1.1从梯子的倾斜程度谈起(第一课时)

合集下载

九年级数学下册 第1章 直角三角形的边角关系教案 北师大版

九年级数学下册 第1章 直角三角形的边角关系教案 北师大版

九年级数学下册第1章直角三角形的边角关系教案北师大版§1.1.1 从梯子的倾斜程度谈起(第1课时)教学目标1、经历探索直角三角形中边角关系的过程2、理解锐角三角函数(正切、正弦、余弦)的意义,并能够举例说明3、能够运用三角函数表示直角三角形中两边的比4、能够根据直角三角形中的边角关系,进行简单的计算教学重点和难点重点:理解正切函数的定义难点:理解正切函数的定义教学过程设计一、复习已学过的直角三角形性质和定理(勾股定理和其逆定理,300定理,斜边中线定理等等)二、新课讲授1、你能比较两个梯子哪个更陡吗?你有哪些办法?2、生活问题数学化:⑴如图:梯子AB和EF哪个更陡?你是怎样判断的?⑵以下三组中,梯子AB和EF哪个更陡?你是怎样判断的?ABC 8mα5m 5mβ13m3、直角三角形的边与角的关系(如图,回答下列问题) ⑴Rt △AB 1C 1和Rt△AB 2C 2有什么关系? ⑵222111B AC C B AC C 和有什么关系? ⑶如果改变B 2在梯子上的位置(如B 3C 3)呢? ⑷由此你得出什么结论?4、正切函数(1) 明确各边的名称(2) 的邻边的对边A A A ∠∠=tan(3) 明确要求:1)必须是直角三角形;2)是∠A 的对边与∠A 的邻边的比值。

(4) tanA 的值越大,梯子越陡 5、巩固练习如图,在△ACB 中,∠C = 90°, 1) tanA = ;tanB = ;2) 若AC = 4,BC = 3,则tanA = ;tanB = ;3) 若AC = 8,AB = 10,则tanA = ;tanB = ; 三、讲解例题例1 图中表示甲、乙两个自动扶梯,哪一个自动扶梯比较陡?分析:通过计算正切值判断梯子的倾斜程度。

这是上述结论的直接应用。

ABC∠A 的对边∠A 的邻边斜边ABC例2 如图,在△ACB 中,∠C = 90°,AC = 6,43tanB ,求BC 、AB 的长。

1.1 从梯子的倾斜程度谈起(一

1.1  从梯子的倾斜程度谈起(一

学科组数学组年级九年级学科数学主备人
教学过程
学科组数学组年级九年级学科数学主备人秦杰使用人: 商景超
教学过程
BC=0.6 sinA=0.6,
AC
学科组数学组年级九年级学科数学主备人秦杰使用人 :商景超
教学过程
?它们分别等于多°角的三个三角函数值,还有两个
学科组数学组年级九年级学科数学主备人秦杰使用人: 商景超
教学过程
用科学计算器求三角函数值,要用到和
sin72°38′25″的按
如图,某地夏日一天中午,太阳光线与地面成80°角,
,要在窗户外面上方安装一个
学科组数学组年级九年级学科数学主备人秦杰使用人:商景超
教学过程
第二功能“sin-1,cos-1,tan-1”和键。

,求锐角A。

1.1从梯子的倾斜程度谈起1 PPT

1.1从梯子的倾斜程度谈起1 PPT
位置的高低及梯子的底端离墙 的远近来判断。
实例2:如图,梯子AB和EF哪个更陡? 你是怎样判断的?
4m
3m
2m
3m
实例2:如图,梯子AB和EF哪个更陡? 你是怎样判断的?
梯子的铅直高与其水平距离 的比相同时,梯子就一样陡。 比值大的梯子陡。
4m
3m
3m
2m
在实践中探索新知
梯子在上升变陡过程中,倾斜 角,铅直高度与水平宽度的比 发生了什么变化?
倾斜角
铅 直 高 度
水平宽度
在实践中探索新知
梯子在上升变陡过程中,倾斜 角,铅直高度与水平宽度的比 发生了什么变化?
在实践中探索新知
梯子在上升变陡过程中,倾斜 角,铅直高度与水平宽度的比 发生了什么变化?
在实践中探索新知
梯子在上升变陡过程中,倾斜 角,铅直高度与水平宽度的比 发生了什么变化?
在实践中探索新知

形AB2C2有什么关系?
B2
B1C 1 B 2C 2 (2) 和 有什么关系? AC1 AC 2
(3)如果改变B2在梯子上的位 置呢?由此你能得出什么结论?
A C2 C1
由感性到理性
想一想
B1 (1)直角三角形AB1C1和直角三

形AB2C2有什么关系?
B2
B1C 1 B 2C 2 (2) 和 有什么关系? AC1 AC 2
在实践中探索新知
梯子在上升变陡过程中,倾斜 角,铅直高度与水平宽度的比 发生了什么变化?
铅 直 高 度
水平宽度
在实践中探索新知
梯子在上升变陡过程中,倾斜 角,铅直高度与水平宽度的比 发生了什么变化?
铅 直 高 度
水平宽度
在实践中探索新知

教案(1.1 从梯子的倾斜程度谈起 第1课时)

教案(1.1 从梯子的倾斜程度谈起 第1课时)

第一章直角三角形的边角关系§1.1 从梯子的倾斜程度谈起第一课时刘小鹏教学目标(一)教学知识点1.经历探索直角三角形中边角关系的过程.理解正切的意义和与现实生活的联系.2.能够用tanA表示直角三角形中两边的比,表示生活中物体的倾斜程度、坡度等,外能够用正切进行简单的计算.(二)能力训练要求1.经历观察、猜想等数学活动过程,发展合情推理能力,能有条理地,清晰地阐述自己的观点.2.体验数形之间的联系,逐步学习利用数形结合的思想分析问题和解决问题.提高解决实际问题的能力.3.体会解决问题的策略的多样性,发展实践能力和创新精神.(三)情感与价值观要求1.积极参与数学活动,对数学产生好奇心和求知欲.2.形成实事求是的态度以及独立思考的习惯.教学重点1.从现实情境中探索直角三角形的边角关系.2.理解正切、倾斜程度、坡度的数学意义,密切数学与生活的联系.教学难点理解正切的意义,并用它来表示两边的比.教学方法探索法.教具准备PPT演示教学过程1.创设问题情境,引入新课用PPT课件动画演示本章的章头图,提出问题[问题]随着改革开放的深入,建设正日新月异地发展,幢幢大楼拔地而起.你能应用数学知识和适当的途径得到大厦的实际高度吗?通过本章的学习,相信大家一定能够解决.这节课,我们就先从梯子的倾斜程度谈起.(板书课题§1.1.1从梯子的倾斜程度谈起).2.自主探究,合作交流用多媒体演示如下内容:[师]梯子是我们日常生活中常见的物体.我们经常听人们说这个梯子放的“陡”,那个梯子放的“平缓”,人们是如何判断的?“陡”或“平缓”是用来描述梯子什么的?请同学们看下图,并回答问题(用多媒体演示)(1)在图中,梯子AB 和EF 哪个更陡?你是怎样判断的?你有几种判断方法?[生]梯子AB 比梯子EF 更陡. [师追问]你是如何判断的?[生]从图中很容易发现∠ABC>∠EFD ,所以梯子AB 比梯子EF 陡.[生可能回答]我觉得是因为AC =ED ,所以只要比较BC 、FD 的长度即可知哪个梯子陡.BC<FD ,所以梯子AB 比梯子EF 陡.[师]我们再来看一个问题(用多媒体演示)(2)在下图中,梯子AB 和EF 哪个更陡?你是怎样判断的? [生]先自主探究,再小组交流意见[师提示]我们观察上图直观判断梯子的倾斜程度,即哪一个更陡,就比较困难了.能不能从第(1)问中得到什么启示呢? [生可能回答]在第(1)问的图形中梯子的垂直高度即AC 和ED 是相等的,而水平宽度BC 和FD 不一样长,由此我想到梯子的垂直高度与水平宽度的比值越大,梯子应该越陡. [生计算][师]多媒体演示:想一想如图,小明想通过测量B 1C 1:及AC 1,算出它们的比,来说明梯子的倾斜程度;而小亮则认为,通过测量B 2C 2及AC 2,算出它们的比,也能说明梯子的倾斜程度.你同意小亮的看法吗?(1)直角三角形AB 1C 1和直角三角形AB 2C 2有什么关系? (2)和111AC C B 222AC C B 和有什么关系?(3)如果改变B2在梯子上的位置呢?由此你能得出什么结论?[师]我们已经知道可以用梯子的垂直高度和水平宽度的比描述梯子的倾斜程度,即用倾斜角的对边与邻边的比来描述梯子的倾斜程度.下面请同学们思考上面的三个问题,再来讨论小明和小亮的做法.[生]独思,独做[生]小组评议 [生]全班交流 (在上图中,我们可以知道Rt △AB 1C 1,和Rt △AB 2C 2是相似的.因为∠B 2C 2A =∠B 1C 1A =90°,∠B 2AC 2=∠B 1AC 1,根据相似的条件,得Rt △AB 1C 1∽Rt △AB 2C 2.由图还可知:B 2C 2⊥AC 2,B 1C 1⊥AC 1,得 B 2C 2//B 1C 1,Rt △AB 1C 1∽Rt △AB 2C 2. 相似三角形的对应边成比例,得2221111212211,AC C B C A C B C A AC C B C B ==即.如果改变B 2在梯子上的位置,总可以得到Rt △B 2C 2A ∽Rt △Rt △B 1C 1A ,仍能得到222111AC C B AC C B =因此,无论B 2在梯子的什么位置(除A 外),222111AC C B AC C B =总成立.)(∠A 的对边与邻边的比只与∠A 的大小有关系,而与它所在直角三角形的大小无关.也就是说,当直角三角形中的一个锐角确定以后,它的对边与邻边之比也随之确定.)3.得出结论。

初中九年级数学从梯子的倾斜程度谈起(第1课时)

初中九年级数学从梯子的倾斜程度谈起(第1课时)

∠A的对边与邻边的比值会
随之改变吗?
A
C2
C1
∠A的大小改变, ∠A的对边与邻边的比值随之改变。
由此你得出什么结论?
当直角三角形的锐角确定后,它的对边与邻边的比
值也随之唯一确定;比值和三角形的大小无关,只
和倾斜角的大小有关。
在Rt△ABC中, 如果 锐角A确定, 那么 ∠A的对边与邻边的比 随之确定,
***************************************** 找课件,来莎莎课件站!
(免费课件,免费教案,免费试卷)
国内著名的免费课件交流平台!
*****************************************
第一章:直角三角形的边角关系
(2) B1C1 和 B2C2 有什么关系?
C1
AC1 AC2
∵∠A=∠A ∠AC1B1=∠AC2B2 ∴Rt△AC1B1∽Rt△AC2B2 B1C1 B2C2 AC1 AC2
B
如果任意改变B2在梯子上的位置呢? 你有什么想法?
B1
∠A的大小确定, ∠A的对边与
邻边的比值不变。
B2
3
如果改变∠A 的大小,
么? 3.什么是坡度?
三、学生自学:老师巡视 (8分钟)
四、自学检测:( 10分钟)
1、
2 、
五、点拨:(10分钟)
梯子与地面的 夹角(倾斜角)
铅 直 高 度 水平距离
梯子在上升变陡过程中,倾斜角 的大小发生了什么变化?

可以用梯子与地面
斜 的夹角(倾斜角)的大
角 小来判断两架梯子哪个
越 更陡些。
ቤተ መጻሕፍቲ ባይዱ

北师大版九年级数学下册1.1从梯子的倾斜程度谈起(第一课时)导学案

北师大版九年级数学下册1.1从梯子的倾斜程度谈起(第一课时)导学案

1、 勾股定理: _____________________________________________________; 应用勾股定理的前提是_________________________. 2、 相似三角形的对应边________ _______.
3、 如图,在 Rt△ABC 中,∠C=90°,________是斜边,∠A 的对 边是________,AC 是∠A 的_________. 自主 学习:
A B
C
自我评价:
小组长评价:
情境导入:
下图中,梯子 AB 和 EF 那个更陡?你是怎样判断的?
合作 探究:
合作探究一:
如图 1,BC、DE、FG、HI 都与 AC 垂直,容易证明
ABC ______ADE ;从而可得:
BC AC .所以, _____ DE AE
BC DE BC DE .进而可得: ____ ______ _____ AC AE AC AE
(图 4)
.
即学即用: 例 1 图 4 表示甲、乙两个自动扶梯,哪一个自动扶梯
比较陡? 解:甲梯中, tan __________. 乙梯中, tan __________ . 因为 tan _____tan ,所以 梯更陡.
知识拓展:
正切也经常用来描述山坡的坡度 (即坡面铅直高度与水 平宽度的比) .那么, 如果有一山坡在水平方向上每前进 100m 就升高 60m,则山坡的坡度,路基高是 4 米,则路基的 下底宽为 米.
5、 (40 分)如图, 是 Rt△ABC 斜边 AB 上的高, BD=2, CD 若 tan∠BCD=
1 ,求 AB 的长. 2
课后作业:
课本第 6 页,习题 1.1,知识技能,1、2.

北师大版九年级数学下册全套教案

北师大版九年级数学下册全套教案

第一章 直角三角形的边角关系 §1.1 从梯子的倾斜程度谈起(第一课时)学习目标:1.经历探索直角三角形中边角关系的过程.理解正切的意义和与现实生活的联系.2.能够用tanA 表示直角三角形中两边的比,表示生活中物体的倾斜程度、坡度等,外能够用正切进行简单的计算. 学习重点:1.从现实情境中探索直角三角形的边角关系.2.理解正切、倾斜程度、坡度的数学意义,密切数学与生活的联系.学习难点:理解正切的意义,并用它来表示两边的比. 学习方法:引导—探索法. 学习过程:一、生活中的数学问题:1、你能比较两个梯子哪个更陡吗?你有哪些办法?2、生活问题数学化:⑴如图:梯子AB 和EF 哪个更陡?你是怎样判断的?⑵以下三组中,梯子AB 和EF 哪个更陡?你是怎样判断的?二、直角三角形的边与角的关系(如图,回答下列问题)⑴Rt △AB 1C 1和Rt△AB 2C 2有什么关系? ⑵222111B AC C B AC C 和有什么关系?⑶如果改变B 2在梯子上的位置(如B 3C 3)呢?⑷由此你得出什么结论?三、例题: 例1、如图是甲,乙两个自动扶梯,哪一个自动扶梯比较陡?例2、在△ABC 中,∠C=90°,BC=12cm ,AB=20cm ,求tanA 和tanB 的值.四、随堂练习:1、如图,△ABC 是等腰直角三角形,你能根据图中所给数据求出tanC 吗?2、如图,某人从山脚下的点A 走了200m 后到达山顶的点B ,已知点B 到山脚的垂直距离为55m ,求山的坡度.(结果精确到0.001)3、若某人沿坡度i =3:4的斜坡前进10米,则他所在的位置比原来的位置升高________米.4、菱形的两条对角线分别是16和12.较长的一条对角线与菱形的一边的夹角为θ,则tan θ=______.5、如图,Rt △ABC 是一防洪堤背水坡的横截面图,斜坡AB 的长为12 m ,它的坡角为45°,为了提高该堤的防洪能力,现将背水坡改造成坡比为1:1.5的斜坡AD ,求DB 的长.(结果保留根号)五、课后练习:1、在Rt △ABC 中,∠C=90°,AB=3,BC=1,则tanA= _______.2、在△ABC 中,AB=10,AC=8,BC=6,则tanA=_______.3、在△ABC 中,AB=AC=3,BC=4,则tanC=______.4、在Rt △ABC 中,∠C 是直角,∠A、∠B、∠C 的对边分别是a 、b 、c,且a=24,c= 25,求tanA 、tanB 的值.5、若三角形三边的比是25:24:7,求最小角的正切值.6、如图,在菱形ABCD 中,AE⊥BC 于E,EC=1,tanB=125, 求菱形的边长和四边形AECD 的周长.7、已知:如图,斜坡AB 的倾斜角a,且tan α=34,现有一小球从坡底A 处以20cm/s的速度向坡顶B 处移动,则小球以多大的速度向上升高?E DAB8、探究:⑴、a 克糖水中有b 克糖(a>b>0),则糖的质量与糖水质量的比为_______; 若再添加c 克糖(c>0),则糖的质量与糖水的质量的比为________.生活常识告诉我们: 添加的糖完全溶解后,糖水会更甜,请根据所列式子及这个生活常识提炼出一个不等式: ____________.⑵、我们知道山坡的坡角越大,则坡越陡,联想到课本中的结论:tanA 的值越大, 则坡越陡,我们会得到一个锐角逐渐变大时,它的正切值随着这个角的变化而变化的规律,请你写出这个规律:_____________.⑶、如图,在Rt△ABC 中,∠B=90°,AB=a,BC=b(a>b),延长BA 、BC,使AE=CD=c, 直线CA 、DE 交于点F,请运用(2) 中得到的规律并根据以上提供的几何模型证明你提炼出的不等式.§1.1从梯子的倾斜程度谈起(第二课时)学习目标:1.经历探索直角三角形中边角关系的过程,理解正弦和余弦的意义.2.能够运用sinA 、cosA 表示直角三角形两边的比.3.能根据直角三角形中的边角关系,进行简单的计算.4.理解锐角三角函数的意义. 学习重点:1.理解锐角三角函数正弦、余弦的意义,并能举例说明.2.能用sinA 、cosA 表示直角三角形两边的比.3.能根据直角三角形的边角关系,进行简单的计算. 学习难点:用函数的观点理解正弦、余弦和正切. 学习方法:探索——交流法. 学习过程:一、正弦、余弦及三角函数的定义 想一想:如图(1)直角三角形AB 1C 1和直角三角形AB 2C 2有什么关系? (2)211122BA C A BA C A 和有什么关系?2112BA BCBA BC 和呢?(3)如果改变A 2在梯子A 1B 上的位置呢?你由此可得出什么结论?(4)如果改变梯子A1B 的倾斜角的大小呢?你由此又可得出什么结论? 请讨论后回答.二、由图讨论梯子的倾斜程度与sinA 和cosA 的关系:三、例题:例1、如图,在Rt △ABC 中,∠B=90°,AC =200.sinA =0.6,求BC 的长.BDA C E FBAC例2、做一做:如图,在Rt △ABC 中,∠C=90°,cosA =1312,AC =10,AB 等于多少?sinB 呢?cosB 、sinA 呢?你还能得出类似例1的结论吗?请用一般式表达.四、随堂练习:1、在等腰三角形ABC 中,AB=AC =5,BC=6,求sinB ,cosB ,tanB.2、在△ABC 中,∠C =90°,sinA =54,BC=20,求△ABC 的周长和面积.3、在△ABC 中.∠C=90°,若tanA=21,则sinA= .4、已知:如图,CD 是Rt △ABC 的斜边AB 上的高,求证:BC 2=AB ·BD.(用正弦、余弦函数的定义证明)五、课后练习:1、在Rt△ABC 中,∠ C=90°,tanA=34,则sinB=_______,tanB=______.2、在Rt△ABC 中,∠C=90°,AB=41,sinA=941,则AC=______,BC=_______.3、在△ABC 中,AB=AC=10,sinC=45,则BC=_____.4、在△ABC 中,已知AC=3,BC=4,AB=5,那么下列结论正确的是( ) A.sinA=34B.cosA=35C.tanA=34 D.cosB=355、如图,在△ABC 中,∠C=90°,sinA=35,则B C A C等于( )A.34B.43C.35D.45DB A6、Rt△ABC 中,∠C=90°,已知cosA=35,那么tanA 等于( ) A.43B.34C.45D.547、在△ABC 中,∠C=90°,BC=5,AB=13,则sinA 的值是A .135B .1312 C .125 D .5128、已知甲、乙两坡的坡角分别为α、β, 若甲坡比乙坡更徒些, 则下列结论正确的是( ) A.tan α<tan β B.sin α<sin β; C.cos α<cos β D.cos α>cos β9、如图,在Rt△ABC 中,CD 是斜边AB 上的高,则下列线段的比中不等于sinA 的是( ) A.C D A CB.D B C BC.C B ABD.C D C B10、某人沿倾斜角为β的斜坡前进100m,则他上升的最大高度是( )m A.100sin βB.100sin βC.100cos βD. 100cos β11、如图,分别求∠α,∠β的正弦,余弦,和正切.12、在△ABC 中,AB=5,BC=13,AD 是BC 边上的高,AD=4.求:CD,sinC.13、在Rt△ABC 中,∠BCA=90°,CD 是中线,BC=8,CD=5.求sin∠ACD,cos∠ACD 和tan∠ACD.14、在Rt△ABC 中,∠C=90°,sinA 和cosB 有什么关系?15、如图,已知四边形ABCD 中,BC=CD=DB,∠ADB=90°,cos ∠ABD=45.求:s △ABD :s △BCD§1.2 30°、45°、60°角的三角函数值学习目标:1.经历探索30°、45°、60°角的三角函数值的过程,能够进行有关的推理.进一步体会三角函数的意义.2.能够进行30°、45°、60°角的三角函数值的计算.3.能够根据30°、45°、60°的三角函数值说明相应的锐角的大小. 学习重点:1.探索30°、45°、60°角的三角函数值.BDAC2.能够进行含30°、45°、60°角的三角函数值的计算.3.比较锐角三角函数值的大小. 学习难点:进一步体会三角函数的意义. 学习方法:自主探索法 学习过程: 一、问题引入[问题]为了测量一棵大树的高度,准备了如下测量工具:①含30°和60°两个锐角的三角尺;②皮尺.请你设计一个测量方案,能测出一棵大树的高度.二、新课[问题] 1、观察一副三角尺,其中有几个锐角?它们分别等于多少度? [问题] 2、sin30°等于多少呢?你是怎样得到的?与同伴交流. [问题] 3、cos30°等于多少?tan30°呢?[问题] 4、我们求出了30°角的三个三角函数值,还有两个特殊角——45°、60°,它们的三角函数值分别是多少?你是如何得到的?[例1]计算:(1)sin30°+cos45°; (2)sin 260°+cos 260°-tan45°.[例2]一个小孩荡秋千,秋千链子的长度为2.5 m ,当秋千向两边摆动时,摆角恰好为60°,且两边的摆动角度相同,求它摆至最高位置时与其摆至最低位置时的高度之差.(结果精确到0.01 m)三、随堂练习 1.计算:(1)sin60°-tan45°; (2)cos60°+tan60°;(3) 22sin45°+sin60°-2cos45°; ⑷13230sin 1+-︒;⑸(2+1)-1+2sin30°-8; ⑹(1+2)0-|1-sin30°|1+(21)-1;⑺sin60°+︒-60tan 11; ⑻2-3-(0032+π)0-cos60°-211-.2.某商场有一自动扶梯,其倾斜角为30°.高为7 m ,扶梯的长度是多少?3.如图为住宅区内的两幢楼,它们的高AB =CD=30 m ,两楼问的距离AC=24 m ,现需了解甲楼对乙楼的采光影响情况.当太阳光与水平线的夹角为30°时,求甲楼的影子在乙楼上有多高?(精确到0.1 m ,2≈1.41,3≈1.73)四、课后练习:1、Rt △ABC 中,8,60=︒=∠c A ,则__________,==b a ;2、在△ABC 中,若2,32==b c ,,则____tan =B ,面积S = ;3、在△ABC 中,AC :BC =1:3,AB =6,∠B = ,AC = BC =4、等腰三角形底边与底边上的高的比是3:2,则顶角为 ( )(A )600(B )900(C )1200(D )1505、有一个角是︒30的直角三角形,斜边为cm 1,则斜边上的高为 ( ) (A )cm 41 (B )cm 21 (C )cm 43 (D )cm 236、在ABC ∆中,︒=∠90C ,若A B ∠=∠2,则tanA 等于( ). (A )3 (B )33 (C )23 (D )217、如果∠a 是等边三角形的一个内角,那么cos a 的值等于( ). (A )21 (B )22 (C )23 (D )18、某市在“旧城改造”中计划内一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米a 元,则购买这种草皮至少要( ). (A )450a 元 (B )225a 元 (C )150a 元 (D )300a 元 9、计算:⑴、︒+︒60cos 60sin 22 ⑵、︒︒-︒30cos 30sin 260sin⑶、︒-︒45cos 30sin 2⑷、3245cos 2-+︒⑸、045cos 360sin 2+ ⑹、130sin 560cos 30-⑺、︒30sin 22·︒+︒60cos 30tan tan60° ⑻、︒-︒30tan 45sin 22︒15020米30米10、请设计一种方案计算tan15°的值。

1.1从梯子的倾斜程度谈起第1课时

1.1从梯子的倾斜程度谈起第1课时

作业布置
金牌学典:
P 84-86 第一课时
60m α 100m
例题欣赏
1、 如图,在△ACB中,∠C = 90°,AC = 6, ,求BC、AB的长。
A
B
C
例题欣赏
2、如图,在等腰△ABC中,AB=AC=13, BC=10,求tanB.
A
B
D
C
大胆尝试 练一练
A E
CDB
大胆尝试 练一练
1.如图,△ABC是等腰直角三角形,你能 根据图中所给数据求出tanC吗?
B
1.5

A
D
C
大胆尝试 练一练
2.如图,某人从山脚下的点A走了200m后到达山顶 的点B.已知山顶B到山脚下的垂直距离是55m,求山 坡的坡度(结果精确到0.001m).
B

A
C
小结与拓展
• 这节课,你学会了什么?
正切的定义:
在Rt△ABC中,锐角A的对边与邻边的比 叫做∠A的正切,记作tanA,即
B1
(2). B1C1 和 B2C2 有什么关系 ? AC1 AC2
B2 B3
如果改变B2在梯子上的位置 (如B3C3 )呢?
A
C3 C2
C1
由此你得出什么结论?
用心想一想
结论:仍能得到
当直角三角形中的锐角确定 之后,它的对边与邻边之比 也随之确定。
A
B1
B2 B3
C3 C2
C1
知识升华
在Rt△ABC中,如果锐角A确定,那么锐 角A的对边与邻边的比便随之确定,这个比 叫做∠A的正切,记作tanA,即
驶驶向向胜胜利利 的的彼彼岸岸
A 1 B2
从生活实践开始
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
但小明因身高原因不能测量B1 C1 ,进而无法刻画梯 子的倾斜程度,他该怎么办?你有什么锦囊妙计?
B1 B2
A
C2 C1
想一想
B1
(1) Rt△AB1C1和Rt△ AB2C2有什么 关系?
B2
A
C2
(2) B1C 1和 B2C 2 有什么关系?
AC 1 AC 2
B1C 1 B2C2 AC 1 AC2
3
tan B BC 6 1 AC AC 3
6
AC 18
AB AC2 BC2 182 62 6 10
tan B 4 1 4
二. 填空: AC 1.tan B = BC
BC tan A = AC
A
tanA·tanB =__1____
2.如图, ∠ACB=90°CD⊥AB.
AD
tan∠ACD= CD
B
在Rt△ABC中, 如果 锐角A确定, 那么 ∠A的对边与邻边的比
随之确定, 这个比叫做
∠A ∠A的正切. 记作:tanA

tanA

∠A的对边 ∠A的邻边

A ∠A的邻边 C
一、思考:1、判断对错:
如图, 1) tanA= BC
AC
错 ,必须在直角三角形中。
1、如图 (2) tanA= AC (错 )
(3) 如果改变B2在梯子上的位置呢? 由此你能得出什么结论? C1
想一想
B1 B2
B1C1 A C1

B2C 2 AC2
有什么关系?
B1C 1 B2C2 AC 1 AC2
A
C2
C1
想一想
B1 B2
B1C1 A C1

B2C 2 AC2
有什么关系?
B1C 1 B2C2 AC 1 AC2
A
C2
C1
想一想
B1 B2
B1C1 A C1

B2C 2 AC2
有什么关系?
B1C 1 B2C2 AC 1 AC2
A
C2 C1
想一想
B1 B2
B1C1 A C1

B2C 2 AC2
有什么关系?
当∠A确定, 都有∠A的对 边与邻边的比值就确定.
B1C 1 B2C2
A
C2 C1
AC 1 AC2
∠A的正切
(2)
思考 梯子的倾斜程度与tanA有怎样的关系?
tanA越大,梯子越陡。
B 正切也经常用来描述山坡的坡度,
A
C
A E
5m
4m
B
3m
F
2m
2、在Rt△ABC中,锐角A的对边和邻边同时 扩大100倍,tanA的值( )
A、扩大100倍 B、缩小100倍
C、不变
D、不能确定
tanA的大小只与∠A的大小有 关,而与直角三角形的边长无关.
2、在Rt△ABC中, ∠C=900 ,BC=6, tanB= 1 ,求AC和AB的长
BC
(3)tanA= BC ( 错 )
AB
tan是一个比值,它是 没有单位的!
(4)tanA=0.7m( 错 )
(5) tanB= 10 ( 对 ) 7
B
E
4m
3.5m
A
1.5m
(1)
F
1.3m D
(2)
思考 梯子的倾斜程度与tanA有怎样的关系?
tanA越大,梯子越陡。
理论应用于实际: 哪个梯子更陡?
锐角三角函数
回顾旧知
1、直角三角形:有一个角是900的三角形 2、三边关系:勾股定理 3、两锐角关系:互余
本节课讨论边与角的关系
铅 直 高 度 倾斜角
水平宽度
倾斜角越大——梯子越陡
10m 1m
10m
5m
比眼力 比速度: 哪个梯子更陡?
B
E
B
E
5m
5m
5m
4m
A
F
2m
(1)
2.5m D
(2)
A
A
tanB= AC CD AD BC BD CD
C
B C ┌ DB
∠A的正切
B
在Rt△ABC中, 如果 锐角A确定, 那么 ∠A的对边与邻边的比
随之确定, 这个比叫做
∠A ∠A的正切. 记作:tanA

tanA

∠A的对边 ∠A的邻边

A ∠A的邻边 C
B
E
4m
3.5m
A
1.5m
(1)
F
1.3m D2m(3)F2m D(4)
当铅直高度相同时,水
当水平宽度相同时,铅
平宽度越小,梯子 越陡 . 直高度越 大 ,梯子越陡.
比眼力 比速度: 哪个梯子更陡?
B
E
4m
3.5m
A
F
1.5m
1.3m D
(1)
(2)
有人认为可以通过测量BC及AC,算出它们的比,来
说明梯子AB的倾斜程度;你认为可行吗?
小明想通过测量B1C1及AC1,算出它们的比,来说 明梯子的倾斜程度;
相关文档
最新文档