发电厂电气部分毕业设计论文设计

合集下载

火力发电厂电气部分毕业设计论文

火力发电厂电气部分毕业设计论文

摘要发电厂是电力系统的重要组成部分,也直接影响整个电力系统的安全与运行。

在发电厂中,一次接线和二次接线都是其电气部分的重要组成部分。

在本次设计中,主要针对了一次接线的设计。

从主接线方案的确定到厂用电的设计,从短路电流的计算到电气设备的选择以及配电装置的布置,都做了较为详尽的阐述。

二次接线则以发电机的继电保护的设计为专题,对继电保护的整定计算做了深入细致的介绍。

设计过程中,综合考虑了经济性、可靠性和可发展性等多方面因素,在确保可靠性的前提下,力争经济性。

设计说明书中所采用的术语、符号也都完全遵循了现行电力工业标准中所规定的术语和符号。

毕业设计任务书1毕业设计题目胜利火力发电厂电气部分设计专题:发电机继电保护设计2毕业设计要求及原始资料1、凝气式发电机的规模(1)装机容量装机4台容量2×25MW+2×50MW,U N=10.5KV (2)机组年利用小时 T MAX=6500h/a(3)厂用电率按8%考虑(4)气象条件发电厂所在地最高温度38℃,年平均温度25℃。

气象条件一般无特殊要求(台风、地震、海拔等)2、电力负荷及电力系统连接情况(1)10.5KV电压级电缆出线六回,输送距离最远8km,每回平均输送电量4.2MW,10KV最大负荷25MW,最小负荷16.8MW,COSφ= 0.8,T max = 5200h/a。

(2)35KV电压级架空线六回,输送距离最远20km,每回平均输送容量为5.6MW。

35KV电压级最大负荷33.6MW,最小负荷为22.4MW。

COSφ=0.8, T max =5200h/a。

(3)110KV电压级架空线4回与电力系统连接,接受该厂的剩余功率,电力系统容量为3500MW,当取基准容量为100MVA时,系统归算到110KV母线上的电抗X*S = 0.083。

(4)发电机出口处主保护动作时间t pr1 = 0.1S,后备保护动作时间t pr2 = 4S。

发电厂电气部分设计毕业论文

发电厂电气部分设计毕业论文

10万kvA发电厂一次部分设计第一章电气主接线的设计1.1 电气主接线的设计1.1.1 电气主接线设计的要求电气主接线图是由各种电气元件如发电机、变压器、断路器、隔离开关、互感器、母线、电缆、线路等,接照一定的要求和顺序接起来,并用国家统一规定图形的文字符号表示的发、变、供电的电路图。

电气主接线是发电厂、变电所电气设计的首要部分,也是构成电力系统的重要环节。

主接线是的确定对电力系统整体及发电厂、变电所本身运行的可靠性、灵活性和经济性密切相关,并且对电气设备选择,配电装置布置,继电保护和控制方式的拟定有较大影响。

因此,必须正确处理好各方面的关系,全面分析有关影响因素,通过技术经济比较,合理确定主接线方案。

1.1.2基本接线及适用X围1.35kV及110kV母线采用单母分段接线(1)优点:用断路器把母线分段后,对重要用户可以从不同段引出两个回路,有两个电源供电;当一段母线发生故障,分段断路器自动将故障段切除,保证正常段母线不间断供电和不致使重要用户停电。

(2)缺点:当一段母线或母线隔离开关故障或检修时,该母线的回路都要在检修期间内停电;当出线为回路时,常使架空线路出现交叉跨跃。

(3)适用X围:35-63kV配电装置的出线回路数不超过4-8回;110-220kV配电装置的出线回路数不超过3-4回。

2. 10kV母线采用双母分段接线3. 110kV母线采用内桥接线(1)35-110kV线路为两回及以下时,宜采用桥形、线路变压器组成或线路分支接线。

(2)桥型接线:当只有两台主变压器和两回输电线路时,采用桥型接线。

当只有两台变压器和两回输电线路时采用内桥形式(3)内桥使用X围:内桥接线适用于输电线路较长(则检修和故障机率大)或变压器不需经常投,切及穿越功率不大的小容量配电装置中。

(4)外桥使用X围:外桥接线使用于输电线路较短或变压器需经常投,切及穿越功率较大的小容量配电装置中。

1.2 设计方案比较与确定1.2.1 主接线设计方案图确定采用110kV内桥连接方式.图1-1 接线方案的主接线图由图1-1可以看出该方案中:110kV侧选用内桥接线;35kV侧选用单母分段接线;10kV侧选用双母分段接线。

发电厂电气部分设计

发电厂电气部分设计

毕业设计(论文)题目:发电厂电气部分设计学院:电子信息学院专业班级:电气工程及其自动化2009级2班指导教师:XXXXX职称:讲师学生姓名: XXXXX学号:XXXXXXXXXXX摘要水力发电厂是把水的位能和动能转换成电能的工厂,它的基本生产过程是:从河流高处或其他水库内引水,利用水的压力或流速冲动水轮机旋转,将水能转变成机械能,然后水轮机带动发电机旋转,将机械能转变成电能。

本文是对总装机容量为2X15+2X35=100MW的中小型水电厂电气部分的初步设计,主要完成了对与电厂一次系统相关方面的设计。

依据丰水期和枯水期两种不同季节水流量的差异,通过任意投切组合4台2种型号水轮发电机,本电厂可以实现对水资源充分利用,将水资源的势能和动能转换成电能,并通过升压变压器将电压升高至35kV和110kV 两种电压等级,分别供给当地负荷以及并入电网系统。

全文共分八大章节,其主要内容包括电气主接线的方案的比较、选择;主变压器容量计算、台数和型号的选择;短路电流计算;高压电气设备的选择与校验;厂用电及其接线设计、厂用变压器容量计算、台数和型号的选择及厂用电动机自启动校验,并作了过电压保护和接地装置配置设计。

其设计的重点在于利用水电厂运算曲线法对可能发生短路的短路点进行三相短路电流计算,以及按照正常工作条件选择电气设备,按照短路状态校验电器设备,从而实现对电气设备的选择等等。

关键词:水电厂,电气主接线,短路电流,电气设备,厂用电ABSTRACTHydraulic power plant is the water potential energy and kinetic energy into electricity energy, basic production process it is: water from river heights or other reservoirs, using the water pressure or velocity impulse turbine rotation, the water energy into mechanical energy, then the turbine drives the generator to spin, and the mechanical energy can be changed into electric energy.This paper is a preliminary design of medium and small hydropower plant electrical parts of the total installed capacity of 2X15+2X35=100MW, and mainly has completed plant design relating with aspects of primary system. Based on the difference between the dry season and the wet season of two different seasonal water flow, through an arbitrary switching combination of 2 types of 4 hydraulic turbine generator, the power plant can realize the full utilization of water resources, converting the potential energy and kinetic energy of water into electrical energy, and the voltage rises to two voltage levels of 35kV and 110kV through the step-up transformer, respectively, for local load and grid system.The full text is divided into eight chapters, the main contents include comparison and selection of main electrical wiring scheme; calculation of main transformer capacity, including model number selection, the number of models and amounts; short-circuit current calculation; selection and validation of high voltage electrical equipment and wiring design; power plant, transformer capacity calculation, selection and plant the number of models and motor self-starting check, and the over-voltage protection and grounding device configuration design. The design focuses on the use of hydropower plant operation curve method for three-phase short-circuit current of short circuit may short-circuit calculation, and in accordance with the normal working condition selection of electrical equipment, in accordance with the short-circuit state check electrical equipment, so as to realize the electrical equipment selection etc.Keywords: hydropower plant, the main electrical wiring, short-circuit current,electrical equipment, power plant目录第1章绪论 (1)1.1 原始资料 (1)1.1.1 设计原始资料 (1)1.1.2 对设计原始资料分析 (3)1.2 机组技术数据的选择 (3)第2章电气主接线的设计 (4)2.1 对电气主接线的基本要求 (4)2.2 电气主接线的基本形式 (5)2.3 电气主接线方案拟定 (6)2.3.1 发电机变压器母线接线形式拟定 (7)2.3.2 35kV电压母线接线形式拟定 (8)2.3.3 110kV电压母线接线形式拟定 (10)第3章主变压器的选择 (12)3.1 主变压器的台数和容量的选择 (12)3.2 主变压器型式的选择 (13)3.3 主变压器的确定 (14)第4章短路电流的计算 (15)4.1 概述 (15)4.2 三相短路电流的计算 (16)4.2.1 无限大容量电源系统供给的短路电流 (16)4.2.2 有限容量电源供给的短路电流 (18)4.3 三相短路短路电流的计算 (19)4.3.1 系统电气设备电抗标幺值计算 (20)4.3.2 K1处短路短路电流计算 (21)4.3.3 K2处短路短路电流计算 (27)4.3.4 K3处短路短路电流计算 (32)4.3.5 K4处短路短路电流计算 (35)第5章电气设备选择 (39)5.1 发电厂主要电气设备 (39)5.2 电气设备选择的一般条件 (39)5.3 断路器的选择 (41)5.3.1 35kV母线断路器的选择 (42)5.3.2 35kV分段断路器的选择 (43)5.3.3 110kV母线断路器的选择 (44)5.3.4 110kV母联断路器的选择 (46)5.3.5 联络变压器侧断路器的选择 (47)5.4 隔离开关的选择 (48)5.4.1 35kV母线隔离开关的选择 (48)5.4.2 35kV分段断路器侧隔离开关的选择 (49)5.4.3 110kV母线隔离开关的选择 (50)5.4.4 110kV母联断路器侧隔离开关的选择 (51)5.4.5 联络变压器侧断路器选择 (52)5.5 互感器在主接线中的配置 (54)5.6 电流互感器的选择 (55)5.6.1 G1、G2发电机出口侧TA的选择 (55)5.6.2 35kV母线侧TA的选择 (56)5.6.3 35kV母线分段处TA的选择 (57)5.6.4 G3、G4发电机出口侧TA的选择 (58)5.6.5 110kV母线侧TA的选择 (59)5.7 电压互感器的选择 (60)5.7.1 发电机出口侧TV的选择 (60)5.7.2 35kV侧TV的选择 (61)5.7.3 110kV侧TV的选择 (61)5.8 限流电抗器的选择 (62)第6章厂用电及其接线 (63)6.1 厂用电概述 (63)6.2 厂用电接线 (64)6.3 厂用变压器的选择 (68)6.4 高、低压厂用变压器串联自启动时母线校验 (71)第7章发电厂过电压保护和接地装置 (74)7.1 过电压保护概述 (74)7.2 避雷针和避雷线 (75)7.2.1 避雷针的设置 (75)7.2.2 避雷线的设置 (76)7.3 避雷器 (77)7.3.1 35kV母线避雷器的配置 (79)7.3.2 110kV母线避雷器的配置 (80)7.4 接地装置 (80)第8章结论 (82)参考文献 (83)致谢 (84)第1章绪论物质、能量和信息是构成客观世界的三大基础。

发电厂电气部分毕业论文

发电厂电气部分毕业论文

长春工程学院毕业设计(论文)目录1 引言 (1)2电气主接线的设计 (2)2.1 主接线的设计方案的选择 (2)2.3 发电机与主变压器选择 (4)3厂用电接线设计 (6)3.1 站用电压等级的确定 (6)3.2 厂用电接线设计方案论证及确定 (6)3.3 高压厂用变压器和高备变压器的选择 (8)4短路电流计算 (9)4.1 短路电流计算概述 (9)4.2 元件电抗计算 (10)4.3 各短路点短路电流计算 (11)5电气设备配置 (18)5.1 隔离开关的配置 (18)5.2 电压互感器的配置 (18)5.3 电流互感器的配置 (18)5.4 避雷器、避雷针的配置 (19)5.5 接地刀闸或接地器的配置 (19)5.6 自动装置的配置 (20)6电气设备的选择与校验 (20)6.1 电气设备选择与校验 (20)6.2 母线选择 (29)7 高压配电装置的设计 (30)7.1 高压配电装置的选型 (30)7.2 高压配电装置设计 (31)总结 (32)参考文献 (33)致谢 (34)1引言目前电力与我们生活息息相关,电力作为最重要的能源之一。

如何经济有效的开发和利用电力能源是关系国计民生的关键。

随着我国经济的飞速发展,电能的需求量也日益增加。

目前电力生产主要以火力发电和水力发电两种形式,相比之下,水力发电成本低廉且没有火力发电带来的环境污染。

很多优点决定水电能源在今后相当长的时间是解决能源危机的首选。

然而我国电力在技术水平上还很落后,这就需要我们在设计中,能够开拓创新,开发出新技术、新设备。

以提高电能在发送过程中的安全可靠系数,以保证电能高质量、高水平的输送。

此次设计是某水电厂的电气部分设计。

电气设计工作是工程建设的关键环节。

做好设计工作,对工程建设的工期、质量、投资费用和建成投产后的运行安全可靠性和生产的综合经济效益,起着决定性的作用。

本次设计:本期工程规模为2×300MW燃煤机组,在布置上不堵死再扩建的可能。

火力发电厂电气一次部分毕业设计

火力发电厂电气一次部分毕业设计

目录前言 (1)摘要及关键词 (2)第1章主接线的设计 (3)1.1 发电机台数和参数的确定 (3)1.2 变压器台数和参数的确定 (3)1.3 厂用电的设计的确定 (4)1.4 220kV主接线的设计 (6)第2章短路电流计算点的确定和短路计算结果 (9)2.1短路电流计算点的确定 (9)2.2短路电流计算 (9)2.3 短路电流计算结果 (16)第3章主要电气设备的配置和选择 (16)3.1主要电气设备的配置 (16)3.2主要电气设备的选择 (17)第4章所选电气设备的校验 (21)4.1 断路器的校验 (22)4.2 隔离开关的校验 (23)4.3 电流互感器的校验 (23)4.4 母线的校验 (25)第5章继电保护的配置和考虑 (25)5.1概述 (25)5.2发电机保护配置 (27)5.3变压器的保护配置 (29)结论 (30)谢辞 (31)参考文献 (32)附录一所选设备一览表 (33)附录二电气主接线 (35)前言毕业设计是我们在校期间最后一次综合训练,它将从思维、理论以及动手能力方面给予我们严格的要求。

使我们综合能力有一个整体的提高。

它不但使我们巩固了本专业所学的专业知识,还使我们了解、熟悉了国家能源开发策略和有关的技术规程、规定、导则以及各种图形、符号。

它将为我们以后的学习、工作打下良好的基础。

能源使社会生产力的重要基础,随着社会生产的不断发展,人类使用能源不仅在数量上越来越多,在品种及构成上也发生了很大的变化。

人类对能源质量也要求越来越高。

电力使能源工业、基础工业,在国家建设和国民经济发展中占据十分重要的地位,是实现国家现代化的战略重点。

电能也是发展国民经济的基础,使一种无形的、不能大量存储的二次能源。

电能的发、变、送、配和用电,几乎是在同时瞬间完成的,须随时保持功率平衡。

要满足国民经济发展和要求,电力工业必须超前发展,这是世界发展规律。

因此,做好电力规划,加强电网建设,就尤为重要。

发电厂电气部分大学毕设论文

发电厂电气部分大学毕设论文

发电⼚电⽓部分⼤学毕设论⽂年级: 2005级学习形式及层次:学院: 电⽓信息学院专业: 电⼒系统及⾃动化题⽬: 发电⼚(变电所)电⽓部分设计指导⽼师: 学⽣姓名: 完成⽇期:发电⼚(变电所)电⽓部分毕业设计任务书⼀、原始资料:1、发电⼚(变电所)类型:皂⾓湾⽔电站2、发电机组(变压器)台数与容量:2×15MW3、设计年利⽤⼩时数4000⼩时4、电⼒负荷:(1)、低压负荷:⼚⽤电率1.1% ,待建电站邻近1km处有⼀已建电站,可做备⽤⼚⽤电源。

(2)、⾼压负荷:110 kV 电压级,出线1 回,为II 级负荷,最⼤输送容30 MW,cos? = 0.8 ;4、设计电⼚(变电所)接⼊电⼒系统情况:(1)、待设计发电⼚接⼊系统电压等级为110 kV,距系统110 kV 发电⼚20 km;出线回路数为 1 回;5、环境条件:海拔< 1000m;本地区污秽等级2 级;地震裂度< 7 级;最⾼⽓温36°C;最低温度?2.1°C;年平均温度 18°C;最热⽉平均地下温度20°C;年平均雷暴⽇T=56 ⽇/年;其他条件不限。

⼆、设计内容:参照设计指⽰书。

(毕业设计正⽂⽬录)前⾔----------------------------------------------------------------------------------------------------4 第⼀章发电⼚电⽓主接线设计----------------------------------------------------------6 第⼀节主接线的⽅案概述----------------------------------------------------------6第⼆节初步拟定供选择的主接线⽅案-----------------------------------------9第三节主接线的⽅案的技术经济⽐较----------------------------------------10第四节⼚⽤电源接线及坝区供电⽅式----------------------------------------12第⼆章短路电流计算------------------------------------------------------------------------12 第⼀节短路电流计算概述--------------------------------------------------------13第⼆节短路电流计算-----------------------------------------------------------------13第三章导体、电器设备选择及校验---------------------------------------------------21 第⼀节导体、设备选择概述-------------------------------------------------------21第⼆节导体的选择与校验-------------------------------------------------------22第三节电器设备的选择与校验------------------------------------------------24第四节导体和电⽓设备的选择成果表----------------------------------------34第五章继电保护、⾃动装置、测量表计及同期系统的配置规划------------------------------------------38第六章过电压保护和接地-----------------------------------------------------------------46参考⽂献---------------------------------------------------------------------------------------------48 附图:⼀、主接线⽅案⽐较图⼆、电⽓主接线图三、继电保护配置图四、⾃动装备配置图五、计算机监控系统图六、⾼压配电装置平⾯布置图七、⾼压配电装置剖⾯图(⼀)⼋、⾼压配电装置剖⾯图(⼆)前⾔⼀、本毕业设计的⽬的与要求:本毕业设计是电⽓⼯程及其⾃动化专业学⽣在完成本专业教学计划的全部课程教学、课程设计、⽣产实习、毕业实习的基础上,进⼀步培养学⽣综合运⽤所学理论知识与技能,解决实际问题能⼒的⼀个重要环节。

某发电厂电气部分设计 毕设论文

某发电厂电气部分设计  毕设论文

黄台发电厂电气部分设计网络教育学院本科生毕业论文(设计)题目:黄台发电厂电气部分设计I黄台发电厂电气部分设计内容摘要火力发电厂的电气设备可分为电气一次设备和电气二次设备,在火力发电厂电气部分设计中,一次回路的设计是主体,它是保证供电可靠性。

经济性和电能质量的关键,并直接影响着电气部分的投资。

对发电厂进行电气部分的设计有着很好的实践和指导意义,电气设计包括很多方面,其中,电气主接线是发电厂变电所的主要环节,电气主接线直接影响运行的可靠性、灵活性,它的拟定直接关系着整个变电所电气设备的选择、配电装置的布置、继电保护、自动装置和控制方式的确定,是变电站电气部分投资大小的决定性因素。

本次论文选黄台发电厂作为设计对象,做有关这个发电厂的电气设计。

论文从黄台发电厂的现状以及研究意义入手,首先对发电厂电气设计的主要内容进行了总体概括,包括发电厂的总体分析及主变选择、发电厂的总体分析及主变选择、电气主接线的设计和选择、短路计算以及电气设备的选择等;之后又分别详细地介绍了发电厂的总体分析以及主变选择,对主变的容量、台数、以及电缆的选择等进行了计算;通过分析和计算对该发电厂的电气主接线进行了设计和选择;接着又进行了短路计算并介绍了短路计算的相关目以及有关电气设备选择及校验的相关原则和知识;最后全文进行了总结和概括,有一定的实际指导意义。

关键词:电气设计;变电所;电气主接线;电流计算II黄台发电厂电气部分设计目录内容摘要 (II)目录 (1)1 绪论 (3)1.1发电厂的发展现状与趋势 (3)1.2黄台发电厂的研究背景 (3)1.3 本次论文的主要工作 (4)2 电气设计的主要内容 (5)2.1发电厂的总体分析及主变选择 (5)2.1.1 黄台火力发电厂现状 (5)2.1.2 黄台发电厂的主变选择 (5)2.2电气主接线的选择与设计 (6)2.3短路电流计算 (6)2.4电气设备选择及校验 (6)2.4.1 电气设备选择的一般原则 (7)2.4.2 电气设备的选择条件 (7)3 发电厂的总体分析及主变选择 (10)3.1发电厂的总体情况分析 (10)3.2主变压器容量的选择 (10)3.3主变压器台数的选择 (10)3.4电缆选用原则 (11)4 电气主接线设计 (12)4.1 引言 (12)4.2 电气主接线设计的原则和基本要求 (12)4.3 电气主接线设计说明 (13)4.3.1系统连接 (13)4.3.2主接线方案论证 (14)5 短路电流计算 (16)5.1短路计算的目的 (16)1黄台发电厂电气部分设计5.2发电厂短路电流计算 (16)6 结论 (21)参考文献 (22)2黄台发电厂电气部分设计1 绪论1.1发电厂的发展现状与趋势火力发电厂简称火电厂,是利用煤、石油、天然气作为燃料生产电能的工厂,它的基本生产过程是:燃料在锅炉中燃烧加热水使成蒸汽,将燃料的化学能转变成热能,蒸汽压力推动汽轮机旋转,热能转换成机械能,然后汽轮机带动发电机旋转,将机械能转变成电能,并由升压变压器将发电机出口电压升高后,经输电线路将电能输送到用户或电网中。

发电厂电气部分毕业设计论文设计

发电厂电气部分毕业设计论文设计

1 弓I言近年. 我国电力工业发展迅迪,电力供应能力显著1W3M O“十五”期间全国发电装机靳土曽近2亿千瓦,创历史衆高水平,2006年又新瓚装机容妒1亿千瓦.总容2超过6亿千瓦. 今年投产规棋仍将保持在7000万千瓦以上.全国电力供应紧张的局面已经W•到全面缓解。

但是,我国电力工业结构不合理的于盾仍十分突出.特别是能耗髙、污染笙的小火电机组比笙过髙。

因此.电力工业将“上大压小”、加快关停小火电机组放在了“ ~五”期间工作的首位〔9】。

据测算,火电机组容妒的不同,反映在煤杞和污染物排放姑上差别很大。

大型高效发电机组每千瓦时供电煤耗为290克--340克,中小机组则达到380克--500克° 5万千瓦机组其供电煤耗约440克/千瓦时,发同样的电甘.比大机组多耗煤30~50%o与此同时.小火电机组排放二氧化硫和烟尘排放姑分别占电力行业总排放册的35讣52%O国家发改委能源局局长赵小平葬了一笔账.“现有的小机组若能够完全由大机组特代. 一年可节能9000万吨标准煤. 相应减少排放二氧化砍220万吨,少排放二氧化碳2. 2亿吨°目前全国10万千瓦及以下小火电机组占火电装机比磁达到29. 4%,这些小火电绝大郃分是在我国电力供应较为紧张的“八五”、“九五”期间飓5父的,主要分布于经济发达地区利煤炭资源丰富的省份° 加逋关停小火电机组. 一方面是保证节能降耗指标的完成.另一方而有助于保障大机组的开工率. 促进电力产业结构改造升级。

关停小火电机组是从国家大局出发,优化电力工业结构的笙要举箱\ 对提髙电力工业的赞体质2和效益,促进电力工业可持续发展具有十分更要的您义° 发电厂二期工程电气郃分设计①装机容讣:装机两台.总容M 600MW;②机组年利用小时数:Tmax=6000小时③气班条件:发电厂所在地瑕高气5M 32C t年平均气泯5. 65C,垠大风迪25m/s④厂用电率:按6%考虑⑤220kV电压等级,架空线路2回与系统相连.系统电抗以100M\T A为基准折算到220kV 母线为0. 028设计基本要求:①确定发电厂电气主接线的垠佳方案(包括主变压器型式、容如•的选择);②确定发电厂厂用电接线的垠佳方案;③计葬短路电流;④费故保安负荷计算、电气设备的配堂方案;⑤电气设备的选择与校验;⑥绘制有关图纸(电气主接线图、配电装堂平面图与断面图等);2 电气主接线2. 1 概述主接线设计必须结合电力系统利发电厂的具体tfr况. 全面分析有关因素. 正确处理它们之间的关系,衆后合理确定主接线的方案〔习。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 引言近年,我国电力工业发展迅速,电力供应能力显著增强。

“十五”期间全国发电装机新增近2亿千瓦,创历史最高水平,2006年又新增装机容量1亿千瓦,总容量超过6亿千瓦,今年投产规模仍将保持在7000万千瓦以上,全国电力供应紧张的局面已经得到全面缓解。

但是,我国电力工业结构不合理的矛盾仍十分突出,特别是能耗高、污染重的小火电机组比重过高。

因此,电力工业将“上大压小”、加快关停小火电机组放在了“十一五”期间工作的首位[9]。

据测算,火电机组容量的不同,反映在煤耗和污染物排放量上差别很大。

大型高效发电机组每千瓦时供电煤耗为290克--340克,中小机组则达到380克--500克。

5万千瓦机组其供电煤耗约440克/千瓦时,发同样的电量,比大机组多耗煤30--50%。

与此同时,小火电机组排放二氧化硫和烟尘排放量分别占电力行业总排放量的35%和52%。

国家发改委能源局局长赵小平算了一笔账,“现有的小机组若能够完全由大机组替代,一年可节能9000万吨标准煤,相应减少排放二氧化硫220万吨,少排放二氧化碳2.2亿吨。

目前全国10万千瓦及以下小火电机组占火电装机比重达到29.4%,这些小火电绝大部分是在我国电力供应较为紧张的“八五”、“九五”期间建设的,主要分布于经济发达地区和煤炭资源丰富的省份。

加速关停小火电机组,一方面是保证节能降耗指标的完成,另一方面有助于保障大机组的开工率,促进电力产业结构改造升级。

关停小火电机组是从国家大局出发,优化电力工业结构的重要举措,对提高电力工业的整体质量和效益,促进电力工业可持续发展具有十分重要的意义。

发电厂二期工程电气部分设计①装机容量:装机两台,总容量600MW;②机组年利用小时数: Tmax=6000小时③气象条件:发电厂所在地最高气温32℃,年平均气温5.65℃,最大风速25m/s④厂用电率:按6%考虑⑤ 220kV电压等级,架空线路2回与系统相连,系统电抗以100MVA为基准折算到220kV 母线为0.028设计基本要求:①确定发电厂电气主接线的最佳方案(包括主变压器型式、容量的选择);②确定发电厂厂用电接线的最佳方案;③计算短路电流;④事故保安负荷计算、电气设备的配置方案;⑤电气设备的选择与校验;⑥绘制有关图纸(电气主接线图、配电装置平面图与断面图等);2 电气主接线2.1 概述主接线设计必须结合电力系统和发电厂的具体情况,全面分析有关因素,正确处理它们之间的关系,最后合理确定主接线的方案[5]。

2.1.1 电气主接线设计的重要性(1)电气主接线图是电气运行人员进行各种操作和事故处理的重要依据。

(2)电气主接线表明了发电机、变压器、断路器和线路等电气设备的数量、规格、连接方式及可能的运行方式。

2.2 电气主接线的基本形式结合本次设计的实际情况,初步拟定三种接线方案:①单母线接线,其接线形式为图1图1单母线接线②双母线接线,其接线形式为图2图2 双母线接线③带旁路母线的双母线接线,其接线形式为图3图3 双母线带旁路针对以上主接线形式,进行技术经济比较,从而确定本次设计所采用的主接线形式为双母线接线。

2.3 主变压器形式、容量、发电机型号的选择2.3.1 主变的选择100MW及300MW机组的主变选择根据《电力工程电气设计手册》电气一次部分规定“发电机与主变压器为单元接线时,主变压器的容量按发电机的额定容量扣除本机组的厂用负荷后,留有10%的裕度。

”#1~#2发电机主变压器的容量:原有一期为2*100MW机组,发电机具体参数见表2-1表2-1 #1~#2发电机主变压器参数表二期为扩建工程,装机2*300MW ,具体型号与参数见表2-2 #3~#4发电机主变压器的容量:(1%)(110%)N P P K S COS ϕ-+=%P K ——厂用电率,取6%36585.0%)101%)(61(300=+-⨯=S (MVA )表2-2 #3~#4发电机主变压器参数2.3.2 发电机组的选择 一期:两台100MW 机组, 具体型号与参数见表2-3表2-3 #1~#2发电机参数冷却方式二期:两台300MW机组,具体型号与参数见表2-4表2-4 #3~#4发电机参数3 高压厂用电接线3.1 概述厂用机械的重要性决定了厂用电的重要程度,应高度保证供电的可靠性和连续性[6]。

①设计厂用电接线方式时,对厂用电的电压等级、厂用电源及其引接等问题进行分析和论证;②当厂用电系统发生故障时,只影响一台发电机组的运行,缩小故障范围,接线简单。

3.2厂用电压等级及接线形式3.2.1 厂用电压等级按发电机容量确定高压厂用电压等级①火力发电厂为300MW燃煤机组,采用6kV作为厂用高压电压;3.2.2 厂用电接线型式本次设计发电厂厂用电系统接线采用单母线分段接线形式,为了保证厂用电系统的供电可靠性和经济性,高压厂用电母线采用按锅炉分段的原则。

3.3 厂用电源及备用电源引接方式3.3.1 厂用电源引接方式厂用电源的取得方式主要决定于电气主接线的方式。

本次设计采用发电机、变压器单元接线,厂用工作电源从主变压器的低压侧引接。

火力发电厂,投入系统并联运行,发电机电压回路通过厂用高压变压器取得厂用高压工作电源,即使发电机组全部停止运行,仍可从电力系统倒送电能供给厂用电源。

3.3.2 备用电源引接方式本次设计为300MW大型发电机组,为了确保机组安全和厂用电的可靠,设置备用电源,本次设计的备用电源是从220kV母线引接。

3.4 高压厂用变、备用变压器的选择3.4.1 容量、型式的选择根据《火力发电厂设计技术规程》规定:高压厂用备用变压器或启动/备用变压器的容量不应小于最大一台高压厂用工作变压器的容量;①火力发电厂为两台300MW机组,所以设一台高压厂用/备用变压器②根据300MW发电机组厂用负荷表选择厂用变压器和启动备用变压器如下:厂用变压器:型号:SFF10-50000/24kV 额定容量:50000/30000-30000kVA额定电压:24±2×2.5%/6.3-6.3kV 阻抗电压:18.5%备用变压器:型号:SFPFZ10-50000/220kV 额定容量:50000/30000-30000kVA 额定电压:230±8×1.25%/6.3-6.3kV 阻抗电压:20%3.5 厂用电接线图1段厂用26AKV段厂用16BKV段厂用26BKV4 #4机计算负荷4.1 #4发电机保安段负荷统计每个单元机组事故停机时,同时运行的保安负荷额定功率。

22210.52683.10.5*343.2854.7I I I II I P P P =+=+=kW式中:21I I P 保安段上所接“连续”运行的保安负荷之和(kW ) 21I I P =683.1 kW22I I P 保安段上所接“定期”运行的保安负荷之和(kW ) 22I IP =343.2 kW计算负荷C S =2I I K P =0.8*854.7=683.76kVAC P =C S *II COS C υ=683.76*0.86=588kW 式中:C S 计算负荷(kVA )2I IP 每个单元机组事故停机时,可能同时运行的保安负荷的额定功率之和(kW )K 计算系数,取0.8C P 计算负荷有功功率(kW )I I COS C υ 计算负荷的功率因数,取0.86。

柴油发电机容量选择发电机带负荷启动一台最大容量的电动机时短路过负荷能力校验,发电机在热状态下,能承受150%e S ,时间为15Se S ≥[C S +(1.25q K -K)Pdm]/1.5=[683.76+(1.25*6.5-0.8)*37]/1.5=636.52kVA式中:Pdm 最大电动机额定功率 (kW )q K 最大电动机的启动电流倍数,取0.65发电机连续输出容量应大于最大计算负荷。

e S ≥C S =683.76 kVA比较以上两种情况,容量较大为683.76 kVA ,选择柴油发电机组容量为:e S =894 kVA e P =715kW柴油机输出容量的负荷持续一小时运行状态下输出功率校验:X P ≥C aP /1.1/I I Hg =1.15*588/1.1/0.96=640.3 kW式中:C P 计算负荷的有功功率(kW ) II Hg 发电机的效率,不低于0.96 a 柴油发电机的功率配合系数,取1.15 柴油机首次加载能力校验:X P ≥2.5q K Ped ∑*cos c φ+2Peb ∑=482.5kWPed ∑——初始投入的保安负荷(旋转)额定功率之和(kW ) Ped ∑=66.1KWPeb ∑——初始投入的保安负荷(静止)额定功率之和(kW ) Peb ∑=76KWq K ——启动负荷的电流倍数,取5cos c φ——启动负荷功率因数,取0.4最大电动机启动时母线上的电压水平校验:m U =e S /(e S +1.25KPdmXd )=894/(894+1.25*5*37*0.25)=93.9%>75%式中:d X 发电机的暂态电抗(标么值),取0.25。

5 短路电流计算5.1 元件电抗标么值计算及等值电路图元件电抗标么值计算:sX 1X 2X 3X 4X 5X 1F 6X 7X 9X 8X 10X 11X 4F 3F 2F图5-1 系统等值电抗图Xs=0.028 S B =100MVA X1=X2=TN B S S Us *100%=120100*10013=0.108 X3=X4=TN B S S Us *100%=400100*10015=0.0375 X5=X6=Xd "*NB S S =0.183*85.0100100=0.156X7=X8= Xd "*NB S S =0.185*85.0100100=0.052X9=X10=N B S S Us *100%=50100*1005.18=0.370 X11=N B S S Us *100%=50100*10020=0.4005.2 220kV 母线侧d 1点短路:sX 1f X 2f X 3f X 4f X 3003001001001d图5-2 d1点短路等值电抗图转移电抗X S =0.028 无穷大电源、短路电抗标么值为: I *P =X 1=028.01=35.714 系统提供短路电流有名值: I P = I *P *avB U S 3=230*3100=8.965 kA1号发电机: X1f =X1+X5=0.108+0.156=0.264计算电抗:X 1fs =X 1f *BN S S1=0.264*10085.0100=0.311 查曲线,得各时刻短路电流周期分量标么值: 0S: I *1F =3.451 有名值:I 1F =I *1F *AVN U S 31=3.451*230*385.0100=1.019 kA 0.1S: I *1.10F =2.954 有名值:I 1.10F = I *1.10F *AV N U S 31=2.954*230*385.0100=0.872 kA 0.2S :I *2.10F =2.720 有名值:I 2.10F = I *2.10F *AVN U S 31=2.720*230*385.0100=0.803 kA2S: I "*0.12F =2.330 有名值:I 0.12F = I "*0.12F *AV N U S 31=2.330*230*385.0100=0.688 kA 4S: I "0.14F =2.325 有名值: I 0.14F = I "0.14F *AVN U S 31=2.325*230*385.0100=0.687 kA 2号发电机与1号发电机相同冲击电流:I sh =2*K ish * I 1F =2*1.85*1.019=2.666 kA 3号发电机 X3f =X3+X7=0.0895计算电抗:X 3js =X 1f *BN S S3=0.0895*10085.0300=0.316 查曲线,得各时刻短路电流周期分量标么值: 0S: I *3F =3.447 有名值:I 3F = I *3F *AVN U S 33=3.447*230*385.0300=3.054 kA 0.1S I "1.30F =2.934 有名值:I 1.30F = I "1.30F *AV N U S 33=2.934*230*385.0300=2.599 kA 0.2S I "2.30F =2.702 有名值:I 2.30F = I "2.30F *AV N U S 33=2.702*230*385.0300=2.394 kA 2S I "0.32F =2.320 有名值:I 0.32F = I "0.32F *AV N U S 33=2.320*230*385.0300=2.057 kA 4S I "0.34F =2.314 有名值:I 0.34F = I "0.34F *AVN U S 33=2.314*230*385.0300=2.050 kA 220KV 母线上短路电流:''0I ∑=8.965+3.451*2+3.447*2=22.761 kA冲击电流:I sh =2*K ish *''0I ∑=2*1.85*22.761=59.541 kA 4号发电机与3号发电机相同5.3 发电机出口侧d 2点短路根据图5-2结果:sX 1f X 2f X 4f X 2d 7X 3X图5-3 d2点短路等值电抗图利用Y ∑法,将阻抗标么值全部归算到24kV (发电机出口电压) 化简网络:Y ∑=Xs 1+11Xf +21Xf +31X +41Xf =028.01+264.01+264.01+0375.01+0895.01 =35.714+2*3.788+26.667+11.173=81.130 求各阻抗相对于短路点的转移阻抗X 1S =X S *X 3*Y ∑=0.028*0.0375*81.130=0.085 X 11=X 21=X 1f * X 3*Y ∑=0.264*0.0375*81.130=0.803X 41=X4f * X 3*Y ∑=0.0895*0.0375*810130=0.272化简后,等值电抗图为:41X 7X 21X 11X 1s X 2d图5-4 d2点短路网络化简图X 1S =0.085 无穷大电源,短路电抗标么值为: I *P =11S X =085.01=11.765 有名值:I P =I *P *avB U S 3=11.765*24*3100=28.302 kA 1号发电机X 11=0.803 计算电抗 X 11js = X 11*BN S S1=0.803*10085.0100=0.945 查曲线,得各时刻短路电流周期分量标么值: 0S I "1F =1.095 有名值:I 1F = I"1F *AVN U S 31=1.095*24*385.0100=3.099 kA 0.1S I"1.10F =1.035 有名值:I 1.10F = I"1.10F *AV N U S 31=1.035*24*385.0100=2.929 kA 0.2S I "2.10F =1.005 有名值:I 2.10F = I"2.10F *AV N U S 31=1.005*24*385.0100=2.844 kA 2S I"0.12F =1.204 有名值:I 0.12F = I"0.12F *AV N U S 31=1.204*24*385.0100=3.408 kA 4S I"0.14F =1.204 有名值:I 0.14F = I"0.14F *AVN U S 31=1.204*24*385.0100=3.408 kA 冲击电流 I sh =2*K ish * I 1F =2*1.85*3.099=8.107 kA 2号发电机与1号发电机相同 4号发电机X 41=0.272 计算电抗:X 41js = X 41*BN S S4=0.272*10085.0300=0.96 查曲线,得各时刻短路电流周期分量标么值: 0S I"4F =1.087 有名值:I 4F = I"4F *AVN U S 34=1.807*24*385.0300=9.229 kA 0.1S I"1.40F =1.029 有名值:I 1.40F = I"1.40F *AVN U S 34=1.029*24*385.0300=8.736 kA0.2S I"2.40F =1.000 有名值:I 2.40F = I"2.40F *AV N U S 34=1.000*24*385.0300=8.490 kA 2S I ".42F =1.197 有名值:I 0.42F = I ".42F *AV N U S 34=1.197*24*385.0300=10.164 kA 4S I"0.44F =1.197 有名值:I 0.44F = I"0.44F *AVN U S 34==1.197*24*385.0300=10.164 kA 冲击电流 I sh =2*K ish * I 4F =2*1.85*9.229=24.142 kA 3号发电机X 7=0.052 按无穷大电源处理I "3F =71X =052.01=19.231 有名值:I 3F = I "3F *BN S S 3=19.231*10085.0300=67.873 kA 厂用变低压侧短路(3号发电机厂用变)将各阻抗归算到6.3kV 侧,根据图4已将各阻抗归算到24kV 侧:5.4 发电机高压厂用变低压侧d 3点短路41X 7X 21X 11X 1s X 9X 3d图5-5 d3点短路等值电抗图利用Y ∑法,Y ∑=11S X +111X +211X +71X +411X +91X=085.01+803.01+803.01+052.01+272.01+370.01 =11.765+1.245+1.245+19.231+3.677+2.703=39.866 求各阻抗相对于短路点的各阻抗:X 2S =X 1S *X 9*Y ∑=0.085*0.370*39.866=1.254 X 12=X 22=0.803*0.370*39.866=11.845 X 72=X 7*X 9*Y ∑=0.052*0.370*39.866=0.767 X 42=X 41* X 9*Y ∑=0.272*0.370*39.866=4.012 化简后,等值电路图为:72X 22X 12X 2s X 3d 42X图5-6 d3点短路化简等值电抗图系统提供的短路电流: X 2S =1.254 I"*P =21S X =254.11=0.797 有名值: I P = I "*P *AVB U S 3=0.797*3.6*3100=7.308 kA1号发电机X 12 =X 22=11.845 计算电抗 X 12.js = X 12*BN S S 1=13.935>3.45 按无穷大电源计算 I"1F =12.1JS X =935.131=0.072有名值:I 1F = I "1F *AVN U S 31=935.131*3.6*3100=0.658 kA4号发电机X 42=4.012 计算电抗:X 42.js = X 42*B N S S 4=4.012*10085.0300=14.16>3.45 按无穷大电源处理: I "4F =42.1js X =16.141kA 有名值: I 4F = I "4F *AVN U S 34=16.141*3.6*385.0300=2.284 3号发电机X 72=0.767 计算电抗:X 72.js = X 72*BN S S=0.767*10085.0300=2.707 查曲线,得各时刻短路电流周期分量标么值: 0S: I "3F =0.375 有名值:I 3F = I "3F *AVN U S 33=0.375*3.6*385.0300=12.130 kA 0.1S I"1.30F =0.360 有名值:I 1.30F = I"1.30F *AV N U S 33=0.360*3.6*385.0300=11.644 kA 0.2S I"2.30F =0.357 有名值:I 2.30F = I"2.30F *AV N U S 33=0.357*3.6*385.0300=11.547 kA 2.0S I"0.32F =0.376 有名值:I 0.32F = I"0.32F *AVN U S 33=0.376*3.6*385.0300=12.138 kA 4.0S 时的标么值与2.0S 时相同冲击电流 I sh =2*K ish * I 3F =2*1.85*12.130=31.731 kA 电动机反馈电流 总容量取17MVA 计算公式:I t =K tD *I"DI"D =K D d .*I eD *103-= K Dd .ϕCOS J U P D eD D e 3.103-冲击电流计算公式:I ch =2*1.1*K chD * I"DK chD :电动机反馈电流的冲击系数 12.5万以上机组取1.7计算各时刻的短路电流值:0S: I 0=K D 0 *I "D =1* K dD * I eD *103-=1*5.7*8.0*6*37.1=11.656 kA0.1S I 1.0=K D 1.0* I "D =TD1.0-* K dD * I eD =0.20*5.7* I eD =2.331 kA 0.2S I 2.0=K D 2.0* I "D=TD2.0-* K dD * I eD =0.040*5.7 *I eD =0.463 kA2.0S 时 I 0.2=0 4.0S 时 I 0.4=0冲击电流I ch =2*1.1*K chD * I "D=2*1.1*1.7*11.656=30.835 kA5.5 高备变低压侧d 4点短路将各阻抗折算到6.3kV 侧:根据图23f X 2f X 1f X s X 4d 4f X 11X 图5-7 d4点短路等值电抗图化简等值电抗图:Y ∑=51X +11f X +21f X +31f X +41f X +111X =35.71+3.788+3.788+11.173+11.17+2.5=68.136求各点相对于短路点的转移阻抗:X 3S =X S *X 11*Y ∑=0.028*0.4*68.136=0.763 X 13=X1f * X 11*Y ∑=0.264*0.4*68.136=7.195 X 23= X 13=7.195X 33=X3f * X 11*Y =0.0895*0.4*68.136=2.442 X 43= X 33=2.442化简后等值电抗图43X 33X 23X 13X 3s X 4d 图5-8 d4点短路化简等值电抗图系统提供的短路电流: X 3S =0.763 I "P =31S X =763.01=1.311 有名值: I P = I "P *AVB U S 3=1.311*3.6*3100=12.011 kA1号发电机:X 13=7.195 计算电抗:X 13js = X 13*BN S S1=7.195*10085.0100=8.465>3.45 按无穷大电源处理: I"1F =131js X =465.81 有名值:I 1F = I "1F *AVN U S 31=465.81*3.6*385.0100=1.274 kA 2号发电机与1号发电机相同冲击电流:I sh =2 *K ish *I 1F =2*1.85*1.274=3.333 kA 3号发电机:X 33=2.442 计算电抗: X 33.js = X 33*BN S S3=2.442*10085.0300=8.619>3.45 按无穷大电源处理:I "3F =js X 1=619.81 有名值:I 3F = I"3F *AVN U S 33=619.81*3.6*385.0300=3.753 kA 电动机的反馈电流与厂用变低压侧短路时相同。

相关文档
最新文档