五年级奥数题及答案:蚂蚁爬洞穴问题(中等难度)-最新教育文档
专题训练蚂蚁爬行的最短路径(含答案)分解

蚂蚁爬行的最短路径1.一只蚂蚁从原点0出发来回爬行,爬行的各段路程依次为:+5,-3,+10,-8,-9,+12,-10.回答下列问题:(1)蚂蚁最后是否回到出发点0;(2)在爬行过程中,如果每爬一个单位长度奖励2粒芝麻,则蚂蚁一共得到多少粒芝麻. 解:(1)否,0+5-3+10-8-9+12-10=-3,故没有回到0; (2)(|+5|+|-3|+|+10|+|-8|+|-9|+|+12|+|-10|)×2=114粒2. 如图,边长为1的正方体中,一只蚂蚁从顶点A 出发沿着正方体的外表面爬到顶点B 的最短距离是 .解:如图将正方体展开,根据“两点之间,线段最短”知,线段AB 即为最短路线. AB =51222=+.3.(2006•茂名)如图,点A 、B 分别是棱长为2的正方体左、右两侧面的中心,一蚂蚁从点A 沿其表面爬到点B 的最短路程是 cm第6题.解:由题意得,从点A 沿其表面爬到点B 的最短路程是两个棱长的长,即2+2=4.4.如图,一只蚂蚁从正方体的底面A 点处沿着表面爬行到点上面的B 点处,它爬行的最短路线是( )A .A ⇒P ⇒B B .A ⇒Q ⇒BC .A ⇒R ⇒BD .A ⇒S ⇒B解:根据两点之间线段最短可知选A . 故选A .5.如图,点A 的正方体左侧面的中心,点B 是正方体的一个顶点,正方体的棱长为2,一蚂蚁从点A 沿其表面爬到点B 的最短路程是( )解:如图,AB =()1012122=++.故选C .16. 正方体盒子的棱长为2,BC 的中点为M ,一只蚂蚁从A 点爬行到M 点的最短距离为( )解:展开正方体的点M 所在的面, ∵BC 的中点为M , 所以MC =21BC =1, 在直角三角形中AM==.7.如图,点A 和点B 分别是棱长为20cm 的正方体盒子上相邻面的两个中心,一只蚂蚁在盒子表面由A 处向B 处爬行,所走最短路程是 cm 。
解:将盒子展开,如图所示:AB =CD =DF +FC =21EF + 21GF =21×20+21×20=20cm . 故选C .8. 正方体盒子的棱长为2,BC 的中点为M ,一只蚂蚁从A 点爬行到M 点的最短距离为 .解:将正方体展开,连接M 、D 1, 根据两点之间线段最短, MD =MC +CD =1+2=3, MD 1= 132322212=+=+DD MD .9.如图所示一棱长为3cm 的正方体,把所有的面均分成3×3个小正方形.其边长都为1cm,假设一只蚂蚁每秒爬行2cm ,则它从下底面点A 沿表面爬行至侧面的B 点,最少要用2.5秒钟.解:因为爬行路径不唯一,故分情况分别计算,进行大、小比较,再从各个路线中确定最短的路线.(1)展开前面右面由勾股定理得AB = = cm ;(2)展开底面右面由勾股定理得AB ==5cm ;第7题1AB A 1B 1D CD 1C 124所以最短路径长为5cm ,用时最少:5÷2=2.5秒.10.(2009•恩施州)如图,长方体的长为15,宽为10,高为20,点B 离点C 的距离为5,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B,需要爬行的最短距离是 。
数学宝藏寻找之旅(数学谜题解答)

数学宝藏寻找之旅(数学谜题解答)在我们踏上数学宝藏寻找之旅之前,我们先来回顾一下数学的魅力。
数学是一门独特而又神秘的学科,它不仅存在于我们日常生活的方方面面,还深刻地影响着我们的思维方式和创造力。
因此,对于数学的探索和理解是非常重要的。
在这次数学宝藏寻找之旅中,我们将解答一些经典的数学谜题,挖掘数学的宝藏,一起探索数学的奇思妙想。
1. 谜题一:蚂蚁爬杆假设有一根长度为1米的杆子,上面有一只蚂蚁。
蚂蚁每次只能沿着杆子爬行,一次爬行的距离是1厘米,并且每次都会选择向左或者向右爬行,但不会在同一次行动中改变方向。
那么,蚂蚁从杆子中心出发,到达杆子两端的期望时间是多少?解答:我们可以将蚂蚁的行动过程抽象为一个数轴,其中数轴的中点是杆子的中心,左边是负方向,右边是正方向。
蚂蚁每次爬行都会向左或者向右移动1厘米,所以在每一次爬行后,蚂蚁都还停留在原来的位置上。
因此,无论蚂蚁选择向左还是向右,它都需要1厘米的时间来回到杆子的中心。
所以,蚂蚁从杆子中心出发,到达杆子两端的期望时间等于蚂蚁回到杆子中心的时间,即1厘米。
2. 谜题二:三个数的平均数假设有三个整数a、b和c,且它们的和是2019。
如果我们按照以下公式计算它们的平均数:(平均数) = (a + b + c) / 3那么,a、b和c的三个可能的取值分别是多少?解答:根据题意,我们可以列出方程:a +b +c = 2019由于a、b和c都是整数,我们可以观察到,2019除以3的余数只可能是0、1或者2。
因此,我们可以得出结论:- 当余数为0时,即2019能被3整除时,a、b和c可以取任意值,只要它们的和等于2019即可。
- 当余数为1时,假设a为余数为0的情况下,a = 673,那么b和c的和必须等于2018。
在这种情况下,b和c可以取200、818,或者任意其他满足要求的组合。
- 当余数为2时,假设a为余数为0的情况下,a = 674,那么b和c的和必须等于2017。
五年级下册数学扩展专题练习行程比例解行程问题C级全国通用

比例解行程问题知识框架比例的知识是小学数学最后一个重要内容,从某种意义上讲仿佛扮演着一个小学“压轴知识点”的角色。
从一个工具性的知识点而言,比例在解很多应用题时有着“得天独厚”的优势,往往体现在方法的灵活性和思维的巧妙性上,使得一道看似很难的题目变得简单明了。
比例的技巧不仅可用于解行程问题,对于工程问题、分数百分数应用题也有广泛的应用。
我们常常会应用比例的工具分析2个物体在某一段相同路线上的运动情况,我们将甲、乙的速度、时来表示,大体可分为以下两种情况:间、路程分别用v,v;st,t;s乙乙乙甲,甲甲1.当2个物体运行速度在所讨论的路线上保持不变时,经过同一段时间后,他们走过的路程之比就等于他们的速度之比。
s?v?t?ss甲甲甲甲乙,这里因为时间相同,即,所以由t?t?t?tt?,?乙甲乙甲s?v?tvv?乙乙乙乙甲svss甲甲甲t 乙内的路程之比等于速度比,得到,甲乙在同一段时间??t?vvsv乙乙乙甲2.当2个物体运行速度在所讨论的路线上保持不变时,走过相同的路程时,2个物体所用的时间之比等于他们速度的反比。
s?v?t?甲甲甲s?s?ss?v?t,s?v?t,由,这里因为路程相同,即?乙乙乙乙甲甲甲甲s?v?t?乙乙乙vt甲s乙t?t?sv?v?上的时间之比等于速度比的反比。
,得,甲乙在同一段路程?乙乙甲甲tv乙甲例题精讲两地之间匀速往返行走,甲的速度大于乙的速度,甲每次到地出发,在、 1】甲、乙两人同时【例BAA之间行走方向不会改变,已知两地或遇到乙都会调头往回走,除此以外,两人在地、达ABAB 那么第二次相遇的地点米,米,第三次的相遇点距离地人第一次相遇的地点距离地8001800BB。
地距离BBBCA地时,459点分到达8地。
甲点出发,乙8点45甲【巩固】、乙两人都从分出发。
乙地经地到CCB地。
问:到达甲已经离开分。
两人刚好同时到达地20地时是什么时间?某人沿公路前进,迎面来了一辆汽车,他问司机:“后面有骑自行车的人吗?”司机回答:“10 2】【例分,遇到了这个骑自行车的人。
蚂蚁爬行最短路程问题的拓展 (1)

蚂蚁爬行最短路程问题的拓展教科书有这样一个问题:有一个圆柱,它的高等于12 cm ,底面半径等于3 cm .在圆行柱的底面 A 点有一只蚂蚁,它想吃到上底面上与A 点相对的B 点处的食物,需要爬行的最短路程是多少?直觉判断,不难发现,蚂蚁应该沿着侧面爬行。
那么,在侧面上如何爬行,所走的路程最短呢?由于侧面是弯曲的,为此可以试图将弯曲的侧面展呈一个平面,如下图:A B A B在课堂上,相信大家已经比较过多种爬行路径,如(1)A →A ′→B ;(2)A →B ′→B ;(3)A →D →B ;(4)A →B.当然也得出了沿着直线段AB爬行最近。
现在的问题是,对于任意的圆柱,上面的爬行路线是否都最短呢?我们不妨看一个具体的:问题1 在高为1,底面半径为4的圆柱形实木块...的.下底面的A 点处有一只蚂蚁,它想吃到上底面与A 相对的B 点处的食物,如图所示,这只蚂蚁需要爬行的最短路程是多少?A B如果还是沿着侧面爬行,不难算出最短爬行距离是22)4(1π+≈12.6 m ,由于这个圆柱“矮而胖”,如果从上底面沿直径爬过去,可以省得绕侧面爬行那样绕过一段大肚子,可能反而行程可能会少一些,当然,这只是感觉,需要具体计算一下。
不难算出从A 点直接向上爬再沿着直径爬到B 点的行程是1+4×2=9 m ,确实比沿着侧面爬行短一些。
反思 实际上,这和我们的直觉是一致的。
不妨用一个最为极端的圆柱为例加以说明,如果这个圆柱特别矮,以致于接近一个硬币或者接近一个平面上的圆,显然沿着直径走比沿着侧面(圆周)走要近一些。
当然,研究不要局限于此,我们需要进一步思考:什么情况下蚂蚁沿着侧面爬行路程最近(姑且称为线路1),什么情况下蚂蚁先竖直爬到地面上再沿着直径爬行(姑且称为线路2)路程最近?为了研究的方便,不妨设圆柱的高为h ,底面半径为r ,则沿线路1的最短行程是22)(r h π+,沿线路2的行程是h+2r;不难得出:(1)当时,两条线路行程相同;(2)当时,线路1行程短一些;(3)当时,线路2行程短一些。
小学五年级奥数题及答案

在日常生活和解答数学问题时,经常要进行计算,在数学课里我们学习了一些简便计算的方法,但如果善于观察、勤于思考,计算中还能找到更多的巧妙的计算方法,不仅使你能算得好、算得快,还可以让你变得聪明和机敏。
例1:计算:9.996+29.98+169.9+3999.5解:算式中的加法看来无法用数学课中学过的简算方法计算,但是,这几个数每个数只要增加一点,就成为某个整十、整百或整千数,把这几个数“凑整”以后,就容易计算了。
当然要记住,“凑整”时增加了多少要减回去。
9.996+29.98+169.9+3999.5=10+30+170+4000-(0.004+0.02+0.1+0.5)=4210-0.624=4209.376例2:计算:1+0.99-0.98-0.97+0.96+0.95-0.94-0.93+…+0.04+0.03-0.02-0.01解:式子的数是从1开始,依次减少0.01,直到最后一个数是0.01,因此,式中共有100个数而式子中的运算都是两个数相加接着减两个数,再加两个数,再减两个数……这样的顺序排列的。
由于数的排列、运算的排列都很有规律,按照规律可以考虑每4个数为一组添上括号,每组数的运算结果是否也有一定的规律?可以看到把每组数中第1个数减第3个数,第2个数减第4个数,各得0.02,合起来是0.04,那么,每组数(即每个括号)运算的结果都是0.04,整个算式100个数正好分成25组,它的结果就是25个0.04的和。
1+0.99-0.98-0.97+0.96+0.95-0.94-0.93+…+0.04+0.03-0.02-0.01=(1+0.99-0.98-0.97)+(0.96+0.95-0.94-0.93)+…+(0.04+0.03-0.02-0.01)=0.04×25=1如果能够灵活地运用数的交换的规律,也可以按下面的方法分组添上括号计算:1+0.99-0.98-0.97+0.96+0.95-0.94-0.93+…+0.04+0.03-0.02-0.01=1+(0.99-0.98-0.97+0.96)+(0.95-0.94-0.93+0.92)+…+(0.03-0.02-0.01)=1例3:计算:0.1+0.2+0.3+…+0.8+0.9+0.10+0.11+0.12+…+0.19+0.20解:这个算式的数的排列像一个等差数列,但仔细观察,它实际上由两个等差数列组成,0.1+0.2+0.3+…+0.8+0.9是第一个等差数列,后面每一个数都比前一个数多0.1,而0.10+0.11+0.12+…+0.19+0.20是第二个等差数列,后面每一个数都比前一个数多0.01,所以,应分为两段按等差数列求和的方法来计算。
勾股定理中蚂蚁爬行问题的七种情况

勾股定理中蚂蚁爬行问题的七种情况彻底破解蚂蚁爬行问题:请划分你的做题区域:愉悦区、奋战区和极限区本系列文章摘自买书赠送的电子资料.更多文章见本号小号:春熙初中数学1.长方体中爬行,一个点到达相对的另外一个点在长方体问题中,我们需要将长方体展开,然后利用两点之间线段最短画图求解。
如果长方体的长、宽、高各不相同,一般分三种情况讨论。
这边不再介绍展开图法,直接利用数据来进行求解。
例题1:如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是多少?分析:通过图可以发现,是一个点到它相对的另外一个点的情形。
先确定长方体的长宽高,分别为5、10、20。
这类问题相对来说比较简单,这样解题本质上还是展开图的三种情形。
2.长方体中爬行,不是到达相对的另外一个点如果在长方体中爬行,不是到达相对的另外一个点,那就只有通过展开图来解决问题。
例题2:如图,长方体的底面边长为4cm和宽为2cm,高为5cm.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,求蚂蚁爬行的最短路径长为多少厘米?分析:要求长方体中两点之间的最短路径,最直接的作法,就是将长方体展开,然后利用两点之间线段最短来求解。
本题蚂蚁爬行了四个面,那就需要将四个面都展开来进行计算。
3.在圆柱体中爬行半圈或一圈在圆柱体中爬行,要分两种情况,圆柱的侧面展开图是长方形,可能爬行了长方形的一半,也有可能爬行了整个长方形。
例题3:如图,一圆柱体的底面周长为24cm,高AB为9cm,BC是上底面的直径.一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,则蚂蚁爬行的最短路程是多少厘米?变式:一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点B,则蚂蚁爬行的最短路程是多少厘米?4.正方体表面爬行蚂蚁在正方体表面爬行时,一般就一种情形,可通过画图解决。
例题4:如图,点A的正方体左侧面的中心,点B 是正方体的一个顶点,正方体的棱长为2,一蚂蚁从点A沿其表面爬到点B的最短路程是多少?本题点A为正方形的中心,因此到四条边的距离都是边长的一半。
行程问题之蚂蚁相遇的奥数题及答案参考

行程问题之蚂蚁相遇的奥数题及答案参考
一个圆的周长为1.26米,两只蚂蚁从一条直径的两端同时出发沿圆周相向爬行.这两只蚂蚁每秒分别爬行5.5厘米和3.5厘米.它们每爬行1秒,3秒,5秒…(连续的奇数),就调头爬行.那么,它们相遇时已爬行的时间是多少秒?
分析:
道题难在蚂蚁爬行的方向不断地发生变化,那么如果这两只蚂蚁都不调头爬行,相遇时它们已经爬行了多长时间呢?非常简单,由于半圆周长为:1.26÷2=0.63米=63厘米,所以可列式为:1.26÷2÷(5.5+3.5)=7(秒);我们发现蚂蚁爬行方向的变化是有规律可循的,它们每爬行1秒、3秒、5秒、…(连续的.奇数)就调头爬行.每只蚂蚁先向前爬1秒,然后调头爬3秒,再调头爬5秒,这时相当于在向前爬1秒的基础上又向前爬行了2秒;同理,接着向后爬7秒,再向前爬9秒,再向后爬11秒,再向前爬13秒,这就相当于一共向前爬行了1+2+2+2=7(秒),正好相遇.
解答解:
它们相遇时应是行了半个圆周,半个圆周长为:
1.26÷2=0.63(米)=63(厘米);
如不调头,它们相遇时间为:
63÷(3.5+5.5)=7(秒);
根据它们调头再返回的规律可知:
由于1-3+5-7+9-11+13=7(秒),
所以13+11+9+7+5+3+1=49(秒)相遇.
答:它们相遇时已爬行的时间是49秒.
点评:完成本题关健是发现蚂蚁爬行方向的变化是有规律可循.。
史上最难奥数题及答案

史上最难奥数题及答案奥数,即奥林匹克数学竞赛,是一项面向中学生的国际性数学竞赛。
它以难度高、题目新颖而著称。
下面是一道被广泛认为具有挑战性的奥数题目及其答案。
题目:在一个无限大的棋盘上,有一只蚂蚁从左上角的格子出发,它只能向右或向下移动。
如果蚂蚁在第 \( n \) 行第 \( m \) 列到达终点,那么它总共需要走 \( n + m - 1 \) 步。
现在,给定两个正整数\( n \) 和 \( m \),求蚂蚁到达终点的最短路径有多少条。
答案:这个问题可以通过组合数学中的组合数来解决。
蚂蚁到达终点的最短路径数等于从 \( n + m - 1 \) 步中选择 \( n - 1 \) 步向下走的方法数,这可以用组合数公式表示为:\[ C(n + m - 1, n - 1) = \frac{(n + m - 1)!}{(n - 1)!(m - 1)!} \]这里的 \( C \) 表示组合数,\( ! \) 表示阶乘。
这个公式计算了从总步数中选择向下走的步数的所有可能组合。
例如,如果 \( n = 3 \) 和 \( m = 4 \),那么蚂蚁需要走 \( 3 +4 - 1 = 6 \) 步。
最短路径数为:\[ C(6, 2) = \frac{6!}{2!4!} = \frac{6 \times 5}{2 \times 1}= 15 \]因此,蚂蚁到达终点的最短路径有 15 条。
这个问题的关键在于理解蚂蚁的移动规则,并将其转化为组合数问题。
通过这种方法,我们可以计算出任何给定的 \( n \) 和 \( m \) 下的最短路径数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五年级奥数题及答案:蚂蚁爬洞穴问题(中等难
度)
编者小语:“题海无边,题型有限”。
学习数学必须要有扎实的基本功,有了扎实的基本功再进行“奥数”的学习就显得水到渠成了。
查字典数学网为大家准备了小学五年级奥数题,希望小编整理奥数题蚂蚁爬洞穴问题(中等难度),可以帮助到你们,助您快速通往高分之路!!
蚂蚁爬洞穴问题:(中等难度)
甲、乙、丙三只蚂蚁从A,B,C三个不同的洞穴同时出发,分别向洞穴B,C,A爬去。
同时到达后,继续向洞穴C,A,B爬去,然后分别返回自己的洞穴。
如果甲、乙、丙三只蚂蚁爬行路径相同,爬行的总局里都是7.3米所用时间分别是6分钟、7分钟和8分钟,则蚂蚁乙从洞穴B到达洞穴C时爬行了( )米,蚂蚁丙从洞穴C到达A时爬行了( )米。
蚂蚁爬洞穴答案:
如图
三个洞穴,根据题意可知,三只蚂蚁都走了一圈,总路程是7.3米,分别所用的时间是6,7,8分钟,所以三只蚂蚁的速度之比为:28:24:21,注意题目中有一个条件,就是第一次出发的时候,他们是同时到达,说明:他们所用时间是相同的。
那么AB:BC:CA路程比就等于他们的速度比,28:24:21。
即BC=7.3×24÷(28+24+21)=2.4。
CA=21/(28+24+21)×7.3=2.1。
【小结】找出题目中的条件,本题是根据行程问题中的比例关系求解,当时间相同时,路程与速度成正比的关系,当路程相同时,速度与时间成反比,当速度相同时,时间与路程成正比。