11从梯子的倾斜程度谈起(一)
从梯子的倾斜程度谈起(一)练习

从梯子的倾斜程度谈起(一)练习目标导航掌握正切、余切的定义,了解坡度的概念.能正确应用tan α、cot α表示直角三角形中两边的比.应注意强调:1)对于tan α=αα∠∠的对边的邻边等2个公式只适用于直角三角形;2)正确理解tan α、cot α是一个完整的符号,只表示一个数值.掌握同一个角的三角函数关系tan (90°-α)=cot α;cot (90°-α )=tan α;tan α·cot α=1.基础过关1.在Rt △ABC 中,∠C =90°,∠A 的 的比叫做∠A 的正切,记作 ;∠A 的 的比叫做∠A 的余切,记作 .2.在△ABC 中,∠C =90°,AC =2,BC =1,那么tan A = tan B =________.3.设直角三角形的两条直角边的比为5∶12,则较大锐角的正切值等于______.4.在直角三角形中,两锐角的正切互为 关系.5.在Rt △ABC 中,ABBCtan A = ,cot A = .6.在△ABC 中,∠C =90°,若AB =2AC ,则 cot A = .7.已知一山坡的坡度为1∶ 3,若某人沿斜坡向上走了100m ,则这个人升高了 m .8.正方形网格中,AOB ∠如图1放置,则tan ∠AOB = .能力提升9.如图2,一架梯子斜靠在墙上,若梯子底端到墙的距离AC =3米,3cot 4BAC ∠=,则梯子长AB = 米.10.如图3,沿倾斜角为30︒的山坡植树,要求相邻两棵树的水平距离AC 为2m ,那么相邻两棵树的斜坡距离AB 为 m .(精确到0.1m )11. 如图4,在△ABC 中∠ACB =90°,BC =3,AC =4,CD ⊥AB ,垂足为D ,tan ∠BCD = .12.等腰三角形底边长是10,周长是40,则其底角的正切值是 .13.如果tan x •tan32°=1,那么锐角x =___________.14.在△ABC 中,∠C =90°,AD 为BC 边中线,若AB =10,BD =4,则tan ∠DAC =15.在Rt △ABC 中,∠C =90°,设∠A 、∠B 的对边分别为a 、b ,且满足2220a ab b --=,则tan A 等于 .16.在Rt △ABC 中,∠C =90°,各边长都扩大3倍,锐角B 的余切值是( )A .没有变化B .扩大3倍C .缩小3倍D .不能确定17.如果α是锐角,且4cot 5α=,那么tan α的值是( ) A B C 图2图3 ABO 图1 图4A .925B .45C .35D .5418.如图所示,CD 是一个平面镜,光线从A 点射出经CD 上的E点反射后照射到B 点,设入射角为α(入射角等于反射角),AC ⊥CD ,BD ⊥CD ,垂足分别为C ,D .若AC =3,BD =6,CD =12,则tan α的值为( )A .43 B .34 C .45 D .3519.在Rt △ABC 中,∠C =90°,AB 的坡度i =1∶2,则CA ∶BC ∶AB 等于 ( )A .1∶2∶1B .1 2C .1D .1∶220.在等腰梯形ABCD 中,AB ‖DC ,∠D =120°,AC ⊥BC ,求tan ∠DAC 的值.D CB A21.已知锐角A 满足tan A -cot A =2,求tan 2A +cot 2A 的值.聚沙成塔已知△ABC 中,AB =15,BC =14,AC =13,BC 84A S ∆=,求tan C 和cot B .。
初中数学说课稿PPT课件(珍藏版):从梯子的倾斜程度谈起

∠A的邻边
说课主线——
6
1.tan B = AC
BC
3.交流分享 得出定义 C
tan A = BC
A
B
AC
2.如图, ∠C=90°CD⊥AB.
C
tan∠ACD= AD
CD
┌
tanB= AC CD
A
DB
BC BD
说课主线——
说目标
再创造
情感态度 与价值观
说课主线——
3
经历探索直角三角形中边角关系的过程,理解正切的 意义和正切与现实生活的联系,并能运用正切进行简 单的计算。
经历操作、观察 、猜想 、推理等活动过程,培养从 数学的角度提问题、分析和理解问题,在解决问题中 促进学习、评价能力的提高。
进一步认识数学与生活的密切联系,体验数形之间 的联系,感受数学的严谨性,让学生从自主探索、 合作交流中获益。
AC EF BC FD
水平宽度一致时,铅直高度越高,梯子更陡一些。
说课主线——
6
3.交流分享 得出定义
小明想通过测量B1C1及AC1,算出它们的比,来说明梯子AB1的倾 斜程度,小亮则认为,通过测量B2C2及AC2,算出它们的比,也 能说明梯子AB1的倾斜程度。你同意小亮的看法吗?
(1)Rt△AB1C1和Rt△AB2C2有什么关 系?
说课主线——
6
创设情境 引入新课 (2分钟) 模拟情境
设疑激思
(20分钟)
交流分享
得出定义 (8分钟)
活化练习 学以致用
(10分钟)
知识梳理 共同成长 (4分钟)
布置作业 分层提升 (1分钟)
说课主线——
6
1.创设情境 引入新课
1.1 从梯子的倾斜程度谈起(一

学科组数学组年级九年级学科数学主备人
教学过程
学科组数学组年级九年级学科数学主备人秦杰使用人: 商景超
教学过程
BC=0.6 sinA=0.6,
AC
学科组数学组年级九年级学科数学主备人秦杰使用人 :商景超
教学过程
?它们分别等于多°角的三个三角函数值,还有两个
学科组数学组年级九年级学科数学主备人秦杰使用人: 商景超
教学过程
用科学计算器求三角函数值,要用到和
sin72°38′25″的按
如图,某地夏日一天中午,太阳光线与地面成80°角,
,要在窗户外面上方安装一个
学科组数学组年级九年级学科数学主备人秦杰使用人:商景超
教学过程
第二功能“sin-1,cos-1,tan-1”和键。
,求锐角A。
1.1从梯子的倾斜程度谈起1 PPT

实例2:如图,梯子AB和EF哪个更陡? 你是怎样判断的?
4m
3m
2m
3m
实例2:如图,梯子AB和EF哪个更陡? 你是怎样判断的?
梯子的铅直高与其水平距离 的比相同时,梯子就一样陡。 比值大的梯子陡。
4m
3m
3m
2m
在实践中探索新知
梯子在上升变陡过程中,倾斜 角,铅直高度与水平宽度的比 发生了什么变化?
倾斜角
铅 直 高 度
水平宽度
在实践中探索新知
梯子在上升变陡过程中,倾斜 角,铅直高度与水平宽度的比 发生了什么变化?
在实践中探索新知
梯子在上升变陡过程中,倾斜 角,铅直高度与水平宽度的比 发生了什么变化?
在实践中探索新知
梯子在上升变陡过程中,倾斜 角,铅直高度与水平宽度的比 发生了什么变化?
在实践中探索新知
角
形AB2C2有什么关系?
B2
B1C 1 B 2C 2 (2) 和 有什么关系? AC1 AC 2
(3)如果改变B2在梯子上的位 置呢?由此你能得出什么结论?
A C2 C1
由感性到理性
想一想
B1 (1)直角三角形AB1C1和直角三
角
形AB2C2有什么关系?
B2
B1C 1 B 2C 2 (2) 和 有什么关系? AC1 AC 2
在实践中探索新知
梯子在上升变陡过程中,倾斜 角,铅直高度与水平宽度的比 发生了什么变化?
铅 直 高 度
水平宽度
在实践中探索新知
梯子在上升变陡过程中,倾斜 角,铅直高度与水平宽度的比 发生了什么变化?
铅 直 高 度
水平宽度
在实践中探索新知
1.1 用梯子的倾斜程度谈起(1)好

回顾、反思、深化:
1、正切的定义.
2、梯子的倾斜程度与tanA的关系。 (∠A和tanA之间的关系). 3、数形结合的方法;构造直角三角形 的意识.
4、“一般 → 特殊 → 一般” 数学 思想方法.
练习(一): 1、在右图中 求tanA的值
(1) tanA =3/4 (2) tanA= 4/3
2.如图,△ABC是等腰直角三角形, 你能根据图中所给数据求出tanC吗?
议一议
如图,梯子AB1的倾斜程度与∠A有关吗? 与tanA有关吗? 与∠A有关:∠A越大,梯子 AB1越陡. 与tanA有关:tanA的值越大, 梯子AB1越陡.
B1 B2
A
C2
C1
想一想:
若小明因身高原因不能顺利测量梯子顶端到墙脚 的距离B1 C1 ,进而无法刻画梯子的倾斜程度,他该 怎么办?你有什么锦囊妙计?
tanC=1
3.∠C=90°CD⊥AB,
(AC (CD (AD ) ) ) tanB= (BC (BD (CD ) ) )
4、在上图中,若BD=6,CD=12, 求tanA的值。
tanA=CD/AD=BD/CD=6/12=1/2
练习(二)
1、在Rt△ABC中,∠C=90°,
AB=15,tanA=
60 3 i tan . 100 5
i
α 100m
60m ┌
练一练:1.某人沿一斜坡的底端B走了 10米到达点A,此时点A到地面BC的垂 直高度AC为6米,则斜坡AB的坡度为多 少?
A
10m
6m
分析:
勾股定理求:BC
B
C
AC Rt△ABC: BC
tanB
坡度
正切也经常用来描述山坡的坡度
《数学资源与评价》答案

1.B 2.作CD AC ⊥交AB 于D ,则28CAD = ∠,在Rt ACD △中,tan CD AC CAD =∠40.53 2.12=⨯=(米).所以,小敏不会有碰头危险. 3.(1)B 17A =米,CD 20=米;(2)有影响,至少35米 4.AD=2.4米 5.小船距港口A 约25海里1 二次函数所描述的关系1.略 2.2或-3 3.S=116c 2 4.11,4,2,844±± 5.y=16-x 2 6.y=-x 2+4x 7.B 8.D 9.D 10.C 11.y=2x 2;y=18;x=±2 12.y=-2x 2+260x-6500 13.(1)S=4x-32x 2;(2)1.2≤x<1.6 14.s=t 2-6t+72(0<t ≤6)2 结识抛物线1.抛物线;下;y 轴;原点;高;大;相反;相同;相同 2.减小 3.a=2;k=-2 4.a=-15.m=-1 6.(-2,4) 7 8.12 9.y=x 2+6x 10.(1)S=32y ;(2)S 是y 的一次函数,S 是x 的二次函数 11.(1)m=2或-3;(2)m=2.最低点是原点(0,0).x>0时,y 随x 的增大而增大;(3)m=-3,最大值为0.当x>0时;y 随x 的增大而减小 12.A(3,9);B(-1,1);y=x 2 13.抛物线经过M 点,但不经过N 点. 14.(1)A(1,1);(2)存在.这样的点P有四个,即P 10), P 20), P 3(2,0), P 4(1,0)3 刹车距离与二次函数1.下;y 轴;(0,5);高;大;5 2.(0,-1) 1,02⎛⎫- ⎪⎝⎭和1,02⎛⎫ ⎪⎝⎭3.y=x 2+3 4.下;3 5.14- 6.k=9,122b = 7.22y x =- 8.C 9.A 10.C 11.C 12.C 13.(1)2212(2)2y x y x ==-;(3)2y x = 14.(1)3;(2)3 15.y=mx 2+n 向下平移2个单位,得到y=mx 2+n-2,故由已知可得m=3,n-2=-1,从而m=3,n=1 16.以AB 为x 轴,对称轴为y 轴建立直角坐标系,设抛物线的代数表达式为y=ax 2+ c .则B 点坐标为0),N 点坐标为3),故0=24a+c ,3=12a+c ,解得a=-14,c=6,即y= -14x 2+6.其顶点为(0,6),(6-3)÷0.25=12小时. 17.以MN 为x 轴、对称轴为y 轴,建立直角坐标系,则N 点坐标为(2,0), 顶点坐标为(0,4).设y=ax 2+c ,则c=4,0=4a+4,a=-1,故y=-x 2+4.设B 点坐标为(x ,0),c 点坐标为( -x ,0),则A 点坐标为(x ,-x 2+4),D 点坐标为(-x ,-x 2+4).故BC=AD=2x ,AB=CD=-x 2+4.周长为4x+2(-x 2+4).从而有-2x 2+8+4x=8,-x 2+2x=0,得x 1=0,x 2=2.当x=0时,BC=0;当x=2时,AB=-x 2+4=0.故铁皮的周长不可能等于8分米. 18.(1)6,10;(2)55;(3)略;(4)S=12n 2+12n . 聚沙成塔 由y=0,得-x 2+0.25=0,得x=0.5(舍负),故OD=0.5(米).在Rt △AOD 中,AO=OD· tan ∠ADO=0.5tanβ=0.5×tan73°30′≈1.69.又AB=1.46,故OB≈0.23米.在Rt △BOD 中,tan ∠BDO=0.230.5BO OD ==0.46,故∠BDO≈24°42′.即α=24°42′.令x=0,得y=0.25, 故OC= 0.25,从而BC=0.25+0.23=0.48米.2.1~2.3 二次函数所描述的关系、结识抛物线、刹车距离与二次函数测试一、1.πr 2、S 、r 2.(6-x )(8-x )、x 、y 3.①④ 4.4、-2 5.y =-2x 2(不唯一) 6.y =-3x 2 7.y 轴 (0,0) 8.(2,4),(-1,1)二、9.A 10.D 11.B 12.C 13.D 14.C 15.B 16.D三、17.解:(1)∵m 2-m =0,∴m =0或m =1.∵m -1≠0,∴当m =0时,这个函数是一次函数.(2)∵m 2-m ≠0,∴m 1=0,m 2=1.则当m 1≠0,m 2≠1时,这个函数是二次函数.18.解:图象略.(1)0;(2)0;(3)当a >0时,y =ax 2有最小值,当a <0时,y =ax 2有最大值. 四、19.解:y =(80-x )(60-x )=x 2-140x +4800(0≤x <60).20.如:某些树的树冠、叶片等;动物中鸡的腹部、背部等.五、21.解:两个图象关于x 轴对称;整个图象是个轴对称图形.(图略) y =-2x 2 (0,0)y ⎧⎪⎨⎪⎩开口方向向下对称轴轴顶点坐标 y =2x 2 (0,0)y ⎧⎪⎨⎪⎩开口方向向上对称轴轴顶点坐标 22.解:(1)设A 点坐标为(3,m );B 点坐标为(-1,n ).∵A 、B 两点在y =13x 2的图象上,∴m =13×9=3,n =13×1=13.∴A (3,3),B (-1,13).∵A 、B 两点又在y =ax +b 的图象上,∴33,1.3a b a b =+⎧⎪⎨=-+⎪⎩解得231a b ⎧=⎪⎨⎪=⎩,∴一次函数的表达式是y =23x +1. (2)如下图,设直线AB 与x 轴的交点为D ,则D 点坐标为(-32,0).∴|DC |=32.S △ABC =S △ADC -S △BDC =12×2×3-2×2×3=4-14=2. 4 二次函数y=ax 2+bx+c 的图像1.上,12,33⎛⎫ ⎪⎝⎭,13x = 2.-4 0 3.四 4.0 5.左 3 下 2 6.1 7.-1或3 8.< > > > < 9.12x =,19,24⎛⎫- ⎪⎝⎭10.①②④ 11.D 12.D 13.A 14.D 15.∵2215044(5)1015015,113522(5)44(5)b ac b a a -⨯-⨯--=-===⨯-⨯-.故经过15秒时,火箭到达它的最高点,最高点的高度是1135米 16.由已知得2444a a -=2.即a 2-a-2=0,得a 1=-1,a 2=2,又a≥0,故a=2. 17.以地面上任一条直线为x 轴,OA 为y 轴建立直角坐标系,设y=a(x-1)2+2.25, 则当x=0时,y=1.25,故a+2.25=1,a=-1.由y=0,得-(x-1)2+2.25=0,得(x-1)2=2.25,x 1=2.5,x 2=-0.5(舍去),故水池的半径至少要2.5米. 18.如:7月份售价最低,每千克售0.5元;1-7月份, 该蔬菜的销售价随着月份的增加而降低,7-12月份的销售价随月份的增加而上升;2月份的销售价为每千克3.5元;3月份与11月份的销售价相同等.5 用三种方式表示二次函数1.y=-x 2+144 2.y 3.(1) y=x 2+-2x ;(2)3或-1 ;(3) x<0或x>2 4.k>35. y=x 2+8x 6.y=x 2+3x ,小,33,24- 7.(2,4) 8.14- 9.C 10.D 11.C 12.C 13.(1)略;(2)y=x 2-1;(3)略 14.设底边长为x ,则底边上的高为10-x ,设面积为y ,则y=12x(10-x)=-12(x 2-10x)=-12(x 2-10x+25-25)=-12(x-5)2+12.5.故这个三角形的面积最大可达12.5 15.2116S l = 16.(1)对称轴是直线x=1,顶点坐标为(1,3),开口向下;(2)当x<1时,y 随x 的增大而增大;(3)y=-2(x-1)2+3 17.由已知得△BPD ∽△BCA .故22416BPD ABC S x x S ∆∆⎛⎫== ⎪⎝⎭,224(4)416PCE ABC S x x S ∆∆--⎛⎫== ⎪⎝⎭,过A 作AD ⊥BC ,则由∠B=60°,AB=4,得 AD=AB·sin60°4=,故142ABC S ∆=⨯⨯∴222(4)1616BPD PCE x x S S ∆∆-+=⨯⨯-+∴22y =-+=+⎝.18.(1) s=12t 2-2t ; (2)将s=30代入s=12t 2-2t ,得30=12t 2-2t ,解得t 1=10,t 2=-6(舍去).即第10个月末公司累积利润达30万元;(3)当t=7时,s=12×72-2×7=10.5,即第7个月末公司累积利润为10.5万元;当t=8时,s=12×82-2×8 =16, 即第8个月末公司累积利润为16万元.16-10.5=5.5万元.故第8个月公司所获利润为5.5万元.19.(1)略;(2)(1)2n n S -=;(3)n=56时,S=1540 20.略 6 何时获得最大利润1.A 2.D 3.A 4.A 5.C 6.B7. (1)设y=kx+b ,则∵当x=20时,y=360;x=25时,y=210.∴3602021025k b k b =+⎧⎨=+⎩, 解得30960k b =-⎧⎨=⎩∴y=-30x+960(16≤x≤32); (2)设每月所得总利润为w 元,则 w=(x-16)y=(x-16)(-30x+960)=-30(x-24)2+ 1920.∵-30<0,∴当x=24时,w 有最大值.即销售价格定为24元/件时,才能使每月所获利润最大, 每月的最大利润为1920元.8. 设每间客房的日租金提高x 个5元(即5x 元),则每天客房出租数会减少6x 间,客房日租金总收入为y=(50+5x)(120-6x)=-30(x-5)2+6750.当x=5时,y 有最大值6750,这时每间客房的日租金为50+5×5=75元. 客房总收入最高为6750元.9.商场购这1000件西服的总成本为80×1000=8000元.设定价提高x%, 则销售量下降0.5x%,即当定价为100(1+x%)元时,销售量为1000(1-0.5x%)件.故y=100(1+x%)·1000(1-0.5x%)-8000 =-5x 2+500x+20000=-5(x-50)2+32500.当x=50时, y 有最大值32500.即定价为150元/件时获利最大,为32500元.10.(1)s=10×277101010x x ⎛⎫-++ ⎪⎝⎭×(4-3)-x=-x 2+6x+7.当x=62(1)-⨯-=3 时,S 最大=24(1)764(1)⨯-⨯-⨯-=16. ∴当广告费是3万元时,公司获得的最大年利润是16万元.(2)用于再投资的资金有16-3=13万元.有下列两种投资方式符合要求:①取A 、B 、E 各一股,投入资金为5+2+6=13万元,收益为0.55+0.4+0.9=1.85万元>1.6万元. ②取B 、D 、E 各一股,投入资金为2+4+6=12万元<13万元,收益为0.4+0.5+0.9=1.8万元>1.6万元.11.(1)60吨;(2) 226033(7.545)(10)(320)(100)315240001044x y x x x x x -=⨯+-=--=-+-;(3)210元/吨;(4) 不对,设月销售额为w 元.22603(7.545)240104x w x x x -=⨯+=-+,x=160时,w 最大.12.(1)21425y x =-+;(2)货车到桥需280406(40-=小时) ,0.256 1.5(⨯=米)而O(0,4),4-3=1(米)<1.5米,所以,货车不能通过. 安全通过时间434(0.25-=小时),2804060(/4-=千米时),货车安全通过速度应超过60千米/时.7 最大面积是多少1.y=-x 2+600,020x ≤≤,600m 2 ,200m 2 2.20cm 2 3.圆 4.16cm 2 ,正方形 5. 5±6.10 7.21822333y x x =-+- 8. 9.-2 10. C 11. D 12.C 13.A 14.D 15.过A 作AM ⊥BC 于M ,交DG 于N ,则.设DE=xcm ,S矩形=ycm 2,则由△ADG ∽△ABC ,故AN DG AM BC =,即161624x DG -=,故DG=32(16-x).∴y=DG·DE=32(16-x)x=-32(x 2-16x)=-32(x-8)2+96,从而当x=8时,y 有最大值96.即矩形DEFG 的最大面积是96cm 2.16.(1)y= 238x -+3x .自变量x 的取值范围是0<x<8. (2)x=3328-⎛⎫⨯- ⎪⎝⎭=4时,y 最大=234038348⎛⎫⨯-⨯- ⎪⎝⎭⎛⎫⨯- ⎪⎝⎭=6.即当x=4时,△ADE 的面积最大,为6. 17.设第t 秒时,△PBQ 的面积为ycm 2.则∵AP=tcm ,∴PB=(6-t)cm ;又BQ=2t .∴y=12PB·BQ=12(6-t)·2t=(6-t)t=-t 2+6t=-(t-3)2+9,当t=3时,y 有最大值9.故第3秒钟时△PBQ 的面积最大,最大值是9cm 2.18.(1)可以通过,根据对称性,当x=12×4=2时,y=132-×4+8=778>7.故汽车可以安全通过此隧道;(2)可以安全通过,因为当x=4时,y=132-×16+8=172>7.故汽车可以安全通过此隧道;(3)答案不惟一,如可限高7m .19.不能,y=-x 2+4x ,设BC=a ,则AB=4-a ,(2,4)2a A a ∴+-代入解析式 24(22)404,2a a a -=-+-+=得或 A(2,4)或(4,0) 所以,不能. 20.(1)125h =;(2)12,125x S ==最大;(3)BE=1.8,在 21.(1)第t 秒钟时,AP=t ,故PB=(6-t)cm ;BQ=2tcm .故S △PBQ =12·(6-t)·2t=-t 2+ 6t .∵S 矩形ABCD =6×12=72.∴S=72-S △PBQ =t 2-6t+72(0<t<6);(2)S=(t-3)2+63.故当t=3时,S 有最小值63. 22. (1)过A 作AD ⊥BC 于D 交PQ 于E ,则AD=4.由△APQ ∽△ABC ,得446x x -=,故x=125;(2)当RS 落在△ABC 外部时,不难求得AE=23x ,故22212446335y x x x x x ⎛⎫⎛⎫=-=-+<< ⎪ ⎪⎝⎭⎝⎭.当RS 落在△ABC 内部时,y=x 2(0<x<125);(3)当RS 落在△ABC 外部时,2222124(3)66335y x x x x ⎛⎫=-+=--+<< ⎪⎝⎭.∴当x=3时,y 有最大值6.当RS 落在BC 边上时,由x=125可知,y= 14425.当RS 落在△ABC 内部时,y=x 2(0<x<125),故比较以上三种情况可知:公共部分面积最大为6.23.(1)由对称性,当x=4时,y=211642525-⨯=-.当x=10时,y=2110425-⨯=-.故正常水位时,AB 距桥面4米,由16943 2.52525-=>,故小船能通过; (2)水位由CD 处涨到点O 的时间为1÷0.25=4小时.货车按原来的速度行驶的路程为40×1+40×4=200<280.∴货车按原来的速度行驶不能安全通过此桥.8 二次函数与一元二次方程1.(-3,0),(1,0) 2.y=2x 2+4x-6 3.一、二、三 4.(1,2) 5.m=-7 6.m=87.(-1,0) 8.9016k k >-≠且 9.a=2 10.B 11.A 12.C 13.y=x 2+x+9图象与y=1的两个交点横坐标是x 2+x+9=0两根 14.224(2)(2)40m m m ∆=--=-+>15.C △ABC =AB+BC+AC=2.S △ABC =12AC·OB=12×2×3=3 16.(1)k=-2,1 (2)0<k<2 17.(1) 904m m <≠且(2)在(3) 15(,),(2,1)24Q P --- 18.(1)25s ,125m ;(2)50s 19.(1)m=2或0;(2) m<0;(3)m=1,S = 20.(1) y=112-(x-6)2+5;(2) (2)由112-(x-6)2+5=0,得x 1=266x +=-:C 点坐标为(6+0) 故OC=6+.75(米),即该男生把铅球推出约13.75米.21.(1) y=-x 2+4x-3;(2) ∴直线BC 的代数表达式为y=x-3 (3) 由于AB=3-1=2,OC=│-3│=3.故S △ABC =12AB·OC=12×2×3=3 22.(1) k=1;(2)k=-1 2.6—2.8A 参考答案一、1. 2.14,大,-38,没有 3.①x 2-2x ;②3或-1;③<0或>2 4.y =x 2-3x -10 5.m >92,无解 6.y =-x 2+x -1,最大 7.S =π(r +m )2 8.y =-18x 2+2x +1, 16.5二、9.B 10.C 11.C 12.B 13.D 14.B 15.D 16.B三、17.解:(1)y =-2x 2+180x -2800;(2)y =-2x 2+180x -2800=-2(x 2-90x )-2800=-2(x -45)2+1250.当x =45时,y 最大=1250.∴每件商品售价定为45元最合适,此销售利润最大,为1250元. 18.解:∵二次函数的对称轴x =2,此图象顶点的横坐标为2,此点在直线y =12x +1上.∴y =12×2+1=2.∴y =(m 2-2)x 2-4mx +n 的图象顶点坐标为(2,2).∴-2b a=2.∴-242(2)m m --=2.解得m =-1或m =2.∵最高点在直线上,∴a <0,∴m =-1.∴y =-x 2+4x +n 顶点为(2,2).∴2=-4+8+n .∴n =-2.则y =-x 2+4x +2.四、19.解:(1)依题意得:鸡场面积y =-2150.33x x -+∵y =-13x 2+503x =13-(x 2-50x )=-13(x -25)2+6253,∴当x =25时,y 最大=6253, 2.6—2.8B 参考答案一、1.3 2.2 3.b 2-4ac>0(不唯一) 4.15 cmcm 2 5.(1)A ;(2)D ;(3)C ;(4)B 6.5,625二、7.B 8.B 9.A 10.C 11.D 12.B三、13.解:(1)信息:①1、2月份亏损最多达2万元;②前4月份亏盈吃平;③前5月份盈利2.5万元;④1~2月份呈亏损增加趋势;⑤2月份以后开始回升.(盈利);⑥4月份以后纯获利……(2)问题:6月份利润总和是多少万元?由图可知,抛物线的表达式为y=12(x -2)2-2,当x=6时,y=6(万元)(问题不唯一). 14.解:设m=a+b y=a·b ,∴y=a(m -a)=-a 2+ma=-(a -2m )2+24a ,当a=2m 时,y 最大值为24a .结论:当两个数的和一定,这两个数为它们和的一半时,两个数的积最大.四、15.(1)由题意知:p=30+x ;(2)由题意知:活蟹的销售额为(1000-10x)(30+x)元,死蟹的销售额为200x 元.∴Q=(1000-10x)(30+x)+200x=-10x 2+900x+30000;(3)设总利润为L=Q -30000-400x=-10x 2+500x=-10(x 2-50x) =-10(x -25)2+6250.当x=25时总利润最大,为6250元. 五、16.解:∵∠APQ=90°,∴∠APB+∠QPC=90°.∵∠APB+∠BAP=90°,∴∠QPC=∠BAP ,∠B=∠C=90°.∴△ABP ∽△PCQ .6,,8AB BP x PC CQ x y ==-∴y=-16x 2+43x . 17.解:(1)10;(2)55;(3)略;(4)经猜想,所描各点均在某二次函数的图象上.设函数的解析式为S=an 2+bn+c .由题意知:1a ,21,1423,b ,2936,c 0.a b c a b c a b c ⎧=⎪++=⎧⎪⎪⎪++==⎨⎨⎪⎪++=⎩=⎪⎪⎩解得∴S=211.22n n + 单元综合评价一、选择题:1~12:CBDAA ,CDBDB ,AB二、填空题:13.2 14.591415. 16.-7 17.2 18.y=0.04x 2+1.6x 19.<、<、> 20.略 21.只要写出一个可能的解析式 22.1125m 23.-9.三、解答题:24.y=x 2+3x+2 (-3/2,- 1/4) 25.y=-1200x 2+400x+4000;11400,10600 26.2125y x =-; 5小时 27.(1)5;(2) 2003 28.(1) 2y -x x =+;(2) y=-x 2+1/3x+4/9,y=-x 2-x 29.略.第三章 圆1 车轮为什么做成圆形1.=5cm <5cm >5cm 2.⊙O 内 ⊙O 上 ⊙O 外 3.9π cm 2 4.内部 5.5cm6.C 7.D 8.B 9.A 10.由已知得OA=8cm ,=10,,故OA<10,OB<10,OD=10,OC>10.从而点A , 点B 在⊙O 内;点C 在⊙O 外;点D 在⊙O 上 11.如图所示,所组成的图形是阴影部分(不包括阴影的边界) 12.如图所示,所组成的图形是阴影部分(不包括阴影的边界).(11题) (12题)13.由已知得PO=4,PA=5,PB=5,故OA=1,OB=9,从而A点坐标为A(-1,10),B点坐标为(9,0);连结PC、PD,则PC=PD=5,又PO⊥CD,PO=4,故OC==3,.从而C点坐标为(0,3) ,D点坐标为(0,-3) 14.存在,以O为圆心,OA为半径的圆15.2≤AC≤8聚沙成塔∵PO<2.5,故点P在⊙O内部;∵Q点在以P为圆心,1为半径的⊙P上,∴1≤OQ≤3.当Q在Q1点或Q2点处,OQ=2.5,此时Q在⊙O上;当点Q在弧线Q1mQ2上(不包括端点Q1,Q2),则OQ>2.5,这时点Q 在⊙O外;当点Q在弧线Q1nQ2上(不包括端点Q1,Q2),则OQ<2.5,这时点Q在⊙O内.2 圆的对称性1.中心,过圆心的任一条直线,圆心2.60°3.2cm 4.5 5.3≤OP≤56.10 7.相等89.C 10.B 11.A 12.过O作OM⊥AB于M,则AM=BM.又AC=BD,故AM-AC=BM-BD,即CM=DM,又OM⊥CD,故△OCD是等腰三角形.即OC=OD.(还可连接OA、OB.证明△AOC≌△BOD) 13.过O作OC⊥AB于C,则BC=152cm.由BM:AM=1:4,得BM=15×5=3 ,故CM=152-3=92.在Rt△OCM中,OC2=229175824⎛⎫-=⎪⎝⎭.连接OA,则10=,即工件的半径长为10cm 14.是菱形,理由如下:由 BC= AC,得∠BOC=∠AOC.故OM⊥AB,从而AM=BM.在Rt △AOM中,sin∠AOM=AMOA=,故∠AOM=60°,所以∠BOM=60°.由于OA=OB=OC,故△BOC 与△AOC 都是等边三角形,故OA=AC=BC=BO=OC,所以四边形OACB是菱形.15.PC=PD.连接OC、OD,则∵ DB= BC,∴∠BOC=∠BOD,又OP=OP,∴△OPC≌△OPD,∴PC=PD.16.可求出长为6cm的弦的弦心距为4cm,长为8cm的弦的弦心距为3cm.若点O 在两平行弦之间,则它们的距离为4+3=7cm,若点O在两平行弦的外部,则它们的距离为4- 3=1cm,即这两条弦之间的距离为7cm或1cm.17.可求得OC=4cm,故点C在以O为圆心,4cm长为半径的圆上,即点C 经过的路线是O为圆心,4cm长为半径的圆.聚沙成塔作点B关于直线MN的对称点B′,则B′必在⊙O上,且 B N'= NB.由已知得∠AON=60°,故∠B′ON=∠BON= 12∠AON=30°,∠AOB′=90°.连接AB′交MN于点P′,则P′即为所求的点.此时AP+BP3 圆周角与圆心角1.120°2.3 1 3.160°4.44°5.50°67.A 8.C 9.B 10.C 11.B 12.C 13.连接OC、OD,则OC=OD=4cm,∠COD=60°,故△COD是等边三角形,从而CD= 4cm 14.连接DC,则∠ADC=∠ABC=∠CAD,故AC=CD.∵AD是直径,∴∠ACD=90°,∴AC2+CD2=AD2,即2AC2=36,AC2=18,15.连接BD,则∴AB 是直径,∴∠ADB=90°.∵∠C=∠A,∠D=∠B,∴△PCD ∽△PAB,∴PD CDPB AB=.在Rt△PBD 中,cos∠BPD=PD CDPB AB==34,设PD=3x,PB=4x,则==,∴tan ∠BPD=BD PD == 16.(1)相等.理由如下:连接OD ,∵AB ⊥CD ,AB 是直径,∴ BC= BD ,∴∠COB= ∠DOB .∵∠COD=2∠P ,∴∠COB=∠P ,即∠COB=∠CPD ;(2)∠CP′D+∠COB=180°.理由如下:连接P′P ,则∠P′CD=∠P′PD ,∠P′PC=∠P′DC .∴∠P′CD+∠P′DC=∠P′PD+∠P′PC=∠CPD .∴∠CP′D=180°-(∠P′CD+∠P′DC)=180°-∠CPD=180°-∠COB ,从而∠CP′D+∠COB=180° 17. 聚沙成塔 迅速回传乙,让乙射门较好,在不考虑其他因素的情况下, 如果两个点到球门的距离相差不大,要确定较好的射门位置,关键看这两个点各自对球门MN 的张角的大小,当张角越大时,射中的机会就越大,如图所示,则∠A<MCN=∠B ,即∠B>∠A , 从而B 处对MN 的张角较大,在B 处射门射中的机会大些.4 确定圆的条件1.三角形内部,直角三角形,钝角三角形 2. 3 4.其外接圆,三角形三条边的垂直平分线,三角形三个顶点 5 6.两 7.C 8.B 9.A 10.C11.B 12.C 13.略 14.略 15.(1)△FBC 是等边三角形,由已知得:∠BAF=∠MAD=∠DAC=60°=180°-120°=∠BAC ,∴∠BFC=∠BAC=60°,∠BCF=∠BAF=60°,∴△FBC 是等边三角形;(2)AB=AC+FA .在AB 上取一点G ,使AG=AC ,则由于∠BAC=60°,故△AGC 是等边三角形,从而∠BGC=∠FAC=120°,又∠CBG=∠CFA ,BC=FC ,故△BCG ≌△FCA ,从而BG=FA ,又AG=AC ,∴AC+FA=AG+BG=AB 16.(1)在残圆上任取三点A 、B 、C ; (2)分别作弦AB 、AC 的垂直平分线, 则这两垂直平分线的交点即是所求的圆心;(3)连接OA ,则OA 的长即是残圆的半径 17.存在.∵AB 不是直径(否则∠APB=90°,而由cos ∠APB=13知∠APB<90°,矛盾)∴取优弧AB 的中点为P 点,过P 作PD ⊥AB 于D ,则PD 是圆上所有的点中到AB 距离最大的点.∵AB 的长为定值,∴当P 为优弧AB 的中点时,△APB的面积最大,连接PA 、PB , 则等腰三角形APB 即为所求.S △APB= 12AB· 聚沙成塔 过O 作OE ⊥AB 于E ,连接OB ,则∠AOE=12∠AOB ,AE=12AB ,∴∠C=1∠AOB=∠AOE . 解方程x 2-7x+12=0可得DC=4,AD=3,故,可证Rt △ADC ∽Rt △AEO ,故AE AO AD AC=,又, AD=3,,故,从而S ⊙O=21254ππ⨯=⎝⎭. 5 直线与圆的位置关系1.相交 2.60 3.如OA ⊥PA ,OB ⊥PB ,AB ⊥OP 等 4.0≤d<4 5.65° 6.146°,60°,86° 7.A 8.B 9.C 10.C 11.D 12.B 13.(1)AD ⊥CD .理由:连接OC ,则OC ⊥CD .∵OA=OC ,∴∠OAC=∠OCA ,又∠OAC= ∠DAC ,∴∠DAC=∠OCA ,∴AD ∥OC ,∴AD ⊥CD ;(2)连接BC ,则∠ACB=90°由(1)得∠ADC=∠ACB ,又∠DAC=∠CAB .∴△ACD ∽△ABC ,∴AC AD AB AC=,即AC 2=AD·AB=80,故 14.(1)相等.理由:连接OA ,则∠PAO=90°.∵OA=OB ,∴∠OAB=∠B=30°, ∴∠AOP=60°,∠P=90°-60°=30°,∴∠P=∠B ,∴AB=AP ;(2)∵tan ∠APO=OA PA,∴OA=PA ,tan ∠0301tan ==,∴BC=2OA=2,即半圆O 的直径为2 15.(1)平分.证明:连接OT ,∵PT 切⊙O 于T ,∴OT ⊥PT ,故∠OTA=90°, 从而∠OBT=∠OTB=90°-∠ATB=∠ABT .即BT 平分∠OBA ; (2)过O 作OM ⊥BC 于M ,则四边形OTAM 是矩形,故OM=A T=4,AM=OT=5.在Rt △OBM 中,OB=5,OM=4,故=3,从而AB=AM-BM=5-3=2 16.作出△ABC 的内切圆⊙O ,沿⊙O 的圆周剪出一个圆,其面积最大 17.由已知得:OA=OE ,∠OAC=∠OEC ,又OC 公共,故△OAC ≌OEC ,同理,△OBD ≌△OED ,由此可得∠AOC=∠EOC ,∠BOD=∠EOD ,从而∠COD=90°,∠AOC=∠BDO . 根据这些写如下结论:①角相等:∠AOC=∠COE=∠BDO=∠EDO ,∠ACO=∠ECO=∠DOE=∠DOB ,∠A=∠B=∠OEC=∠OED ;②边相等:AC=CE ,DE=DB ,OA=OB=OE ;③全等三角形:△OAC ≌△OEC ,△OBD ≌△OED ;④相似三角形:△AOC ∽△EOC ∽△EDO ∽△BDO ∽△ODC .聚沙成塔 (1)PC 与⊙D 相切,理由:令x=0,得y=-8,故P(0,-8);令y=0,得故0),故OP=8,OC=2,CD=1,∴CD==3,又PC=,∴PC 2+CD 2=9+72=81=PD 2.从而∠PCD=90°,故PC 与⊙D 相切; (2)存在.点-12)或-4),使S △EOP =4S △CDO .设E 点坐标为(x ,y),过E 作EF ⊥y 轴于F ,则EF=│x│.∴S △POE =12PO·EF=4│x│.∵S △CDO =12CO·∴当时,;当时,.故E 点坐标为-4)或-12).6 圆与圆的位置关系1.2 14 2.外切 3.内切 4.45°或135° 5.1<r<8 6.外切或内切 7.A 8.B9.C 10.D 11.C 12.A 13.C 14.外切或内切,由│d -4│=3,得d=7或1,解方程得x 1=3,x 2=4,故当d=7时,x 1+ x 2=d ;当d=1时,x 2-x 1=d ,从而两圆外切或内切 15.过O 1作O 1E ⊥AD 于E ,过O 2作O 2F ⊥AD 于F ,过O 2作O 2G ⊥O 1E 于G ,则AE=DF=5cm ,O 1G=16-5-5=6cm ,O 2O 1=5+5=10cm ,故O 2,所以EF=8cm ,从而AD=5+5+8=18cm .16.如图所示.17.如:AC=BC ,O 1A 2+AF 2=O 1F 2,AC 2+CF 2=AF 2等 聚沙成塔 有无数种分法.如:过⊙O 2与⊙O 5的切点和点O 3画一条直线即满足要求.7 弧长及扇形的积1.240°3πcm 2.389mm 3.16π 4.50 5 6.2πcm 2 7.B 8.C9.C 10.B 11.A 12.A 13.设其半径为R ,则120180R π⨯=,R =cm ,过圆心作弦的垂线,则可求弦长为9cm 14.由已知得,S 扇形DOC=2150500203603ππ⨯=,S 扇形AOB=2150125103603ππ⨯=,故绸布部分的面积为S 扇形DOC- S 扇形AOB=125π 15.由已知得,2081809n ππ⨯=,得n=50,即∠AOC=50°.又AC 切⊙O 于点C ,故∠ACO=90 °,从而OA=812.446cos50cos50OC =≈︒︒,故AB=AO-OB=12.446-8≈4.45cm 16.设切点为C ,圆心为O ,连接OC ,则OC ⊥AB ,故AC=BC=15,连接OA ,则OA 2-OC 2=AC 2=152=225,故S 阴影=2222()225AO CO AO CO ππππ⨯-⨯=-=cm 2 17.如图所示r=22C B A r=4C A r=42-4r=2OB A聚沙成塔 (1)依次填2468,,,3333ππππ;(2)根据表可发现:23n l n π=⨯,考虑2264001000003n ππ⨯≥⨯⨯,得n≥1.92×109,∴n 至少应为1.92×109. 8 圆锥的侧面积1.6 2.10π 3.2000π 4.2cm 5.15π 6.18 7.D 8.D 9.B 10.B11.A 12.B 13.侧面展开图的弧长为2816ππ⨯=,设其圆心角为n°,则1516180n ππ⨯=,故n=192, 即这个圆锥的侧面展开图的圆心角是192° 14.可得△SAO ≌△SBO ,故∠ASO=∠BSO=60°,∠SBO=30°,由BO=27, tan ∠SBO=tan 30°=27SO SO BO =,得SO=27=≈15.6m ,即光源离地面的垂直高度约为15.6m 时才符合要求 15.过A 作AD ⊥BC ,则由∠C=45°,得AD=DC=12cn ,AB=2AD=24cm ,=BC=12,以A 为圆心的扇形面积为21051242360ππ⨯=cm 2,以B 为圆心的扇形面积为22302448360cm ππ⨯=,以C为圆心的扇形面积为224536360cm ππ⨯=, 故以B 为圆心取扇形作圆锥侧面时,圆锥的侧面积最大,设此时圆锥的底面半径为r ,则30224180r ππ=⨯, r=2cm ,直径为4cm 聚沙成塔 设圆的半径为r ,扇形的半径为R ,则1224R r ππ⨯⨯=⨯,故R=4r ,又,将R=4r 代入,可求得≈0.22a . 正多边形与圆1.正方形 2.十八 提示:正多边形的中心角等于外角,外角和为360°,360÷20=18 3.36° 提示:可求出外角的度数 4.正三角形 5.C 提示:其中正确的有②④⑤⑥⑦ 6.C7.D 提示:按正多边形的定义 8.C 9.3 提示:利用直角三角形中,30°角所对直角边等于斜边的一半 10.100cm 211:2 提示:设此圆的半径为R ,则它的内接正方R,内接正方形和外切正六边形的边长比为2 12.4πa 2 提示:如图所示,AB 为正n 边形的一边,正n 边形的中心为O ,AB •与小圆切于点C ,连接OA ,OC ,则OC ⊥AB ,12AC=12AB=a ,所以AC 2=14a 2=OA 2-OC 2,S 圆环=S 大圆-S 小圆=πOA 2-OC 2=π(OA 2-OC 2)=4πa 2 13.C 14.C 15.方法一:(1)用量角器画圆心角∠AOB=120°,∠BOC=120°;(2)连接AB ,BC ,CA ,则△ABC 为圆内接正三角形.方法二:(1)用量角器画圆心角∠BOC=120°;(2)在⊙O 上用圆规截取;(3)连接AC ,BC ,AB ,则△ABC 为圆内接正三角形.方法三:(1)作直径AD ;(2)以O 为圆心,以OA 长为半径画弧,交⊙O 于B ,C ;(3)连接AB ,BC ,CA ,则△ABC 为圆内接正三角形.方法四:(1)作直径AE ;(2)分别以A ,E 为圆心,OA 长为半径画弧与⊙O 分别交于点D ,F ,B ,C ;(3)连接AB ,BC ,CA (或连接EF ,ED ,DF ),则△ABC (或△EFD )为圆内接正三角形.16.解:相同点:都有相等的边;都有相等的角,都有外接圆和内切圆等.不同点:边数不同;内角的度数不同;内角和不同;对角线条数不同等 17.解:方法一:如题图①中,连接OB ,OC .∵正三角形ABC 内接于⊙O ,∴∠OBM=∠OCN=30°,∠BOC=120°.又∠OCN=30°,∠BOC=120°,而BM=CN ,OB=OC ,∴△OBM ≌△OCN ,∴∠BOM=∠CON ,∴∠MON=∠BOC=120°.方法二:如题图①中,连接OA ,OB .∵正三角形ABC 内接于⊙O ,∴AB=BC ,∠OAM=∠OBN=30°,∠AOB=120°,∴∠AOM=∠BON .∴∠MON=∠AOB=120°;(2)90° 72°;(3)∠MON=360n︒ 单元综合评价(一)一、1~5 AABDB 6~10 DDABD二、11.8 12.π213.9cm 14.120° 15.13 16.18πcm 2 17.60° 18.180° 19.7或1 20.(1)2;(2)3n +1三、21.10cm ,6cm 22.432m 2 23.2π6R (提示:连接CO ,DO ,S 阴影=S 扇形COD ) 24.(1)A (4,0),33y x =+;(2)3>m时相离,m =时相切,0m <<时相交 25.解:(1)42πr r +,82πr r +;(2)62πr r +,82πr r +,102πr r +,122πr r +;(3)162πr r +,图略单元综合评价(二)1.以点A 为圆心,2cm 长为半径的圆 2.点P 在⊙O 内 3.10 4.90° 5.2 6. 120°7.3 8.2cm 或8cm 9.(12+5π)cm 10.30π 11.B 12.D 13.D 14.C15.D 16.B 17.B 18.C 19.C 20.C 21.如图,所有点组成的图形是如图所示的阴影部分. 22.(1)连接CD ,=5,由CD=CA ,得∠CDA=∠A ,故tan ∠CDA=tanA=43BC AC =;(2)过C 作CF ⊥AD 于F ,则AD=2AF ,由cosA=AC AF AB AC=,得AC 2=AB·AF .故32=5·AF ,AF=95,所以AD=185. 23.(1)相切.理由:连接OC ,OB ,则OC ⊥AB ,由已知得BC=12AB=4,OB=5,故=3,从而圆心O 到直线AB 的距离等于小圆的半径,故AB 与小圆相切;(2) 22222(53)16OB OC cm ππππ-=-=. 24.(1)连接AB ,AM ,则由∠AOB=90°,故AB 是直径,由∠BAM+∠OAM=∠BOM+ ∠OBM=180°-120°=60°,得∠BAO=60°,又AO=4,故cos ∠BAO=AO AB,AB=048cos60=,从而⊙C 的半径为4;(2)由(1)得,=C 作CE ⊥OA 于E ,CF ⊥OB 于F ,则EC=OF=12BO=12⨯,CF=OE=12OA=2, 故C 点坐标为(-,2) 25.连接AC ,BC ,分别作AC ,BC 的垂直平 AC AB =分线,相交于点M ,则点M 即满足条件(图略) 26.(1)设扇形半径为Rcm ,则2120300360R ππ=,故R=30cm ,设扇形弧长为Lcm ,则113030022Rl l π=⨯=,故L=20π;(2)设圆锥的底面半径为rcm ,则220r ππ=,r=10cm = 27.如:∠D=30°,DC 是⊙O 的切线,△CBD 是等腰三角形,△ACD 是等腰三角形,AC=CD ,BD=BC ,△DCB ∽△DAC ,DC 2=DB·DA ,,等 28.略.只要符合题意即可得分.第四章 统计与概率1 50年的变化(1)1.条形,折线,扇形 2.条形,0 3.折线,同一单位长度 4.不能 5.(1)1:3;(2)从0开始 6.B 7.C 8.D 9.D 10.C 11.B 12.解:(1)左图给人的感觉是小明通过努力,数学成绩提高迅速,进步很大;而右图给你的感觉则是小明的学习成绩比较稳定,进小不是很大;(2)如果小明想向他的父母说明他数学成绩的提高情况,那么他应选择左图,理由是:左图看上去折线上升速度转快,表明小明的成绩提高迅速 13.解:(1)A 村的苹果产量占本村两种水果总产量的35%,梨占65%;B 村的苹果产量在本村两种水果总产量中占80%,梨占20%。
1.1 从梯子的倾斜程度谈起

E
5m
4m
B
F
3m
2m
从梯子的倾斜程度谈起
若小明因身高原因不能顺利测量梯子顶端到墙脚 的距离B1 C1 ,进而无法刻画梯子的倾斜程度,他该 怎么办?你有什么锦囊妙计?
B1
B2
A
C2
C1
想一想
B1
B2
A
C2
C1
想一想
B1 (1)直角三角形AB1C1和直角三
角形AB2C2有什么关系?
B1C 1 B 2C 2 (2) 和 有什么关系? AC 1 AC 2
A A
1.5 ┌ D B
C
┌ C
3、在梯形ABCD中,AD//BC,AB=DC,AD=6,
BC=14,s梯形ABCD=40,求tanB的值
A D
B
E
F
C
4、一个直角三角形两边长分别为3、4, 则较小的锐角的正切值是________. 5、如图,山坡AB的坡度为5∶12,一 辆汽车从山脚下A处出发,把货物运送 到距山脚500 m高的B处,求汽车从A到 B所行驶的路程.
梯子与地面的 夹角(倾斜角)
想一想
源于生活的数学
从梯子的倾斜程度谈起 你能比较两个梯子哪个 更陡吗?
驶向胜利 的彼岸
在实践中探索新知
在实践中探索新知
在实践中探索新知
在实践中探索新知
梯子在上升变陡过程中,倾斜 角发生了什么变化?
在实践中探索新知
倾斜角
铅 直 高 度
水平宽度
在实践中探索新知
C C
6
B
8
A B
E
D
A
由感性到理性
想一想
B1 (1)直角三角形AB1C1和直角三
1.1从梯子的倾斜程度谈起第1课时

作业布置
金牌学典:
P 84-86 第一课时
60m α 100m
例题欣赏
1、 如图,在△ACB中,∠C = 90°,AC = 6, ,求BC、AB的长。
A
B
C
例题欣赏
2、如图,在等腰△ABC中,AB=AC=13, BC=10,求tanB.
A
B
D
C
大胆尝试 练一练
A E
CDB
大胆尝试 练一练
1.如图,△ABC是等腰直角三角形,你能 根据图中所给数据求出tanC吗?
B
1.5
┌
A
D
C
大胆尝试 练一练
2.如图,某人从山脚下的点A走了200m后到达山顶 的点B.已知山顶B到山脚下的垂直距离是55m,求山 坡的坡度(结果精确到0.001m).
B
┌
A
C
小结与拓展
• 这节课,你学会了什么?
正切的定义:
在Rt△ABC中,锐角A的对边与邻边的比 叫做∠A的正切,记作tanA,即
B1
(2). B1C1 和 B2C2 有什么关系 ? AC1 AC2
B2 B3
如果改变B2在梯子上的位置 (如B3C3 )呢?
A
C3 C2
C1
由此你得出什么结论?
用心想一想
结论:仍能得到
当直角三角形中的锐角确定 之后,它的对边与邻边之比 也随之确定。
A
B1
B2 B3
C3 C2
C1
知识升华
在Rt△ABC中,如果锐角A确定,那么锐 角A的对边与邻边的比便随之确定,这个比 叫做∠A的正切,记作tanA,即
驶驶向向胜胜利利 的的彼彼岸岸
A 1 B2
从生活实践开始
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
白银十中 李再义
从梯子的倾斜程度谈起
第一课时
梯子是我们日常生活中常见的物体
你能比较两个 梯子哪个更陡吗? 你是怎样判断的? 你有哪些办法?
(1)如图,梯子AB和EF哪个更陡? 你是怎样判断的?
A
E
5m
5m
B
F
2m
C
3m
D
(2)如图,梯子AB和EF哪个更陡? 你是怎样判断的?
例题讲解:
例1、如图表示两个自动扶梯,哪一个自 动扶梯比较陡?
甲
乙
解:甲梯中,
tanα= 6= 3
84
tanβ= 5 5
132 52 12
因为tanα> tanβ,所以甲梯更陡。
例2:在Rt△ABC中,∠C=90°, (1)AC=3,AB=6,求tanA和tanB
(2)BC=3,tanA=5 ,求AC 和AB。 12
小结
1.正切的定义 2.正切值与角、与边的关系 3.梯子的倾斜程度与tanA的关系
B
A C
作业
第6页 习题1.1 题1、2
A
E
5m
B
F
2m C
6m
2m
D
(3)如图,梯子AB和EF哪个更 陡?你是怎样判断的?
E
A
4m
B
F
2m C
6m
3m
D
想一想:
如图,小明想通过测量 B1C1 及 AC1 ,算出他们的比,来说明梯 子的倾斜程度;而小亮则认为,通过测量 B2C2 及 AC2 ,算出 他们的比,也能说明梯子的倾斜程度你同意小亮的看法吗?
(4)tanB= 10 ( √ )
7
2、在Rt△ABC中,锐角A的对边和邻边同时扩
大100倍,tanA的值( )C A、扩大100倍 B、缩小100倍
C、不变
D、不能确定
3、已知∠A、∠B为锐角
(1) 若∠A=∠B,则tanA = tanB
(2)若tanA=tanB,则∠A = ∠B。
定义中应该注意的几个问题:
(1) Rt 和AB1C1
有什么关系?
Rt AB2C2
(2) BA1CC和11 什么关系?
有B 2 C 2
AC2
(3)若改变 B在2 梯子上的位置? 你能得什么结论
想一想:
已知:如图,Rt△ABC 和 Rt△DEF中 ∠C=∠F=90°BC EF
AC DF 则 ∠A与 ∠D有什么关系?你能得出什么结论?
tanA= A的对边
A的邻边
议一议
梯子的倾斜程度 与tanA有关系吗?
tanA的值越大,梯子越陡,∠A越大; ∠A越大,梯子越陡,tanA的值越大。
思考:
1、判断对错:
如图, 1) tanA= BC ( ×)
AC
如图 (1)
tanA=
AC(× )
BC
(2)tanA= BC (×)
AB
(3)tanA=0.7m(× )
在直角三角形中,若 一个锐角的对边与邻边 的比值是一个定值,那 么这个角的值也随之确 定。
想一想:
已知:如图,Rt△ABC 和Rt△DEF中∠ C=∠F=90°,
∠A=∠D,则 BC 与 EF 有什么关系?
AC
DF
由此你又能 得出什么结 论?
正切的定义:
在 Rt△ABC 中,锐角A的对边与邻
边的比叫做∠A的正切,记作tanA,即
1、tanA是在直角三角形中定义的,∠A是一个锐角 (注意数形结合,构造直角三角形)
2、tanA是一个完整的符号,表示∠A的正切,习
惯省去“∠”;
3、tanA是一个比值(直角边之比,对 注意比的
顺序);且tanA﹥0,无单位;
邻
4、tanA的大小只与∠A的大小有关,而与直角三 角形的边长无关。
5、角相等,则正切值相等;两锐角的正切值相等, 则这两个锐角相等。
随堂练习:
1、在右图中 求tanA的值
2.如图,△ABC是等 腰直角三角形,你能 根据图中所给数据求 出tanC吗?
生活运用
正切经常来描述山坡的坡度
如图,以tanA来描述此山坡的坡度
生活运用
如图,某人从山坡下的点A走了200m 后到达山顶的点B,已知点B到山脚的垂 直距离为55m,求山的坡度(结果保留)