高数 定积分的应用
高数6—定积分应用

高数复习题6——定积分应用1. 从原点向曲线x y ln 1-=作切线,计算由切线、曲线和x 轴所围图形的面积. 2. 求曲线θcos 3=r 所围图形和曲线θcos 1+=r 所围图形的公共部分面积及边界曲线周长. 3. 摆线的一拱的方程为⎩⎨⎧-=-=)cos 1()sin (t a y t t a x ,π20≤≤t ,(1)求摆线一拱的弧长;(2)求摆线一拱与x 轴所围图形的面积;(3)求摆线一拱与x 轴所围图形绕x 轴旋转一周所成立体的体积. 4.若曲线 )1(-=x x y 与 x 轴所围成平面图形的面积等于曲线 xy 1=与 x = 1, x = λ,x 轴所围成平面图形的面积,求λ。
5.求曲线x y sin =(π≤≤x 0)和x 轴所围图形绕y 轴旋转一周所成立体的体积. 6.设20π<<t (t 为参数),曲线x y sin =与三条直线0,2,===y t x t x 所围平面图形绕x 轴旋转一周所成的旋转体体积为)(t V ,求 t 的值使)(t V 取得最大值。
7.质点以速度 2sin )(t t t v =(米/秒)作直线运动,求质点从时间11=t 秒到时间π=2t秒内所经过的路程。
8.半圆形闸门半径为R (米),将其垂直放入水中,且直径与水面齐,设水密度1=ρ;设 坐标原点放在圆心,x 轴正向朝下,求闸门一侧所受的水压力。
9.一容器的边界曲面是由抛物线2x y =绕y 轴旋转而成的,其容积为π72)(3m ,容器中盛满水,问将水抽去π64)(3m 至少需作多少功.参考答案1. 从原点向曲线x y ln 1-=作切线,计算由切线、曲线和x 轴所围图形的面积. 解:设切点为),(00y x ,00001)(x y x x y =-=' 10-=y ,20e x = 所以切线方程为 x ee x e y 22211)(1-=---=,曲线与x 轴的交点为)0,(e面积22220111[(1ln )()]2ee e A x dx x x dx e e e e =-+---=-⎰⎰2. 求曲线θcos 3=r 所围图形和曲线θcos 1+=r 所围图形的公共部分面积及边界曲线周长.解:先求曲线的交点⎩⎨⎧+==θθcos 1cos 3r r 消r 得21cos =θ 所以3πθ±=面积2232031152[(1cos )(3cos )]224A d d πππθθθθπ=++=⎰⎰弧长2[]4l θθπ=+=+3. 摆线的一拱的方程为⎩⎨⎧-=-=)cos 1()sin (t a y t t a x ,π20≤≤t ,(1)求摆线一拱的弧长;222002sin 82tl a a dt a πππ====⎰⎰⎰(2)求摆线一拱与x 轴所围图形的面积;222220(1cos )3aA ydx a t dt a πππ==-=⎰⎰(3)求摆线一拱与x 轴所围图形绕x 轴旋转一周所成立体的体积.22233230(1cos )5aV y dx a t dt a πππππ==-=⎰⎰4.若曲线 )1(-=x x y 与 x 轴所围成平面图形的面积等于曲线 xy 1=与 x = 1, x =λ,x 轴所围成平面图形的面积,求λ。
高等数学(上册)-第5章第6讲(定积分的几何应用)[22页]
![高等数学(上册)-第5章第6讲(定积分的几何应用)[22页]](https://img.taocdn.com/s3/m/9c36fcd0783e0912a2162ad6.png)
5
二、 平面图形的面积
1. 直角坐标系中的平面图形的面积
在平面直角坐标系中求由曲线y f (x),y g(x)和直线x a,x b围成图
形的面积A,其中函数f (x),g(x)在区间[a,b]上连续,且f (x) g(x),如图所示.
在区间[a,b] 上任取代表区间[x, x dx],在区间两个端点处做垂直于x 轴的
A 1 r2 ( )d.
2
β
O
α
ρ 10
本讲内容
01 微元法 02 平面图形的面积 03 体积 04 平面曲线的弧长
11
三、 体积
1.旋转体的体积.
由一个平面图形绕这平面内一条直线旋转一 y 周而成的立体称为旋转体,这条直线称为旋转轴.
如圆柱、圆锥、圆台、球体都是旋转体. 设一旋转体由连续曲线 y f (x),直线x a, O a
直线,由于 dx 非常小,这样介于两条直线之间的图形可以近似看成矩形,因
此面积微元可表示为
[ f (x) g(x)]dx,
于是,所求面积A为
b
A a [ f (x) g(x)]dx.
若f (x) g(x),则有
A
b
[ f (x) g(x)]dx.
a
综合以上两种情况,由曲线 y f (x),y g(x)
y x 1(y)
d
c O
x 2(y) x
7
二、 平面图形的面积 例 1 求由两抛物线y x2与x y2 所围成图形的面积A .
解
解方程组
y x
x2,得到两抛物线的交点为(0,0),(1,1), y 2,
y
两抛物线围成的图形如图所示.
则所求面积 A 为
A
高数6.3 定积分应用案例

F 1121.9767 0.91442 12.7, 37407.031(kg )
比较可知,此时租用客机比购买客机合算. 当 r 6% 时,
600 P (1 e 0.0615 ) 5934.3 (万美元), 0.06
此时购买客机比租用客机合算.
高等数学 第6章 定积分的应用
§6.3
定积分应用案例
二. 转售机器的最佳时间
(周)的减函数 由于折旧等因素,某机器转售价格 R( t )是时间 t
因此,加在整个窗面上的压力为
z0 z
dz
F d F 2 z l ( z ) dz
z0 z0
z1
z1
z1
图 5 -21
因为 A 2
z1 z0
l ( z )dz
2 z1 z l(z) d z 形心 z A z0
因此
F z A
高等数学 第6章 定积分的应用
§6.3
t 3 A ln 32 A 96ln 32 48 f (333) e e dt 12.01 A (元) 0 4 4
因此,
最大总利润
P f (333) A 11.01 A,
3A 机器卖了 (元 ) 128
高等数学 第6章 定积分的应用
§6.3
定积分应用案例
三. 潜艇的观察窗问题
第6章 定积分的应用
§6.3 定积分应用案例
高等数学 第6章 定积分的应用
§6.3
定积分应用案例
一、租客机还是买客机 某航空公司为了发展新航线的航运业务, 需要增加5架
波音747客机,如果购进一架客机需要一次支付5000万
美元现金, 客机的使用寿命为15年. 如果租用一架客机, 每年需要支付600万美元的租金,租金以均匀货币流的方
高数课件第六章定积分的应用:第二节定积分的几何应用

y
c
b O
x
bx
x
x x 1 sh dx ch dx c c b x xb s 2 ch dx 2c sh 0 c c 0 x b 1 x 2c sh ( c ch ) c sh c c c c
2
e e ch x 2 x x e e sh x 2 (ch x) sh x
Hale Waihona Puke 2 (t ) 2 (t ) d t
因此所求弧长
s
2 (t ) 2 (t ) d t
(3) 曲线弧由极坐标方程给出:
令 x r ( ) cos , y r ( ) sin , 则得
dx [r ( ) cos r ( ) sin ]d dy [r ( ) sin r ( ) cos ]d
2
选 x 为积分变量 (1) x [2, 0], dA1 ( x 3 6 x x 2 )dx 于是所求面积 A A1 A2
特别注意:
各积分区间 A ( x 3 6 x x 2 )dx 0 (x x 6 x)dx 上被积函数的 2 253 形式不同. . 12
0
3
2
3
x2 1 练习:1.求曲线 y , y 与直线 x 3 2 1 x 2
x 3 所围成的图形的面积。
2.求曲线 xy 1 与直线
x y 0 y 2
x y 2
P1
2
所围成的图形的面积。 2014考研题
提示:1
P2
y
1
32 1 0 2 1 1 3 x 1 x 1 1 s 2[ ( )d x ( ( 3 3 2) ) d x ] 2 0 1 x 1 3 2 2 1 x2
高数二 6.2定积分的几何应用

2
3 2
2 sin
1 s、旋转体的体积
旋转体就是由一个平面图形饶这平面内 一条直线旋转一周而成的立体.这直线叫做 旋转轴.
圆柱
圆锥
圆台
一般地,如果旋转体是由连续曲线 y f ( x) 、
直线x a 、x b 及x 轴所围成的曲边梯形绕
x 轴旋转一周而成的立体,体积为多少?
可看作平面图OABC 与OBC
x x1( y) o
A
2a x
分别绕y 轴旋转构成旋转体的体积之差.
Vy
2a
x
2
2
(
y
)dt
0
2a
x
2
1
(
y
)dt
0
a2 (t sin t)2 a sin tdt 2 a2 (t sin t)2 a sin tdt 0
a3 2 (t sin t)2 sin tdt 63a3 . 0
取积分变量为x ,
y
y f (x)
x [a,b]
在[a,b]上任取小区 o
x x dx
x
间[ x, x dx],
取以dx 为底的窄边梯形绕x 轴旋转而成的薄
片的体积为体积元素, dV [ f ( x)]2 dx
旋转体的体积为 V b [ f ( x)]2 dx a
例 1 连接坐标原点O 及点P(h, r)的直线、直线
V
aa
a
2 3
2
x3
3
dx
32 105
a3 .
类似地,如果旋转体是由连续曲线
x ( y)、直线 y c 、 y d 及y 轴所围
成的曲边梯形绕y 轴旋转一周而成的立体,
体积为
高数三:函数平均值和定积分的经济学应用

三、平均值在实际问题中,常常用一组数据的算术平均值来描述这组数据的概貌。
例如:对某一零件的长度进行n 次测量,每次测得的值为。
通常用算术平均值作为这个零件长度的近似值。
然而,有时还需要计算一个连续函数在区间上的一切值的平均值。
我们已经知道,速度为的物体作直线运动,它在时间间隔上所经过的路程为用去除路程s ,即得它在时间间隔上的平均速度,为一般地,设函数在区间上连续,则它在上的平均值,等于它在上的定积分除以区间的长度b-a ,即图 5-34这个公式叫做函数的平均值公式。
它可变形为它的几何解释是:以为底、为曲边的曲边梯形面积,等于高为的同底矩形的面积(见图5-33)图 5-33例6 求从O到T这段时间内自由落体的平均速度。
解:自由速度为。
所以要计算的平均速度(见图5-34)为例7 计算纯电阻电路中正弦交流电在一个周期内功率的平均值。
解设电阻为R,那么电路中R两端的电压为而功率因为交流电的周期为,所以在一个周期上,P的平均值为就是说,纯电阻电路中正弦交流电的平均功率等于电流和电压的峰值乘积的一半。
通常交流电器上标明的功率是平均功率。
四、定积分在经济上的应用举例定积分在经济活动中应用很广泛。
如,已知某经济函数的边际函数的条件下,求原经济函数的改变量时,就需用定积分来解决。
例8 设某工厂生产某产品,边际产量为时间t的函数,已知求从t=1到t=3这两个小时的总产量。
解:因为总产量是它的边际产量的原函数。
所以,从t=1到t=3这两小时的总产量是(千件)例9 已知生产某产品x件的边际收入是( 元/件)求生产此产品1000件时的总收入,平均收入,及生产1000件到2000件时所增加的收入和平均收入。
解:设总收入函数为,总产量为1000件时的总收入R(1000),为平均收入产量从1000件到2000件所增加的收入为,其平均收入为例10 设某产品的总成本C(单位:万元)的边际成本是产量x(单位:百台)的函数,;总收入(单位:万元)的边际收入是产量x的函数,求:1)产量由1百台增加到5百台总成本,总收入各增加多少?2)已知固定成本C(0)为1万元,分别求出总成本、总收入,总利润与产量的关系式。
高等数学第六章第二节定积分在几何学上的应用课件.ppt

解:
cos x 0,
2
x
2
s
2
2
2 2 0
1 y2 dx 1 ( cos x)2 dx
2 2
2 cos x dx
0
2
2
2
2
sin
x 2
2
0
4
的弧长.
例11. 计算摆线
一拱
的弧长 .
y
解: ds
(dd
x t
)2
(
d d
y t
)
2
d
t
o
a2 (1 cos t)2 a2 sin2 t d t
1 y2 dx
因此所求弧长
s b 1 y2 dx a
b
a
1 f 2(x) dx
y
y f (x)
ds
o a xxdxb x
(2) 曲线弧由参数方程给出:
弧长元素(弧微分) :
ds (dx)2 (dy)2
2 (t) 2 (t) dt
因此所求弧长
s
2 (t) 2 (t) d t
(3) 曲线弧由极坐标方程给出:
y b
o x ax
则 V 2 a y2 dx 0
(利用对称性)
2
b2 a2
a
(a
2
x2
)
dx
0
2
b2 a2
a2 x
1 3
x3
a 0
4 ab2
3
方法2 利用椭圆参数方程
则 V 20a y2 dx 2 ab2 sin3t d t
2 ab2 2 1
3
4 ab2
3
特别当b
=
a
大一高数定积分的应用知识点

大一高数定积分的应用知识点大一高数课程中,定积分是一个重要的概念和工具。
它在数学和其他领域中有着广泛的应用。
通过对定积分的学习和理解,我们可以更好地理解和应用高数的知识。
下面将介绍一些大一高数定积分的应用知识点。
一、定积分的定义和基本性质定积分的定义是通过极限的思想得出的。
在闭区间[a, b]上,将函数f(x)的每一个小区间[a, x]上的面积(可以是正数、负数或零)都加起来,这个和就是函数f(x)在闭区间[a, b]上的定积分,记作∫[a, b]f(x)dx。
定积分有以下的基本性质:1. 定积分的可加性:∫[a, b]f(x)dx + ∫[b, c]f(x)dx等于∫[a, c]f(x)dx。
2. 定积分的线性性质:若f(x)和g(x)在闭区间[a, b]上可积,则有∫[a, b](f(x) + g(x))dx = ∫[a, b]f(x)dx + ∫[a, b]g(x)dx。
3. 定积分的估值定理:若f(x)在闭区间[a, b]上是连续的,则存在一个点c∈[a, b],使得∫[a, b]f(x)dx = f(c)(b - a)。
二、定积分的几何意义和物理意义定积分的几何意义是函数图像和x轴以及闭区间[a, b]所围成的图形的面积。
当函数图像在x轴上方时,定积分为正数;当函数图像在x轴下方时,定积分为负数;当函数图像与x轴相交时,定积分为零。
定积分的物理意义是函数图像和x轴所围成的部分的面积与某物理量的关系。
例如,若f(x)表示一个速度函数,那么∫[a, b]f(x)dx就表示从时间a到时间b内物体所走过的路程。
三、定积分的基本应用1. 函数曲线所围图形的面积计算:通过定积分可以求解函数曲线所围图形的面积,如矩形、三角形、梯形、圆形等。
例如,若要求解函数y = x^2在区间[0, 1]上的面积,可以计算∫[0, 1]x^2dx = [x^3/3]0^1 = 1/3。
2. 曲线的弧长计算:通过定积分可以求解曲线的弧长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章定积分的应用教学目的1、理解元素法的基本思想;2、掌握用定积分表达和计算一些几何量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积)。
3、掌握用定积分表达和计算一些物理量(变力做功、引力、压力和函数的平均值等)。
教学重点:1、计算平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积。
2、计算变力所做的功、引力、压力和函数的平均值等。
教学难点:1、截面面积为已知的立体体积。
2、引力。
§6.1 定积分的元素法回忆曲边梯形的面积:设y=f (x)≥0 (x∈[a,b]).如果说积分,⎰=b adx xfA)(是以[a,b]为底的曲边梯形的面积,则积分上限函数⎰=x adt tfxA)()(就是以[a,x]为底的曲边梯形的面积.而微分dA(x)=f (x)dx表示点x处以dx为宽的小曲边梯形面积的近似值∆A≈f (x)dx, f (x)dx称为曲边梯形的面积元素.以[a,b]为底的曲边梯形的面积A就是以面积元素f(x)dx为被积表达式,以[a , b ]为积分区间的定积分:⎰=ba dx x f A )( .一般情况下, 为求某一量U , 先将此量分布在某一区间[a , b ]上, 分布在[a , x ]上的量用函数U (x )表示, 再求这一量的元素dU (x ), 设dU (x )=u (x )dx , 然后以u (x )dx 为被积表达式, 以[a , b ]为积分区间求定积分即得⎰=ba dx x f U )(.用这一方法求一量的值的方法称为微元法(或元素法).§6. 2 定积分在几何上的应用一、平面图形的面积 1.直角坐标情形设平面图形由上下两条曲线y =f 上(x )与y =f 下(x )及左右两条直线x =a 与x =b 所围成, 则面积元素为[f 上(x )- f 下(x )]dx , 于是平面图形的面积为 dx x f x f S ba ⎰-=)]()([下上.类似地, 由左右两条曲线x =ϕ左(y )与x =ϕ右(y )及上下两条直线y =d 与y =c 所围成设平面图形的面积为⎰-=d c dy y y S )]()([左右ϕϕ.例1 计算抛物线y 2=x 、y =x 2所围成的图形的面积.解 (1)画图.(2)确定在x 轴上的投影区间: [0, 1]. (3)确定上下曲线: 2)( ,)(x x f x x f ==下上. (4)计算积分31]3132[)(10323102=-=-=⎰x x dx x x S . 例2 计算抛物线y 2=2x 与直线y =x -4所围成的图形的面积. 解 (1)画图.(2)确定在y 轴上的投影区间: [-2, 4]. (3)确定左右曲线: 4)( ,21)(2+==y y y y 右左ϕϕ.(4)计算积分⎰--+=422)214(dy y y S 18]61421[4232=-+=-y y y .例3 求椭圆12222=+b y ax 所围成的图形的面积. 解 设整个椭圆的面积是椭圆在第一象限部分的四倍, 椭圆在第一象限部分在x 轴上的投影区间为[0, a ]. 因为面积元素为ydx , 所以⎰=aydx S 04.椭圆的参数方程为: x =a cos t , y =b sin t ,于是 ⎰=a ydx S 04⎰=02)cos (sin 4πt a td b⎰-=022sin 4πtdt ab ⎰-=20)2cos 1(2πdt t ab ππab ab =⋅=22.2.极坐标情形曲边扇形及曲边扇形的面积元素:由曲线ρ=ϕ(θ)及射线θ =α, θ =β围成的图形称为曲边扇形. 曲边扇形的面积元素为θθϕd dS 2)]([21=.曲边扇形的面积为⎰=βαθθϕd S 2)]([21.例4. 计算阿基米德螺线ρ=a θ (a >0)上相应于θ从0变到2π 的一段弧与极轴所围成的图形的面积.解: ⎰=πθθ202)(21d a S 32203234]31[21πθπa a ==.例5. 计算心形线ρ=a (1+cos θ ) (a >0) 所围成的图形的面积.解: ⎰+=πθθ02]cos 1([212d a S ⎰++=πθθθ02)2cos 21cos 221(d aπθθθπ20223]2sin 41sin 223[a a =++=.二、体 积 1.旋转体的体积旋转体就是由一个平面图形绕这平面内一条直线旋转一周而成的立体. 这直线叫做旋转轴.常见的旋转体: 圆柱、圆锥、圆台、球体.旋转体都可以看作是由连续曲线y =f (x )、直线x =a 、a =b 及x 轴所围成的曲边梯形绕x 轴旋转一周而成的立体.设过区间[a , b ]内点x 且垂直于x 轴的平面左侧的旋转体的体积为V (x ), 当平面左右平移dx 后, 体积的增量近似为∆V =π[f (x )]2dx , 于是体积元素为 dV = π[f (x )]2dx , 旋转体的体积为dx x f V ba 2)]([π⎰=.例1 连接坐标原点O 及点P (h , r )的直线、直线x =h 及x 轴围成一个直角三角形. 将它绕x 轴旋转构成一个底半径为r 、高为h 的圆锥体. 计算这圆锥体的体积. 解: 直角三角形斜边的直线方程为x hr y =.所求圆锥体的体积为dx x h r V h 20)(π⎰=hx hr 0322]31[π=231hr π=. 例2. 计算由椭圆12222=+by a x 所成的图形绕x 轴旋转而成的旋转体(旋转椭球体)的体积.解: 这个旋转椭球体也可以看作是由半个椭圆 22x a ab y -=及x 轴围成的图形绕x 轴旋转而成的立体. 体积元素为dV = π y 2dx ,于是所求旋转椭球体的体积为⎰--=a a dx x a a b V )(2222πa a x x a ab --=]31[3222π234ab π=. 例3 计算由摆线x =a (t -sin t ), y =a (1-cos t )的一拱, 直线y =0所围成的图形分别绕x 轴、y 轴旋转而成的旋转体的体积.解 所给图形绕x 轴旋转而成的旋转体的体积为 ⎰=ax dx y V ππ202⎰-⋅-=ππ2022)cos 1()cos 1(dt t a t a ⎰-+-=ππ20323)cos cos 3cos 31(dt t t t a =5π 2a 3.所给图形绕y 轴旋转而成的旋转体的体积是两个旋转体体积的差. 设曲线左半边为x =x 1(y )、右半边为x =x 2(y ). 则⎰⎰-=aay dy y x dy y x V 20212022)()(ππ⎰⎰⋅--⋅-=πππππ022222sin )sin (sin )sin (tdt a t t a tdt a t t a ⎰--=ππ2023sin )sin (tdt t t a =6π 3a 3 .2.平行截面面积为已知的立体的体积设立体在x 轴的投影区间为[a , b ], 过点x 且垂直于x 轴的平面与立体相截, 截面面积为A (x ), 则体积元素为A (x )dx , 立体的体积为 dx x A V ba )(⎰=.例4 一平面经过半径为R 的圆柱体的底圆中心, 并与底面交成角α. 计算这平面截圆柱所得立体的体积.解: 取这平面与圆柱体的底面的交线为x 轴, 底面上过圆中心、且垂直于x 轴的直线为y 轴. 那么底圆的方程为x 2 +y 2=R 2. 立体中过点x 且垂直于x 轴的截面是一个直角三角形. 两个直角边分别为22x R -及αtan 22x R -. 因而截面积为αtan )(21)(22x R x A -=. 于是所求的立体体积为dx x R V RR αtan )(2122-=⎰-ααtan 32]31[tan 21332R x x R R R =-=-. 例5. 求以半径为R 的圆为底、平行且等于底圆直径的线段为顶、高为h 的正劈锥体的体积.解: 取底圆所在的平面为x O y 平面, 圆心为原点, 并使x 轴与正劈锥的顶平行. 底圆的方程为x 2 +y 2=R 2. 过x 轴上的点x (-R <x <R )作垂直于x 轴的平面, 截正劈锥体得等腰三角形. 这截面的面积为22)(x R h y h x A -=⋅=. 于是所求正劈锥体的体积为⎰--=RR dx x R h V 22h R d h R 2202221cos 2πθθπ==⎰ .三、平面曲线的弧长设A , B 是曲线弧上的两个端点. 在弧AB 上任取分点A =M 0, M 1, M 2, ⋅ ⋅ ⋅ , M i -1, M i , ⋅ ⋅ ⋅, M n -1, M n =B , 并依次连接相邻的分点得一内接折线. 当分点的数目无限增加且每个小段M i -1M i 都缩向一点时, 如果此折线的长∑=-ni i i M M 11||的极限存在, 则称此极限为曲线弧AB 的弧长, 并称此曲线弧AB 是可求长的.定理 光滑曲线弧是可求长的. 1.直角坐标情形 设曲线弧由直角坐标方程y =f (x ) (a ≤x ≤b )给出, 其中f (x )在区间[a , b ]上具有一阶连续导数. 现在来计算这曲线弧的长度. 取横坐标x 为积分变量, 它的变化区间为[a , b ]. 曲线y =f (x )上相应于[a , b ]上任一小区间[x , x +dx ]的一段弧的长度, 可以用该曲线在点(x , f (x ))处的切线上相应的一小段的长度来近似代替. 而切线上这相应的小段的长度为dx y dy dx 2221)()('+=+,从而得弧长元素(即弧微分)dx y ds 21'+=.以dx y 21'+为被积表达式, 在闭区间[a , b ]上作定积分, 便得所求的弧长为⎰'+=ba dx y s 21.在曲率一节中, 我们已经知道弧微分的表达式为dx y ds 21'+=, 这也就是弧长元素. 因此例1. 计算曲线2332x y =上相应于x 从a 到b 的一段弧的长度.解: 21x y =', 从而弧长元素dx x dx y ds +='+=112.因此, 所求弧长为b a bax dx x s ])1(32[123+=+=⎰])1()1[(322323a b +-+=. 例2. 计算悬链线cx c y ch =上介于x =-b 与x =b 之间一段弧的长度.解: cx y sh =', 从而弧长元素为dx cx dx c x ds ch sh 12=+=.因此, 所求弧长为⎰⎰==-b b b dx c x dx c x s 0ch 2ch cb c dx c x c b sh 2]sh [20==. 2.参数方程情形设曲线弧由参数方程x =ϕ(t )、y =ψ(t ) (α≤t ≤β )给出, 其中ϕ(t )、ψ(t )在[α, β]上具有连续导数. 因为)()(t t dx dy ϕψ''=, dx =ϕ'(t )d t , 所以弧长元素为 dt t t dt t t t ds )()()()()(12222ψϕϕϕψ'+'='''+=.所求弧长为⎰'+'=βαψϕdt t t s )()(22.例3. 计算摆线x =a (θ-sin θ), y =a (1-cos θ)的一拱(0 ≤θ ≤2π )的长度. 解: 弧长元素为θθθd a a ds 2222sin )cos 1(+-=θθd a )cos 1(2-=θθd a 2sin2=.所求弧长为⎰=πθθ202sin 2d a s πθ20]2cos 2[2-=a =8a .3.极坐标情形 设曲线弧由极坐标方程ρ=ρ(θ) (α ≤ θ ≤ β )给出, 其中r (θ)在[α, β]上具有连续导数. 由直角坐标与极坐标的关系可得 x =ρ(θ)cos θ , y =ρ(θ)sin θ(α ≤θ ≤ β ). 于是得弧长元素为θθθd y x ds )()(22'+'=θθρθρd )()(22'+=.从而所求弧长为⎰'+=βαθθρθρd s )()(22.例14. 求阿基米德螺线ρ=a θ (a >0)相应于θ 从0到2π 一段的弧长. 解: 弧长元素为θθθθd a d a a ds 22221+=+=.于是所求弧长为⎰+=πθθ2021d a s )]412ln(412[222ππππ++++=a .§6. 3 功 水压力和引力一、变力沿直线所作的功例1 把一个带+q 电量的点电荷放在r 轴上坐标原点O 处, 它产生一个电场. 这个电场对周围的电荷有作用力. 由物理学知道, 如果有一个单位正电荷放在这个电场中距离原点O 为r 的地方, 那么电场对它的作用力的大小为2r qkF = (k 是常数). 当这个单位正电荷在电场中从r =a 处沿r 轴移动到r =b (a <b )处时, 计算电场力F 对它所作的功.例1' 电量为+q 的点电荷位于r 轴的坐标原点O 处它所产生的电场力使r 轴上的一个单位正电荷从r =a 处移动到r =b (a <b )处求电场力对单位正电荷所作的功. 提示: 由物理学知道, 在电量为+q 的点电荷所产生的电场中, 距离点电荷r 处的单位正电荷所受到的电场力的大小为2r qkF = (k 是常数). 解: 在r 轴上, 当单位正电荷从r 移动到r +dr 时, 电场力对它所作的功近似为dr r qk 2, 即功元素为dr r qk dW 2=. 于是所求的功为dr rkq W b a2⎰=b a r kq ]1[-=)11(b a kq -=. 例2. 在底面积为S 的圆柱形容器中盛有一定量的气体. 在等温条件下, 由于气体的膨胀, 把容器中的一个活塞(面积为S )从点a 处推移到点b 处. 计算在移动过程中, 气体压力所作的功.解: 取坐标系如图, 活塞的位置可以用坐标x 来表示. 由物理学知道, 一定量的气体在等温条件下, 压强p 与体积V 的乘积是常数k , 即pV =k 或Vk p =.解: 在点x 处, 因为V =xS , 所以作在活塞上的力为xk S xS k S p F =⋅=⋅=.当活塞从x 移动到x +dx 时, 变力所作的功近似为dx xk ,即功元素为dx xk dW =.于是所求的功为dx x k W b a ⎰=b a x k ][ln =ab k ln =. 例3. 一圆柱形的贮水桶高为5m , 底圆半径为3m , 桶内盛满了水. 试问要把桶内的水全部吸出需作多少功?解: 作x 轴如图. 取深度x 为积分变量. 它的变化区间为[0, 5], 相应于[0, 5]上任小区间[x , x +dx ]的一薄层水的高度为dx . 水的比重为9.8kN/m 3, 因此如x 的单位为m , 这薄层水的重力为9.8π⋅32dx . 这薄层水吸出桶外需作的功近似地为dW =88.2π⋅x ⋅dx ,此即功元素. 于是所求的功为⎰=502.88xdx W π502]2[2.88x π=2252.88⋅=π(kj). 二、水压力从物理学知道, 在水深为h 处的压强为p =γh , 这里 γ 是水的比重. 如果有一面积为A 的平板水平地放置在水深为h 处, 那么, 平板一侧所受的水压力为P =p ⋅A .如果这个平板铅直放置在水中, 那么, 由于水深不同的点处压强p 不相等, 所以平板所受水的压力就不能用上述方法计算.例4. 一个横放着的圆柱形水桶, 桶内盛有半桶水. 设桶的底半径为R , 水的比重为 γ ,计算桶的一个端面上所受的压力.解: 桶的一个端面是圆片, 与水接触的是下半圆. 取坐标系如图.在水深x 处于圆片上取一窄条, 其宽为dx , 得压力元素为dx x R x dP 222-=γ.所求压力为⎰-=R dx x R x P 022 2γ)()(2221220x R d x R R ---=⎰γR x R 02322])(32[--=γ332R r =. 三、引力从物理学知道, 质量分别为m 1、m 2, 相距为r 的两质点间的引力的大小为221r m m G F =, 其中G 为引力系数, 引力的方向沿着两质点连线方向.如果要计算一根细棒对一个质点的引力, 那么, 由于细棒上各点与该质点的距离是变化的, 且各点对该质点的引力的方向也是变化的, 就不能用上述公式来计算. 例5. 设有一长度为l 、线密度为ρ的均匀细直棒, 在其中垂线上距棒a 单位处有一质量为m 的质点M . 试计算该棒对质点M 的引力.例5'. 求长度为l 、线密度为ρ的均匀细直棒对其中垂线上距棒a 单位处质量为m 的质点M 的引力.解: 取坐标系如图, 使棒位于y 轴上, 质点M 位于x 轴上, 棒的中点为原点O . 由对称性知, 引力在垂直方向上的分量为零, 所以只需求引力在水平方向的分量. 取y 为积分变量, 它的变化区间为]2 ,2[l l -. 在]2,2[l l -上y 点取长为dy 的一小段, 其质量为ρdy , 与M 相距22y a r +=. 于是在水平方向上, 引力元素为2222y a a y a dy m G dF x +-⋅+=ρ2/322)(y a dy am G +-=ρ. 引力在水平方向的分量为⎰-+-=222/322)(l l x y a dy am G F ρ22412l a a l Gm +⋅-=ρ.。