水中铜离子的测定

合集下载

水质__铜的测定__二乙基二硫代氨基甲酸钠分光光度法(HJ_485—2009_)

水质__铜的测定__二乙基二硫代氨基甲酸钠分光光度法(HJ_485—2009_)
用移液管吸取适量体积(含铜量不超过 30μg,最大体积不大于 50mL)消解后的试样,置于分液漏 斗(6.2)中,加水至 50mL。
加入 10mLEDTA-柠檬酸铵溶液Ⅱ(5.17)和 2 滴甲酚红指示液(5.16),用(1+1)氨水(5.9)调 pH 至 8~ 8.5(由红色经黄色变为浅紫色)。加入 5.0mL 二乙基二硫代氨基甲酸钠溶液(5.14),摇匀,静置 5min。 准确加入 10.00mL 四氯化碳(5.6),振荡不少于 2min,静置,使分层。显色后 1h 内完成测定。 8.2 测定
8 分析步骤 8.1 试样制备和显色萃取
2
8.1.1 可溶性铜 8.1.1.1 水样的过滤
将未8.1.1.2 显色萃取
用移液管吸取适量体积(含铜量不超过 30μg,最大体积不大于 50mL)过滤后的试样,置于分液漏 斗(6.2)中,加水至 50mL。
5.1 滤膜,0.45μm。 5.2 盐酸(HCl),ρ=1.19g/mL,优级纯。 5.3 硝酸(HNO3),ρ=1.40g/mL,优级纯。 5.4 高氯酸(HClO4),ρ=1.68g/mL,优级纯。 5.5 氨水(NH4OH),ρ=0.91g/mL,优级纯。 5.6 四氯化碳(CCl4) 5.7 三氯甲烷(CHCl3)
I
水质 铜的测定 二乙基二硫代氨基甲酸钠分光光度法
1 适用范围 本标准规定了测定水中可溶性铜和总铜的二乙基二硫代氨基甲酸钠分光光度法。 本标准适用于地表水、地下水、生活污水和工业废水中总铜和可溶性铜的测定。 当使用 20mm 比色皿,萃取用试样体积为 50mL 时,方法的检出限为 0.010mg/L,测定下限为
在 8 个分液漏斗(6.2)中分别加入 0.00、0.20、0.50、1.00、2.00、3.00、5.00 和 6.00mL 铜标准 溶液(5.13),其对应的铜含量分别为 0.0、1.0、2.5、5.0、10.0、15.0、25.0 和 30.0μg。 加水至总体 积为 50mL,配成校准系列溶液。

DPV法测定水中铜离子的含量

DPV法测定水中铜离子的含量

微分脉冲伏安法(DPV)测定水中铜离子的含量一实验目的:学习微分脉冲伏安法(DPV)的基本原理和操作技术掌握利用DPV测定水中铜离子的过程和实验现象二实验原理根据溶液的电化学性质及其变化来确定溶液中某物质的量的方法称为电化学分析方法,以电位,电流,电导和电量等电学参数与被测物质含量之间的关系作为其计量的基础。

以测量电解过程中所得电流-电位(电压)曲线进行测定的方法称为伏安法。

DPV是在经典的伏安分析基础上发展起来的,对工作电极施加一线性变化的直流电压上,并用时间控制器同步在间隔一定时间后叠加上一振幅为5-100mV,持续时间为40-80ms 的矩形脉冲电压,并且采用两次电流取样的方法,记录脉冲加入前20ms和脉冲终止前20ms时的电流差值,该值在直流极谱波的半波电位ф1/2处最大(峰值)Δi max,脉冲时间较长,可使充电电流得到充分的衰减,降低背景电流,从而提高测定的灵敏度。

根据Δi max =(Z2F2/4RT) AD1/2(πt)-1/2(ΔE)*C=KC就可获得物质的量。

在醋酸缓冲液中,微量Cu2+→←Cu+→←Cu峰电位约在-0.1V处,若铜含量加大,则可能又在约-0.4V处有第二个峰出现。

铜含量在一定范围内,峰电流与之有线性关系。

三仪器和试剂电化学分析仪(CHI710,CHI630),微量进样器磁力搅拌器,转子。

三电极体系(玻碳工作电极,甘汞参比电极,铂对电极),烧杯(电解池),0.1mol·L-1Hac-NaAc缓冲液(pH=3.75),0.001000mol·L-1铜标液,二次蒸馏水四实验内容和步骤1 电极预处理:用砂纸打磨工作电极至成镜面,以超声波依次在1 mol·L-1硝酸1mol·L-1碱NaOH和二次水中超声洗涤,晾干待用2先打开主机电源预热,准确移取15.00mL 缓冲液(底液)于电解池中,接好电解池上(三电极体系),启动计算机,点击桌面上的电分析快捷键进入该操作系统。

分光光度法测生活用水中铜离子浓度的研究

分光光度法测生活用水中铜离子浓度的研究

毕业设计说明书设计题目:分光光度法测生活用水中铜的研究班级:学生姓名:指导教师:完成日期:2012年6月10日毕业答辩成绩毕业设计评阅化工系毕业设计(论文)任务书一、题目:分光光度法测生活用水中铜离子浓度的研究设计学生姓名常青二、题目说明:本次题应达到的基本要求(包括原始数据、计算、图表)1.学会722S型分光光度计的使用方法、原理,了解此仪器的性能。

2.掌握生活用水中铜的测定方法。

3.要求准确记录原始数据、图表规划合理、齐全,计算结果准确。

4.准确配制各类标准溶液、准确绘制标准曲线、正确记录数据、并处理数据。

5.写出条理清晰的完整论文。

三、题目进度安排(步骤、程序、时间)1、第2-3周:查阅文献资料,了解研究内容、原理、方法。

2、第4-5周:熟悉实验室、实验方法;准备仪器、药品,配制溶液,达到实验基本要求。

3、第6-8周:根据单一变量的原则对最佳工艺条件(最大吸收波长、显色时间、PH值、显色剂用量)进行优化。

4、第9周:绘制标准曲线。

5、第10-11周:做加标试验。

6、第12周:分析水样。

7、第13-14周:检测干扰离子对实验的影响8、第15-17周:撰写论文,准备答辩。

交出任务日期:2012年3月21日;完成日期6月10日学生交出全部设计(论文)期限2012年6月10日指导教师学生签名分光光度法测生活用水中铜离子浓度的研究摘要本实验采用分光光度法对生活用水中铜离子测定进行研究。

实验首先对影响铜离子含量测定的因素,如波长、时间、PH值和铜试剂用量等采用单一变量法逐一进行优化,选出最佳测定条件;在最佳条件下,绘制出铜离子标准曲线;再将自来水样进行酸化处理,通过测量其吸光度,从而得到其铜离子准确含量。

实验结果表明:分光光度法测铜的最佳条件为最大吸收波长450nm、最佳显色时间1min、最佳pH值9、最佳铜试剂用量为3.00mL;最佳条件下,铜离子浓度在0.06~3.20μg/mL时,铜离子浓度与吸光度值之间符合朗伯-比尔定律,具有良好的线性关系,其线性相关系数r为0.9894,加标实验回收率为97.89%。

废水中铜含量的测定

废水中铜含量的测定

二乙胺基二硫代甲酸钠测污水中的铜含量一、测定方法:二乙胺基二硫代甲酸钠萃取光度法二、方法原理在氨性溶液中(PH9—10),铜与二乙胺基二硫代甲酸钠作用,生成摩尔比为1:2的黄棕色络合物,该络合物可被四氯化碳或氯仿萃取,其最大的吸收波长为440nm,在测定条件下有色络合物可稳定1h,其摩尔吸收系数为1.4.三、适用范围本方法的测定范围为0.02—0.60mg/L,最低检出浓度为0.01mg/L,经适当稀释和浓缩测定上限可达2.0mg/L。

用于地面水及各种工业废水中铜的测定。

四、仪器:分光光度计、恒温电热器。

五、试剂:1、盐酸、硝酸、氨水,一级纯。

2、四氯化碳。

3、1:1氨水。

4、 0.2%(m/v)二乙胺基二硫代甲酸钠溶液称取0.2g二乙基二硫代氨基甲酸钠溶于水中并稀释至100ml。

用棕色玻璃瓶贮存,放在暗处,可以保存两周。

5、甲酚红指示液(0.4g/L):称取0.02g试剂溶于95%乙醇50ml中。

6、EDTA—柠檬酸铵溶液:称取5gETDA(乙二铵四乙酸二钠)和20g柠檬酸三铵溶于水中并稀释至100ml,加入4滴甲酚红指示液,用1:1氨水调至PH8—8.5,加入5ml 0.2%(m/v)二乙胺基二硫代甲酸钠溶液,用四氯化碳萃取4次,每次用量20mL。

7、铜标准贮备溶液:准确称取1.000g金属铜(99.9%)置于150ml烧杯中,加入20ml(1:1)硝酸,加热溶解后,加入10ml(1:1)硫酸并加热至冒白烟,冷却后加水溶解并转入1000ml容量瓶中,用水定容至标线,此溶液中1.00ml含铜1.00mg。

8、铜标准溶液:从铜标准贮备溶液中取5mL溶液用水稀释至1000mL,此溶液中1.00ml含铜5.00μg。

六、操作步骤:1、空白试验:取50mL的去离子水,按6.2~6.6步骤,随同试样做平行操作,得出空白试验的吸光度。

2、取50ml酸化的水样置于150ml烧杯中,加入5ml硝酸,在恒温电热器上加热消解并蒸发至10ml左右。

水体中铜离子的含量测定111

水体中铜离子的含量测定111

循环伏安法测定溶液中金属离子浓度及电极表面积环科112班刘昂2104391112391目录一前言二实验测电极面积1实验目的.................................................. 错误!未定义书签。

2.实验原理.................. .................. .. (2)2.1 循环伏安法基本原理...................................... 错误!未定义书签。

2.2.1 线性扫描伏安法 (3)2.2.2 循环伏安法 (4)3 仪器和试剂 (4)4 实验步骤 (5)4.1 实验预处理及实验仪器操作........................ 错误!未定义书签。

4.2 数据及图像处理 (8)4.3 实验中出现的问题及解决办法 (8)5 结论.................. .................. (9)三活动收获四附件一活动日志附件二测溶液中铜离子浓度实验报告前言:根据线性扫描伏安法与循环伏安法的基本原理, 采用电化学中典型的K3[Fe(CN)6]电化学可逆系统,测量电极的峰电位,从而确定电极的粗糙度1.实验目的金属电极表面用肉眼观察是光滑的,但在显微镜下观测是非常粗糙的,电极表面一般呈现多晶状态,膜层本身由许多小晶粒构成,其表面粗糙度与晶粒尺寸相当。

多数情况下晶粒尺寸为几十至几百纳米,这也就是金属电极表面粗糙度的峰-峰值。

当金属电极的尺寸和间距较大时,电极表面粗糙度对器件性能的影响可以忽略。

但是,随着电化学技术的不断发展,电极表面粗糙度对器件的电流密度、析氢超电势、电容、电子传导率、表面能、等效面积、峰值电场、表面张力和薄膜电阻等参数具有重要的影响。

例如:①电极表面粗糙度越大,那么电极的电流密度越大,电流密度过高会产生不理想后果。

因为大多数电导体的电阻是有限的正值,会以热能的形式消散功率,为了要避免电导体因过热而被熔化或发生燃烧,并且防止绝缘材料遭到损坏,电流密度必须维持在过高值以下。

铜 水质 铜的测定 2,9-二甲基-1,10-菲啰啉分光光度法486

铜 水质 铜的测定 2,9-二甲基-1,10-菲啰啉分光光度法486

水质铜的测定2,9-二甲基-1,10-菲啰啉分光光度法方法确认1.适用范围本标准规定了测定水中可溶性铜和总铜的2,9-二甲基-1,10-菲啰啉直接光度法和萃取光度法。

直接光度法适用于较清洁的地表水和地下水中可溶性铜和总铜的测定。

当使用50mm比色皿,试料体积为15ml时,水中铜的检出限为0.03mg/L,测定下限为0.12 mg/L,测定上限为1.3mg/L。

萃取光度法适用于地表水、地下水、生活污水和工业废水中可溶性铜和总铜的测定。

当使用50mm比色皿,试料体积为50ml时,铜的检出限为0.02mg/L,测定下限为0.08 mg/L。

当使用10mm比色皿,试料体积为50ml时,测定上限为3.2mg/L。

2.术语和定义2.1 可溶性铜:未经酸化的水样,通过0.45μm 滤膜后测定的铜。

2.2 总铜:未经过滤的水样,经消解后测定的铜。

3.方法原理用盐酸羟胺将二价铜离子还原为亚铜离子,在中性或微酸性溶液中,亚铜离子和2,9-二甲基-1,10-菲啰啉反应生成黄色络合物,于波长457nm 处测量吸光度,(直接光度法);也可用三氯甲烷萃取,萃取液保存在三氯甲烷-甲醇混合溶液中,于波长457nm 处测量吸光度(萃取光度法)。

4.干扰和消除水样中如含有大量的铬和锡、其他氧化性离子、以及氰化物、硫化物和有机物等对测定铜有干扰。

加入亚硫酸使铬酸盐和络合的铬离子还原,可以避免铬的干扰。

加入盐酸羟胺溶液,可以消除锡和其他氧化性离子的干扰。

通过消解过程,可以除去氰化物、硫化物和有机物的干扰。

5.样品5.1 水样采集和保存5.1.1 将水样采集到聚乙烯瓶中,样品采集后应尽快分析。

5.1.2 样品若不能立即分析,应于每100ml 水样中加入0.5ml 盐酸溶液,酸化至pH 约为 1.5。

但酸化以后的样品仅适合测定水中的总铜。

5.2 试样的制备5.2.1 可溶性铜试样将未经酸化处理的水样通过0 .45μm 滤膜过滤。

5.2.2 总铜试样从水样中各取两份均匀水样,每份100ml,置于250ml烧杯中,作为消解试样。

海能仪器:电镀液中铜离子含量的测定(电位滴定法)

海能仪器:电镀液中铜离子含量的测定(电位滴定法)

海能仪器:电镀液中铜离子含量的测定(电位滴定法)1,简介:目前废水中铜离子的测定方法有原子吸收光谱法,但是该方法需要昂贵的专用仪器设备,一般实验室无法具备该条件。

此外还有碘量法,但该方法也具有弊端:测定的酸度条件比较苛刻,酸度过低,反应速度慢,终点拖长,酸度过高,则碘离子会被空气氧化为碘单质的反应被铜离子催化而加速,这样会使结果偏高。

电位滴定法通常采用离子选择电极或者金属惰性电极作为指示电极,对于那些没有合适指示剂的滴定体系,如有色溶液,浑浊溶液或具有荧光的溶液以及某些离子的连续测定和某些非水滴定等,都可以采用电位滴定法,它以方法准确,成本低廉等优点一直被广泛应用于化工,轻工,石油,地质,冶金。

医药卫生,环境保护,海洋探测等各个领域样品的常量或者微量成分的分析检测中。

近年来随着生产和科学技术的发展,电位滴定法在酸碱滴定,沉淀滴定,络合滴定和氧化还原滴定等各类滴定分析中应用更加广泛。

2,测定原理:本实验以铂复合选择电极为指示电极,用硫代硫酸钠进行滴定至出现电位突跃。

3,仪器配置和附件-TITREX中央模块-自动滴定管-T9201独立分析平台或标准自动进样器16位-汉密尔顿铂复合电极-80列打印机EPSON LX3004,试剂:-滴定剂:0.1M Na2S2O3溶液-电镀废液-蒸馏水5,样品制备:用移液枪准确移取待测液1ml于滴定杯中,加入80ml蒸馏水,用铂复合电极作为指示电极,设置参数进行实验。

6,方法设定1、分别新建滴定以及空白实验的“新方法”,选择“等当点”类型的方法。

2、通过“服务”填写滴定管与滴定剂试剂等相关参数,然后“保存方法”。

3、可通过“加载方法”或选择“首选项”文件夹的方法调用已经建立好的方法。

7,程序设定:换算因子:铜的分子量63.5结果:滴定剂浓度×消耗体积×换算因子=mg/ml注意:在程序设定标题中所设定的一些参数,用户根据实际的操作和样品条件进行修改,从而提高分析的速度和精度。

水质 铜的测定 二乙基二硫代氨基甲酸钠分光光度法

水质 铜的测定 二乙基二硫代氨基甲酸钠分光光度法

相对误差为-4.0
9 参考文献
GB7473-87
其分析结果如下
3
6.1.2.3 加入 10mLEDTA 柠檬酸铵溶液(3.13) 2 滴甲酚红指示液(3.15) 用 l+1 氨水(3.8)调 至 pH8~8.5(由红色经黄色变为浅紫色) 本条款适用于消解后废水试份(6.1.1.2)的测定 6.1.2.4 加入 5.0mL 0.2 二乙基二硫代氨基甲酸钠溶液(3.11) 摇匀 静置 5min 6.1.2.5 准确加入 l0.0mL 四氯化碳(3.5) 用力振荡不少于 2min(若用振荡器振摇 应振摇 4min 静置 使分层
3.14 氯化铵 氢氧化铵缓冲溶液 将 70g 氯化铵(NH4Cl)溶于适量水中 加入 570mL 氨水(3.4) 用水稀释至 lL
3.15 甲酚红指示液 0.4g/L 称取 0.02 克甲酚红(C21H18O5S)溶于 50mL 95 (V/V)乙醇(3.7)中
4 仪器
4.1 分光光度计 10 或 20mm 光程长的比色皿 4.2 125mL 锥形分液漏斗 具磨口玻璃塞 活塞上不得涂抹油性润滑剂 5 试样制备
1
将 5g 乙二胺四乙酸二钠二水合物((Na2 EDTA 2H2O)和 20g 柠檬酸铵[(NH4)3 C6H5O7] 溶于水中并稀释至 100mL 加入 4 滴甲酚红指示液(3.15) 用 1+1 氨水(3.4)调至 pH 8~8.5(由 黄色变为浅紫色) 加入少量 0.2 二乙基二硫代氨基甲酸钠溶液(3.11) 用四氯化碳(3.5)萃取 提纯
铜的含量 c (mg/L)按下式计算
2
式中 m
c= m V
从校准曲线上求得的铜量 ìg
V 萃取用的水样体积 mL 结果以两位小数表示
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

铜离子的测定
一. 实验目的
1. 理解火焰原子吸收光谱法的原理。

2. 掌握火焰原子吸收光谱仪的操作技术。

二. 实验原理
原子吸收光谱法是根据物质产生的原子蒸气对特定波长的光的吸收作用来进行定量分析的。

元素的气态基态原子外层的电子可以吸收与其发射波长相同的特征谱线。

当光源发射的某一特征波长的光通过原子蒸气时,原子中的外层电子将选择性地吸收该元素所能发射的特征波长的谱线,这时,透过原子蒸气的入射光将减弱,其减弱的程度与蒸气中该元素的浓度成正比,吸光度符合吸收定律:
A=lg(I0 / I)=KcL
根据这一关系可以用工作曲线法或标准加入法来测定未知溶液中某元素的含量,这是原子吸收光谱分析法的定量基础,本实验采用的定量分析方法为标准曲线法。

三. 仪器与试剂
1. TAS-990原子吸收分光光度计;
2. 铜空心阴极灯;
3. 优级纯浓硝酸;
4.(1+499)硝酸溶液:用优级纯浓硝酸配制;
5. 金属储备液(1.000g/L);
六. 思考题
1.火焰原子吸收光谱法具有哪些特点?
2. 简要说明原子吸收分光光度计的操作流程。

七. 注意事项
仪器的操作一定严格按照操作规程进行。

相关文档
最新文档