础,无疑很重要。

不定方程是由于联立方程的条件“不足”而出现的,从一般情况来说,有无数多个解。

不过, 我们要注意到它的“预定义”条件,比如未知项是自然数,比如在数位上的数码不仅是自然数,而 且是一位数等等,甚至题干中直接给出限制条件,这样,就使得不定方程的解“定”下来了。

这种 情况也不排除它的取值不止一种。

不定方程解的情况比较复杂,有时无法得出方程的解,有时又会出现多个解。

如果考虑到题中 以一定条件所限制的范围,会有可能求出唯一的解或几种可能的解(而这类题的限制范围往往与整 数的分拆有很大关系)。

解答这类方程,必须要对题中明显或隐含的条件加以判断、推理,才能正确 求解。

特色讲解]【例1】★求方程5x 2y 27的正整数解。

【解析】因为2y 为偶数,27为奇数,所以5x 为奇数,即x 为奇数x 1x 3 x 5 , ,y 11 y 6 y 1【小试牛刀】求方程 4x + 10y = 34的正整数解【解析】因为4与10的最大公约数为2,而2|34,两边约去2后,得2x + 5y = 17, 5y 的个位是0 或5两种情况,2x 是偶数,要想和为17, 5y 的个位只能是5, y 为奇数即可;2x 的个位为2,所以 x 的取值为1、6、11、16……x= 1 时,17-2x = 15, y = 3, x= 6 时,17-2x = 5 , y = 1 , x= 11 时,17 — 2x = 17 — 22,无解 所以方程有两组整数解为:dx 1 x y 3,y【例2】★ 设A , B 都是正整数,并且满足 A11[解析]3A 11B 17 33333A+11B=17,因为 A 、B 为正整数,所以 A=2, B=1, A+B=3【例3】★ ★(北大附中入学考试真题) 14个大、中、小号钢珠共重 100克,大号钢珠每个重 12克,中号每个重 8克,小号每个重 5克。

§2不定方程课件

§2不定方程课件

43 x 27 y -4的特解x0 (5) (4) 20, y0 8 (4) 32
所以258 x 162 y 24的一切整数解为 x 20 - 27t , y 32 43t (t Z )
2013-12-20 四川文理学院 数财系
ax by c , a , b, c Z , a , b 0 (1)
的方程称为二元一次不定方程
2013-12-20 四川文理学院 数财系
4
例1.判断哪些是不定方程
(1) 7 x 4 y 100 ( x, y Z ) (2) 4 x1 6 x2 10 x3 20 x4 15 ( x1 , x4 Z ) (3) x 2 y 3 z 7 ( x, y, z Z ) (4) 3m 15 n 17 (5) 3 x 2 7 xy 2 x 5 y 17 0( x, y Z ) ( 6) (7 ) x y z ( x, y , z Z )
所以7 x 4 y 100的特解x0 - 1 100 -100 , ( ) y0 2 100 200
所以7 x 4 y 100的一切整数解为 x -100 - 4t , y 200 7t
2013-12-20
(t Z )
四川文理学院 数财系
16
例4 求方程 258 x 162 y 24 的一切整数解
变量代换法 解:原方程可化为 88 x 81 y 1
令 x y z, 则方程可化为 7 x 81z 1.
再令u x 11z,则方程可化为 7u 4z 1
x y z 100 1 5 x 3 y 3 z 100

不定方程——利润率相关问题 (教师版)

不定方程——利润率相关问题 (教师版)

不定方程——利润率问题1.一家快餐店销售、、A B C 三种套餐,其中A 套餐包含一荤两素,B 套餐包含两荤一素,C 套餐包含两荤两素,每份套餐中一荤的成本相同,一素的成本也相同,已知一份C 套餐的售价是一份A 套餐和一份B 套餐售价之和的2,3一天下来,店长发现A 套餐和B 套餐的销量相同,且,A B 套餐的利润和是C 套餐利润的两倍,当天的总利润率是60%.第二天店内搞活动,C 套餐的售价打五折,,A B 套餐的售价均不变,当、、A B C 三种套餐的销量相同时,总利润率为________.【答案】28%【解析】【分析】设荤菜的成本为m 元,素菜的成本为n 元,荤菜的利润率为x ,素菜的利润率为y ,A 套餐和B 套餐的数量为a 份,C 套餐的数量为b 份,根据,A B 套餐的利润和是C 套餐利润的两倍得到34b a =,再根据当天的总利润率是60%可求得mx +ny =0.6(m +n ),进而求出一份A 、B 、C 的售价,设、、A B C 三种套餐的销量都为t 份,根据新的售价列出总利润率的代数式,将代数式化简即可求得答案.【详解】解:设一份荤菜的成本为m 元,一份素菜的成本为n 元,一份荤菜的利润率为x ,一份素菜的利润率为y ,A 套餐和B 套餐的数量为a 份,C 套餐的数量为b 份,∵,A B 套餐的利润和是C 套餐利润的两倍,∵3(mx +ny )·a =2×2(mx +ny )·b , 整理得:34b a =,∵当天的总利润率是60%,∵3(mx +ny )·a +2(mx +ny )·b =60%·[3(m +n )·a +2(m +n )·b ],整理得mx +ny =0.6(m +n ),∵一份A 套餐和一份B 套餐售价之和为3(1)3(1)3[()()] 4.8()m x n y m n mx ny m n +++=+++=+元,∵一份C 套餐的售价是一份A 套餐和一份B 套餐售价之和的2,3∵一份C 套餐的售价为2 4.8() 3.2()3m n m n ⨯+=+元, ∵第二天店内搞活动,C 套餐的售价打五折,,A B 套餐的售价均不变,∵第二天的一份A 套餐和一份B 套餐售价之和为4.8()m n +元,一份C 套餐的售价为1.6()m n +元, ∵、、A B C 三种套餐的销量相同 ,∵设、、A B C 三种套餐的销量都为t 份,则总利润率为:4.8() 1.6()13()2()t m n t m n t m n t m n ⋅++⋅+-⋅++⋅+ = 6.4()15()t m n t m n ⋅+-⋅+ =1.281-=0.28=28%,故答案为:28%.【点睛】本题综合性较强,考查了营销问题中的利润问题,用利润的基本等量关系列出关系式,设出相应的未知数,根据利润率=利润÷成本=售价÷成本-1是解决本题的关键.2.疫情期间,为了降低外出感染风险,各大超市开通了送货到小区的便民服务.某超市推出A 、B 、C 三种蔬菜,并将A 、B 、C 三种蔬菜搭配、装袋,采用甲、乙、丙三种袋装进行销售.已知每袋的成本分别为袋中A 、B 、C 三种蔬菜的成本之和,且袋子的成本忽略不计.每袋甲分别装A 、B 、C 三种蔬菜3斤、1斤、1斤,每袋乙分别装A 、B 、C 三种蔬菜1斤、2斤、2斤.每袋甲的总成本是每斤A 成本的12倍,每袋甲的利润率为25%.每袋甲比每袋乙的售价低25%.每袋丙在成本上提高40%标价后打八折销售,每袋的获利为每斤A 成本的1.2倍.当销售甲、乙、丙三种袋装蔬菜的数量之比为1:2:5时,则销售的总利润率为______.【答案】11%【解析】【分析】分别设每斤A 、B 、C 三种蔬菜的成本为a 、b 、c ,设丙每袋成本为m ,然后根据题意将甲、乙、丙三种袋装的每袋成本和利润用a 表示出来即可求解.【详解】解:设每斤A 、B 、C 三种蔬菜的成本分别为a 、b 、c ,依题意得:3a +b +c =12a ,∴b +c =9a ,∴每袋甲的销售利润=12a •25%=3a ,∴每袋甲的销售价为:12a +3a =15a ,依题意得,乙种袋装每袋成本=a +2b +2c =a +18a =19a ,∵每袋甲比每袋乙的售价低25%,∴乙种袋装每袋售价=15a ÷(1﹣25%)=20a ,∴每袋乙的销售利润=20a ﹣19a =a ,设每袋丙成本为m ,依题意得:m (1+40%)•0.8﹣m =1.2a ,解得m =10a .∴当销售甲、乙、丙三种袋装蔬菜的数量之比为1:2:5时,总成本为:12a•1+19a•2+10a•5=100a,总利润为:3a•1+a•2+1.2a•5=11a,销售的总利润率为11100aa×100%=11%,故答案为:11%.【点睛】本题主要考查了三元一次方程的实际应用,解题时要认真审题,分析题意,找到合适的等量关系是解决问题的关键.3.2021年11月2日,重庆市九龙坡区、长寿区分别新增1例新冠本土确诊.当疫情出现后,各级政府及有关部门高度重视,坚决阻断疫情传播.开州区赵家工业园区一家民营公司为了防疫需要,引进一条口罩生产线生产口罩,该产品有三种型号,通过市场调研后,按三种型号受消费者喜爱的程度分别对A型、B型、C型产品在成本的基础上分别加价20%,30%,45%出售(三种型号的成本相同).经过一个月的经营后,发现C型产品的销量占总销量的37,且三种型号的总利润率为35%.第二个月,公司决定对A型产品进行升级,升级后A型产品的成本提高了25%,销量提高了20%;B型、C型产品的销量和成本均不变,且三种产品在第二个月成本基础上分别加价20%,30%,50%出售,则第二个月的总利润率为________.【答案】34%【解析】【分析】由题意得出A型、B型、C型三种型号产品利润率分别为20%,30%,45%,设A型、B型、C型三种型号产品原来的成本为a,A产品原销量为x,B产品原销量为y,C产品原销量为z,由题意列出方程组,解得13x zy z⎧=⎪⎨⎪=⎩;第二个月A产品成本为(1+25%)a=54a,B、C的成本仍为a,A产品销量为(1+20%)x=65x,B产品销量为y,C产品销量为z,则可求得第二个月的总利润率.【详解】解:由题意得:A型、B型、C型三种型号产品利润率分别为20%,30%,45%,设A型、B型、C型三种型号产品原来的成本为a,A产品原销量为x,B产品原销量为y,C产品原销量为z,由题意得:20%30%45%35%()3()7ax ay az a x y zx y z z++=++⎧⎪⎨++=⎪⎩,解得:13x zy z⎧=⎪⎨⎪=⎩,第二个月A产品的成本提高了25%,成本为:(1+25%)a=54a,B、C的成本仍为a,A 产品销量为(1+20%)x =65x ,B 产品销量为y ,C 产品销量为z , ∵第二个季度的总利润率为:5620%30%45%455645a x ay az a x ay az ⨯⨯++⨯++ 0.30.30.451.5x y z x y z++=++ 10.30.30.45311.53z z z z z z ⨯++=⨯++ =0.34=34%.故答案为:34%.【点睛】本题考查了利用三元一次方程组解实际问题,正确理解题意,设出未知数列出方程组是解题的关键.4.沁园销售A 、B 、C 三种型号的蛋糕,三月份每个A 型蛋糕售价比成本高10%,每个B 型蛋糕售价比成本高50%,每个C 型蛋糕售价是成本的2倍,经计算,发现三月份三种类型的蛋糕总利润率为25%;四月份B 型蛋糕成本降为三月的80%,但售价仍比四月份成本高50%,结果销量比三月B 型蛋糕少38,而C 型蛋糕成本不变,售价是三月份售价的910,结果销量比三月C 型蛋糕多14,若四月份A 型蛋糕成本、售价、销量均与三月份A 型蛋糕相同,且四月份B 、C 型号蛋糕总利润率为60%,则四月份A 、C 型号蛋糕的总利润率为______.(总利润率=总利润÷总成本)【答案】16%【解析】【分析】设三月份A 、B 、C 三种型号的每个蛋糕的成本分别为x ,y ,z ,则每个A 型蛋糕售价为1.1x ,每个B 型蛋糕售价为1.5y ,每个C 型蛋糕售价为2z ;四月份A 、B 、C 三种型号的每个蛋糕的成本分别为x ,0.8y ,z ,A 、B 、C 三种型号的每个蛋糕的售价分别为1.1x ,1.5×0.8y ,910z ;设三月份A 、B 、C 三种型号蛋糕的销量分别为a ,b ,c ,则四月份A 、B 、C 三种型号蛋糕的销量分别为a ,(1﹣38)b ,(1+14)c ;利用三月份三种类型的蛋糕总利润率为25%和四月份B 、C 型号蛋糕总利润率为60%,列出方程组,得出关系式即可得出结论.【详解】解:设三月份A 、B 、C 三种型号的每个蛋糕的成本分别为x ,y ,z ,则每个A 型蛋糕售价为1.1x ,每个B 型蛋糕售价为1.5y ,每个C 型蛋糕售价为2z ;四月份A、B、C三种型号的每个蛋糕的成本分别为x,0.8y,z,A、B、C三种型号的每个蛋糕的售价分别为1.1x,1.5×0.8y=1.2y,910×2z;设三月份A、B、C三种型号蛋糕的销量分别为a,b,c,则四月份A、B、C三种型号蛋糕的销量分别为a,(1﹣38)b=58b,(1+14)c=54c;∵三月份三种类型的蛋糕总利润率为25%,四月份B、C型号蛋糕总利润率为60%,∵,()()()()1.1 1.5225%5591.20.82841060%550.884a x xb y yc z zax by czb y yc z zy b z c⎧-+-+-=⎪++⎪⎪⎛⎫⎨-+⨯-⎪⎪⎝⎭=⎪⨯+⨯⎪⎩整理得:0.635ax by cz by cz=+⎧⎨=⎩∵ax=403cz.∵四月份A、C型号蛋糕的总利润率为:()59401.10.10.145316% 554054434a x x c z z cz czax czax z c ax cz cz cz⎛⎫-+-⨯+⎪+⎝⎭=== +++故答案为:16%.【点睛】本题主要考查了三元一次方程组的使用,解题的关键在于能够准确找到等量关系列出方程求解.5.重阳佳节来临之际,某糕点店对桂圆味、核桃味、绿豆味重阳糕(分别记为A,B,C)进行混装,推出了甲乙两种盒装重阳糕.盒装重阳糕的成本是盒中所有A,B,C的成本与盒装包装成本之和.每盒甲装有6个A,2个B,2个C,每盒乙装有2个A,4个B,4个C.每盒甲中所有A,B,C的成本之和是1个A成本的15倍,每盒乙的盒装包装成本是每盒甲的盒装包装成本的43倍,每盒乙的利润率为20%.每盒乙的售价比每盒甲的售价高20%.当该店销售这两种盒装重阳糕的总销售额为31000元,总利润率为24%时,销售甲种盒装重阳糕的总利润是___元.【答案】2500.【解析】【分析】设A的单价为x元,B的单价为y元,C的单价为z元,求出乙每盒的重阳糕的成本是甲每盒的重阳糕的成本的4 3,设甲每盒的成本为m,则乙每盒的成本为43m,当销售这两种盒装重阳糕的销售利润率为24%时,该店销售甲的销售量为a盒,乙的销售量为b盒,根据题意列出方程,即可得出结果.【详解】解:设A的单价为x元,B的单价为y元,C的单价为z元,当销售这两种盒装重阳糕的销售利润率为24%时,该店销售甲的销售量为a盒,乙的销售量为b盒,甲每盒装的重阳糕的成本是:15x=6x+2y+2z,化简得:y+z=4.5x,乙每盒装的重阳糕的成本是:2x+4y+4z=2x+4(y+z)=2x+4×4.5x=20x,∵2015xx=43,∴乙每盒的重阳糕的成本是甲每盒的重阳糕的成本的43,∵每盒乙的盒装包装成本是每盒甲的盒装包装成本的43倍,∵乙每盒的成本是甲每盒的成本的43,设甲每盒的成本为m,则乙每盒的成本为43 m,乙每盒的售价为:43m(1+20%)=1.6m,∵每盒乙的售价比每盒甲的售价高20%,∴甲每盒的售价为:1.6120%m=43m,根据甲乙的利润得:(43m﹣m)a+(1.6m﹣43m)b=(ma+43mb)×24%,化简得:0.28ma=0.16mb,∴b=74 a,∵43ma+1.6mb=31000,∴43ma+1.6m×74a=31000,解得:ma=7500,∴销售甲种盒装重阳糕的总利润是:43ma﹣ma=13ma=13×7500=2500(元),故答案为:2500.【点睛】本题考查了二元一次方程组的应用、一元一次方程的应用等知识;由题意列出方程是解题的关键.6.某食品公司为迎接端午节,特别推出三种新品粽子,分别是鲍鱼粽、水果粽、香芋粽,并包装成甲、乙两种盒装礼盒.每盒礼盒的总成本是盒中鲍鱼粽、水果粽、香芋粽三种粽子的成本之和(盒子成本忽略不计).甲礼盒每盒装有3个鲍鱼粽、2个水果粽和2个香芋粽;乙礼盒每盒装有1个鲍鱼粽、4个水果粽和4个香芋粽.每盒甲礼盒的成本正好是1个鲍鱼粽成本的112倍,而每盒甲礼盒的售价是在甲礼盒成本的基础上增加了311.每盒乙礼盒的利润率为20%.当该公司销售这两种盒装礼盒的总利润为24%,且销售甲礼盒的总利润是4500元时,这两种礼盒的总销售额是________元.【答案】37200【解析】【分析】设设1个鲍鱼粽的成本为a 元,1个水果粽的成本为b 元,1个香芋粽的成本为c 元,分别表示出A 、B 礼盒的总成本和总利润,通过题干的已知条件找到等量关系列出方程即可进行求解.【详解】解:设1个鲍鱼粽的成本为a 元,1个水果粽的成本为b 元,1个香芋粽的成本为c 元,则每盒甲礼盒的成本为(3a +2b +2c )元,每盒乙礼盒的成本为(a +4b +4c )元,∵每盒甲礼盒的成本正好是1个鲍鱼粽成本的112倍, ∵3a +2b +2c =112a , ∵4b +4c =5a ,∵a +4b +4c =6a ,∵每盒甲礼盒的售价是在甲礼盒成本的基础上增加了311. ∵每盒甲礼盒的售价为:(1+311)112a =7a , ∵每盒乙礼盒的利润率为20%∵每盒乙礼盒的售价为:(1+20%)6a =7.2a ,设销售甲礼盒m 个,乙礼盒n 个,∵销售甲礼盒的总利润是4500元∵(7a -5.5a )m =4500,∵am =3000;∵销售这两种盒装礼盒的总利润为24%,∵4500+(7.2a -6a )n =()24% 5.5am+6an ⨯∵an =2250,∵两种礼盒的总销售额=7am +7.2an =7×3000+7.2×2250=37200(元)故答案为:37200元【点睛】本题考查三元一次方程组的应用,学会利用已知条件进行相互转化是解本题的关键,综合性较强,有一定难度.。

小学奥数-不定方程(教师版)

小学奥数-不定方程(教师版)

小学奥数-不定方程(教师版)不定方程是解决列方程组应用问题时的一种方法。

当未知数的个数多于方程的个数时,就会出现不定方程。

不定方程也称为丢番图方程,以纪念古希腊数学家丢番图。

在数学研究中,不定方程有着举足轻重的地位。

因此,在小学阶段打下扎实的基础非常重要。

不定方程出现的原因是联立方程的条件不足,因此一般情况下会有无数多个解。

但是,我们需要注意到它的预定义条件,如未知项是自然数,数码不仅是自然数,而且是一位数等等。

题干中也可能给出限制条件,这样就使得不定方程的解得以确定。

然而,这种情况下的解不止一种。

不定方程的解有时比较复杂,有时无法得出方程的解,有时又会出现多个解。

如果考虑到题中的限制范围,会有可能求出唯一的解或几种可能的解。

解答这类方程必须要对题中明显或隐含的条件加以判断、推理,才能正确求解。

例如,求解方程5x+2y=27的正整数解。

因为2y为偶数,27为奇数,所以5x为奇数,即x为奇数。

因此,x可以取1、3、5等奇数,对应的y分别为11、6、1.再例如,求解方程4x+10y=34的正整数解。

因为4与10的最大公约数为2,而2可以整除34,因此两边约去2后,得到2x+5y=17.5y的个位数只能是0或5,而2x的个位数是2,因此x的取值为1、6、11等。

代入方程可得到两组整数解:x=1时,y=3;x=6时,y=1.最后,以一个实际问题为例,假设有14个大、中、小号钢珠共重100克,大号钢珠每个重12克,中号每个重8克,小号每个重5克。

问:大、中、小号钢珠各多少个?这是一个不定方程问题。

设大、中、小号钢珠的个数分别为a、b、c,则可以列出方程12a+8b+5c=100.解方程可得a=2,b=1,c=6,因此大号钢珠有2个,中号有1个,小号有6个。

y≤15)又因为小花狗和波斯猫每次见面都要各自叫两声,所以总共叫声数为4x+3y。

又知总共见面次数为x+y,所以4x+3y=2(x+y),化简得2x=3y,因此x和y必须同时是3的倍数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不定方程与不定方程组教学目标1.利用整除及奇偶性解不定方程2.不定方程的试值技巧3.学会解不定方程的经典例题知识精讲一、知识点说明历史概述不定方程是数论中最古老的分支之一.古希腊的丢番图早在公元3世纪就开始研究不定方程,因此常称不定方程为丢番图方程.中国是研究不定方程最早的国家,公元初的五家共井问题就是一个不定方程组问题,公元5世纪的《张丘建算经》中的百鸡问题标志着中国对不定方程理论有了系统研究.宋代数学家秦九韶的大衍求一术将不定方程与同余理论联系起来.考点说明在各类竞赛考试中,不定方程经常以应用题的形式出现,除此以外,不定方程还经常作为解题的重要方法贯穿在行程问题、数论问题等压轴大题之中.在以后初高中数学的进一步学习中,不定方程也同样有着重要的地位,所以本讲的着重目的是让学生学会利用不定方程这个工具,并能够在以后的学习中使用这个工具解题。

二、不定方程基本定义1、定义:不定方程(组)是指未知数的个数多于方程个数的方程(组)。

2、不定方程的解:使不定方程等号两端相等的未知数的值叫不定方程的解,不定方程的解不唯一。

3、研究不定方程要解决三个问题:①判断何时有解;②有解时确定解的个数;③求出所有的解三、不定方程的试值技巧1、奇偶性2、整除的特点(能被2、3、5等数字整除的特性)3、余数性质的应用(和、差、积的性质及同余的性质)例题精讲模块一、利用整除性质解不定方程【例 1】求方程2x-3y=8的整数解【考点】不定方程【难度】2星【题型】解答【解析】 方法一:由原方程,易得 2x =8+3y ,x =4+32y ,因此,对y 的任意一个值,都有一个x 与之对应,并且,此时x 与y 的值必定满足原方程,故这样的x 与y 是原方程的一组解,即原方程的解可表为:342x ky k ⎧=+⎪⎨⎪=⎩,其中k 为任意数.说明 由y 取值的任意性,可知上述不定方程有无穷多组解. 方法二:根据奇偶性知道2x 是偶数,8为偶数,所以若想2x -3y =8成立,y 必为偶数,当y =0,x =4;当y =2,x =7;当y =4,x =10……,本题有无穷多个解。

【答案】无穷多个解【巩固】 求方程2x +6y =9的整数解【考点】不定方程 【难度】2星 【题型】解答【解析】 因为2x +6y =2(x +3y),所以,不论x 和y 取何整数,都有2|2x +6y ,但29,因此,不论x 和y 取什么整数,2x +6y 都不可能等于9,即原方程无整数解. 说明:此题告诉我们并非所有的二元一次方程都有整数解。

【答案】无整数解【例 2】 求方程4x +10y =34的正整数解【考点】不定方程 【难度】2星 【题型】解答【解析】 因为4与10的最大公约数为2,而2|34,两边约去2后,得 2x +5y =17,5y 的个位是0或5两种情况,2x 是偶数,要想和为17,5y 的个位只能是5,y 为奇数即可;2x 的个位为2,所以x 的取值为1、6、11、16……x =1时,17-2x =15,y =3, x =6时,17-2x = 5,y =1, x =11时,17-2x =17 -22,无解所以方程有两组整数解为:16,31x x y y ==⎧⎧⎨⎨==⎩⎩【答案】16,31x x y y ==⎧⎧⎨⎨==⎩⎩【巩固】 求方程3x +5y =12的整数解【考点】不定方程 【难度】2星 【题型】解答【解析】 由3x +5y =12,3x 是3的倍数,要想和为12(3的倍数),5y 也为3的倍数,所以y 为3的倍数即可,所以y 的取值为0、3、6、9、12…… y =0时,12-5y =12,x =4, x =3时,12-5y =12-15,无解所以方程的解为:40x y =⎧⎨=⎩【答案】40x y =⎧⎨=⎩【巩固】 解不定方程:2940x y +=(其中x,y 均为正整数) 【考点】不定方程 【难度】2星 【题型】解答【解析】 方法一:2x 是偶数,要想和为40(偶数),9y 也为偶数,即y 为偶数,也可以化简方程2940x y +=,40920522x yx y -==-+知道y 为偶数,所以方程解为:112,24x x y y ==⎧⎧⎨⎨==⎩⎩【答案】112,24x x y y ==⎧⎧⎨⎨==⎩⎩模块二、利用余数性质解不定方程【例 3】 求不定方程7111288x y +=的正整数解有多少组? 【考点】不定方程 【难度】3星 【题型】解答【解析】 本题无论x 或是y ,情况都较多,故不可能逐一试验.检验可知1288是7的倍数,所以11y 也是7的倍数,则y 是7的倍数.设7y z =,原方程可变为11184x z +=,z 可以为1,2,3,……16.由于每一个z 的值都确定了原方程的一组正整数解,所以原方程共有16组正整数解.【答案】16组【例 4】 求方程3x +5y =31的整数解【考点】不定方程 【难度】3星 【题型】解答【解析】 方法一:利用欧拉分离法,由原方程,得 x =3153y -,即 x =10-2y +13y +,要使方程有整数解13y+必须为整数.取y =2,得x =10-2y +13y+=10-4+1=7,故x =7,y =2当y =5,得x =10-2y +13y+=10-10+2=2,故x =2,y =5当y =8,得x =10-2y +13y+=10-16+3无解所以方程的解为:72,25x x y y ==⎧⎧⎨⎨==⎩⎩方法二:利用余数的性质3x 是3的倍数,和31除以3余1,所以5y 除以3余1(2y 除以3余1),根据这个情况用余数的和与乘积性质进行判定为:取y =1,2y =2,2÷3=0……2(舍) y =2,2y =4,4÷3=1……1(符合题意) y =3,2y =6,6÷3=2(舍) y =4,2y =8,8÷3=2……2(舍) y =5,2y =10,10÷3=3……1(符合题意) y =6,2y =12,12÷3=4(舍)当y >6时,结果超过31,不符合题意。

所以方程的解为:72,25x x y y ==⎧⎧⎨⎨==⎩⎩【答案】72,25x x y y ==⎧⎧⎨⎨==⎩⎩【巩固】 解方程7489x y +=,(其中x 、y 均为正整数)【考点】不定方程 【难度】3星 【题型】解答【解析】 方法一:7489x y +=,4y 是4的倍数,和89除以4余1,所以7x 除以4余1(7÷4≡3),可以看成3x 除以4余1,根据这个情况用余数的和与乘积性质进行判定为(x <13) x =1,3x =3,3÷4≡3(舍)x =2,3x =6,6÷4≡2(舍) x =3,3x =9,9÷4≡1(符合题意) x =4,3x =12,12÷4≡0(舍) x =5,3x =15,15÷4≡3(舍) x =6,3x =18,18÷4≡2(舍) x =7,3x =21,21÷4≡1(符合题意) x =8,3x =24,24÷4≡0(舍) x =9,3x =27,27÷4≡3(舍) x =10,3x =30,30÷4≡2(舍) x =11,3x =33,33÷4≡1(符合题意) x =12,3x =36,36÷4≡0(舍)所以方程的解为:3711,,17103x x x y y y ===⎧⎧⎧⎨⎨⎨===⎩⎩⎩方法二:利用欧拉分离法,由原方程,897122244x xy x -+==-+,()1x +的取值为4的倍数即可,所以方程的解为:3711,,17103x x x y y y ===⎧⎧⎧⎨⎨⎨===⎩⎩⎩ 【答案】3711,,17103x x x y y y ===⎧⎧⎧⎨⎨⎨===⎩⎩⎩模块三、解不定方程组【例 5】 解方程180012008001600015a b c a b c ++=⎧⎨++=⎩ ( 其中a 、b 、c 均为正整数 ) 【考点】不定方程 【难度】3星 【题型】解答【解析】 根据等式的性质将第一个方程整理得9648015a b c a b c ++=⎧⎨++=⎩,根据消元的思想将第二个式子扩大4倍相减后为:(964)4()80415a b c a b c ++-++=-⨯,整理后得5220a b +=,根据等式性质,2b 为偶数,20为偶数,所以5a 为偶数,所以a 为偶数,当2a =时,52220b ⨯+=,5b =,所以8c =,当4a =时,54220b ⨯+=,5b =,所以无解。

所以方程解为258a b c =⎧⎪=⎨⎪=⎩【答案】258a b c =⎧⎪=⎨⎪=⎩【例 6】 解不定方程1531003100x y z x y z ⎧++=⎪⎨⎪++=⎩ (其中x 、y 、z 均为正整数) 【考点】不定方程 【难度】3星 【题型】解答【解析】 根据等式的性质将第一个方程整理得159300100x y z x y z ++=⎧⎨++=⎩,根据消元思想与第二个式子相减得148200x y +=,根据等式的性质两边同时除以2得:74100x y +=,根据等式性质4y 为4的倍数,100为4的倍数,所以7y为4的倍数,所以y为4的倍数试值如下481218,11,4788184 x x xy y yz z z===⎧⎧⎧⎪⎪⎪===⎨⎨⎨⎪⎪⎪===⎩⎩⎩【答案】481218,11,4788184 x x xy y yz z z===⎧⎧⎧⎪⎪⎪===⎨⎨⎨⎪⎪⎪===⎩⎩⎩。

相关文档
最新文档