药芯焊丝电弧焊FCAW介绍及优缺点

合集下载

半自动 FCAW下向 焊接 工艺在管道施工中的应用

半自动 FCAW下向 焊接 工艺在管道施工中的应用

半自动 FCAW下向焊接工艺在管道施工中的应用半自动 FCAW下向焊接工艺在管道施工中的应用FCAW是Fluxed-coredarcwelding的缩写,中文译为:药芯焊丝电弧焊。

它是使用药芯焊丝作为焊接材料的一种熔化极气体保护焊或自保护焊法,在我国管道施工中用于全位置半自动下向焊焊接工艺。

1992年,美国林肯公司向管道局推出半自动FCAW下向焊接工艺的同时,重点推出了两种焊接设备组合:林肯DC-400弧焊电源+LN23P送丝机和SAE-400柴油发电机式弧焊电源+LN23P送丝机。

1995年在突尼斯环城管线使用半自动FCAW下向焊接工艺成功后,1996年在库鄯线平原地段进行了推广。

苏丹工程、利比亚工程、涩宁兰工程、兰成渝工程、陕京二线工程施工中,管线热焊、填充、盖面焊基本上采用了该焊接工艺。

西气东输工程2500公里左右也基本上采用此工艺,余下的1500公里采用自动焊接完成。

近10年的工程实践证明,半自动FCAW下向焊接工艺,在大口径长输管道施工中得到了大力推广和使用。

与半自动CO2气体保护下向焊接工艺相比,半自动FCAW下向焊接具有工艺性能优良、电弧稳定、生产效率高、飞溅小、焊缝成型美观、钢种与空间位置适应性好、抗风能力强等优点。

与传统的下向焊条电弧焊工艺相比,它把热焊、填充焊、盖面焊焊口一次合格率平均提高到10%左右,生产率提高1.25至1.5倍左右。

与自动焊相比,它具有设备投资少、成本回收快、综合成本低等优点。

焊工培训时间短,易掌握。

在十几年的工程施工中焊接质量稳定,经过X射线拍片检查,焊口一次合格率平均在95%至98%左右。

采用半自动FCAW下向焊接工艺在管道施工中达到了国内外工程业主提出的"四高"标准,完全适合于各种管径管道全位置下向焊接工艺要求。

所以,备受业主、监理、施工单位的青睐。

半自动FCAW下向焊接的电弧扩散角较大,造成了电弧电压径向能量梯度大,幅度减小,分布趋于平缓,熔深较浅,所以不太适于深层熔透要求场合下的焊接。

fcaw是什么焊接方法

fcaw是什么焊接方法

fcaw是什么焊接方法焊接是一种常见的金属加工工艺,而焊接方法也是多种多样的。

其中,FCaw 焊接方法作为一种常见的焊接方式,被广泛应用于工业生产中。

那么,FCaw到底是什么焊接方法呢?接下来,我们将从FCaw的定义、特点、应用领域以及优缺点等方面进行详细介绍。

首先,FCaw是什么焊接方法?FCaw是Flux-Cored Arc Welding的缩写,中文意思为药芯焊丝焊接。

它是一种利用药芯焊丝作为电弧焊接材料的焊接方法。

在进行焊接时,焊枪通过电流产生电弧,同时焊丝在电弧的作用下熔化,形成熔滴,然后与工件熔融结合,从而完成焊接过程。

其次,FCaw焊接方法有哪些特点?首先,FCaw焊接方法具有高焊接效率和高熔透性,能够在较短的时间内完成大面积的焊接工作。

其次,FCaw焊接方法适用于多种金属材料的焊接,包括碳钢、合金钢、不锈钢等。

此外,FCaw焊接方法还具有良好的焊接质量和成形性能,能够满足工件的各种焊接要求。

再者,FCaw焊接方法在哪些领域得到了广泛应用?FCaw焊接方法广泛应用于船舶制造、桥梁建设、石油化工、汽车制造等领域。

在这些领域中,FCaw焊接方法被用于焊接各种结构件、管道、压力容器等工件,为工业生产提供了重要的焊接技术支持。

最后,FCaw焊接方法有哪些优缺点?FCaw焊接方法的优点在于焊接效率高、熔透性好、适用范围广、焊接质量高等;而其缺点则在于对焊接环境的要求较高、焊接烟尘较大、焊接气体保护要求严格等。

总的来说,FCaw焊接方法作为一种重要的焊接方式,具有明显的优势和应用价值,为工业生产提供了重要的支持。

在今后的工程实践中,我们可以根据具体的焊接要求和工件特点,合理选择FCaw焊接方法,以实现更高效、更优质的焊接效果。

希望本文的介绍能够对大家对FCaw焊接方法有更深入的了解。

实芯焊丝气体保护焊(GMAW)和药芯焊丝气体保护焊(FCAW)两者的区别

实芯焊丝气体保护焊(GMAW)和药芯焊丝气体保护焊(FCAW)两者的区别

GMAW:熔化极气体保护焊含有MIG和MAGMIG:熔化极惰性气体保护焊MAG:熔化极活性气体保护焊FCAW: 药芯焊丝气体保护焊(软钢及高张力钢用药芯焊丝)SMAW:药皮焊条电弧焊SAW:埋弧自动焊实芯焊丝气体保护焊(GMAW)和药芯焊丝气体保护焊(FCAW)两者的区别:1.GMAW的主要优势在于每小时的金属熔敷量,这极大地降低了劳动力成本。

气体保护焊的另一个优势在于它是一种干净的工艺,这主要归功于没有使用焊剂。

在通风不良的车间会发现,从手工电弧焊或药芯焊换成气体保护焊后情况会得到改善,这是因为烟的产生减少了。

由于有各种各样的焊丝可选用,而且焊接设备变的更便于携带,气体保护焊的适用领域不断得到扩展。

该工艺的另外一个优点是可见性。

因为没有焊渣,焊工能够很容易地观察电弧和熔池的情况,从而改善控制。

GMAW还对气流和风特别敏感,它们会将保护气体吹开,留下未保护的金属。

正是这个原因,气体保护焊不大适合工地焊接。

应充分认识到,气体流量大于推荐值的上限,并不能保证对熔池适当的保护。

实际上,大的气体流量反而导致气体紊乱,并增大气孔产生的可能性,这是因为增大气体流量实际上可能将空气带入焊接区。

2.FCAW获得广泛的认可,是因为它能提供优良的性能。

可能最重要的优点是它能提供很高的生产效率,即单位时间内所熔敷的焊缝金属量。

它是手工焊接工艺中效率最高的。

这是由于焊丝盘提供连续不断的焊丝,同GMAW一样增加了电弧时间。

该工艺还被分类为大熔深弧焊,这有助于减少熔合性缺陷的可能性。

由于该方法主要用于半自动工艺,其操作技能要求远低于手工方法的要求。

无论有无保护气体的辅助,FCAW因有焊剂,它比GMAW对母材污染有更大的容许。

正是这个原因,使得FCAW适合工地焊接,在现场,风使得保护气体流失,而GMAW会受到极大的影响。

然而,检验师应当明白该工艺有它的局限。

首先,由于有焊剂,所以在后序焊道焊接前和外观检查前必须去除这层固体焊渣。

药芯焊丝气体保护焊的应用

药芯焊丝气体保护焊的应用

RIKT的焊接摘要:离心等温式空气压缩机,简称RIKT,通过对空气压缩机箱体中分面法兰母材Q345E的分析,采用药芯焊丝气体保护焊,选用合理焊接工艺,进行工艺评定,满足要求并在实际中应用,取得良好效果。

关键词:RIKT FCAW Q345E1 前言公司主要生产离心等温式空气压缩机,大量用于空分行业,主要结构有定子、转子、冷却器和箱体。

其中箱体为焊接结构,其材料主要为Q235、Q345系列材料。

其中中分面法兰材料厚度达到150mm,属于厚板焊接,80%焊缝需做UT检测,所有焊缝做MT检测,质量要求高,外观要求美观。

2母材性能介绍2.1 Q345E的化学成分表1和力学性能表2所示:2.2 材料的焊接性分析首先计算碳当量:CE(IIW)=C+Mn/6+(Cr+Mo+V)/5+(Cu+Ni)/15把Q345E的化学成份代入公式,得到碳当量为0.48。

碳当量超过0.4,又是厚板焊接,有一定的淬硬倾向,但焊接性尚好。

3 药芯焊丝气体保护电弧焊介综合考虑以上特点和产品要求,决定采用FCAW,因为它是一种很有发展前景,而且已经在工程中使用的焊接方法。

3.1 其工作原理:与实芯焊丝气保护焊的主要区别是作用焊丝的构造不同。

药芯焊丝是在焊丝内部装有焊剂或金属粉末混合物(称药芯)。

焊接时,电弧热的作用下融化状态的芯料。

焊丝金属、母材金属和保护气体相互之间发生冶金作用。

同时形成一层较薄的液态熔渣包覆熔滴并覆盖熔池,对熔丝金属构成又一层保护。

所以实质上这是一种气渣联合保护的焊接方法。

3.2工艺特点药芯焊丝气体保护焊综合了焊条电弧焊和CO2焊的工艺特点。

⑴由于药芯成分改变了纯CO2电弧气氛的物理,化学性质,因而飞溅少,且颗粒细,易于消除。

又因熔池表面覆盖有熔渣,焊缝成形比实芯焊丝美观。

⑵与实芯焊丝相比,通过调整药芯的成份,就可以焊接不同钢种,适用性强。

若研制适用同样钢种的实芯焊丝在技术上将遇到许多困难。

⑶对焊接电源无特殊要求,交流和直流均可使用,平特性和陡降性都适用。

实芯焊丝和药芯焊丝的优缺点

实芯焊丝和药芯焊丝的优缺点

实心焊丝和药芯焊丝的优缺点优点:1、对各种钢材的焊接,适应性强调整焊剂的成分和比例极为方便和容易,可以提供所要求的焊缝化学成分。

2、工艺性能好,烛缝成形美观采用气渣联合保护,获得良好成形。

加入稳弧剂使电弧稳定,熔滴过渡均匀。

3、熔敷速度快,生产效率高在相同焊接电流下药芯焊丝的电流密度大,熔化速度快,其熔敷率约为85%-90%,生产率比焊条电弧焊高约3-5倍。

焊接速度快,下向焊,水平焊的时候,药芯焊丝的速度比实芯焊丝的焊接速度快约10%,特别是立向焊 ( Vertical) 和仰焊( over head )的时候,根据药粉的作用,可以使用高电流焊接,所以可以提高两倍以上速度。

4、可用较大焊接电流进行全位置焊接。

实芯焊丝在水平焊或者上向焊的时候要求焊工有很高的焊接技巧,会产生大量的飞溅,因此只适用于薄板焊接,但是药芯焊丝因为产生充分的焊渣,覆盖在焊接部位上,所以适用于全位置的焊接。

5、药芯焊丝与实心焊丝相比飞溅小,连续使用也不会堵塞焊枪嘴。

7、作业性良好,药芯焊丝焊弧柔和,焊接作业性良好,便于操作。

比实芯好的不是一点半点,一个普通工人简单培训就能焊出合格焊缝,在这又省了培训成本。

缺点:1、熔敷效率低,药芯焊丝在焊接后因为产生大量的焊渣所以熔敷效率为约为88% ,而实芯焊丝因为没有焊渣,熔敷效率约为 95%2、烟尘大,药芯焊丝在焊接过程中相对来说烟尘大,防护得当的话,其实真不算缺点,说弄脏工作,我觉得有点冤,轻轻一擦就干净了,它飞溅比实心小多了,应该是对工作表面质量有帮助的。

3、价格贵,按照公斤的单位来计算,药芯焊丝价格虽然较贵,但是如果从提高生产性的角度计算的话,反而能够节省费用。

4、易生锈,这倒真是他的缺点,不易保管,不适合小型企业用5、焊丝制造过程复杂6、焊接时,送丝较实心焊丝困难7、焊丝外表容易锈蚀,粉剂易吸潮,因此对药芯焊丝保存管理的要求更为严格欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。

药芯焊丝电弧焊(FCAW)焊接方法简介

药芯焊丝电弧焊(FCAW)焊接方法简介

药芯焊丝电弧焊(FCAW)焊接方法简介药芯焊丝是继电焊条、实芯焊丝之后广泛应用的又一类焊接材料,使用药芯焊丝作为填充金属的各种电弧焊方法称为药芯焊丝电弧焊。

药芯焊丝电弧焊根据外加保护方式不同有药芯焊丝气体保护电弧焊、药芯焊丝埋弧焊及药芯焊丝自保气体保护焊、药芯焊丝熔化极惰性护焊。

药芯焊丝气体保护焊又有药芯焊丝C02气体保护焊和药芯焊丝混合气体保护焊等,其中应用最广的是药芯焊丝C0气体2保护焊。

(一)药芯焊丝气体保护焊1、药芯焊丝气体保护焊的原理药芯焊丝气体保护焊的基本工作原理与普通熔化极气体保护焊一样,是以可熔化的药芯焊丝作为电极及填充材料,在外加气体(如CO)保护下进行焊接的2电弧焊方法。

与普通熔化极气体保护焊的主要区别在于焊丝内部装有药粉,焊接时,在电弧热作用下,熔化状态的药芯焊丝、焊丝金属,母材金属和保护气体相互之间发生冶金作用,同时形成一层较薄的液态熔渣包覆熔滴并覆盖熔池,对熔化金属形成了又一层的保护。

实质上这种焊接方法是一种气渣联合保护的方法,如图1-10所示。

图1-10药芯焊丝气体保护焊焊接示意图2、药芯焊丝气体保护焊的特点药芯焊丝气体保护焊综合了焊条电弧焊和普通熔化极气体保护焊的优点,其主要优点是:1)、采用气渣联合保护,保护效果好,抗气孔能力强,焊缝成形美观,电弧稳定性好,飞溅少且颗粒细小。

2)、焊丝熔敷速度快,熔敷速度明显高于焊条,并略高于实芯焊丝,熔敷效率和生产率都较高,生产率比焊条电弧焊高3~4倍,经济效益显著。

3)、焊接各种钢材的适应性强,通过调整药粉的成分与比例,可焊接和堆焊不同成分的钢材。

4)、由于药粉改变了电弧特性,对焊接电源无特殊要求,交、直流,平缓外特性均可。

药芯焊丝气体保护焊也有不足之处:焊丝制造过程复杂;送丝较实芯焊丝困难,需要采用降低送丝压力的送丝机构等;焊丝外表面易锈蚀,药粉易吸潮,故使用前应对焊丝外表面进行清理和250~300℃的烘烤。

(二)药芯焊丝自保护焊自保护药芯焊丝或称为明弧焊用药芯焊丝,是在焊接过程中不需要外加保护气或焊剂的一类焊丝(见图1-11)。

实芯焊丝气体保护焊GMAW和药芯焊丝气体保护焊FCAW两者的区别.docx

实芯焊丝气体保护焊GMAW和药芯焊丝气体保护焊FCAW两者的区别.docx

GMAW:熔化极气体保护焊含有MIG和MAGMIG:熔化极惰性气体保护焊MAG:熔化极活性气体保护焊FCAW: 药芯焊丝气体保护焊(软钢及高张力钢用药芯焊丝)SMAW:药皮焊条电弧焊SAW:埋弧自动焊实芯焊丝气体保护焊(GMAW)和药芯焊丝气体保护焊(FCAW)两者的区别:1.GMAW的主要优势在于每小时的金属熔敷量,这极大地降低了劳动力成本。

气体保护焊的另一个优势在于它是一种干净的工艺,这主要归功于没有使用焊剂。

在通风不良的车间会发现,从手工电弧焊或药芯焊换成气体保护焊后情况会得到改善,这是因为烟的产生减少了。

由于有各种各样的焊丝可选用,而且焊接设备变的更便于携带,气体保护焊的适用领域不断得到扩展。

该工艺的另外一个优点是可见性。

因为没有焊渣,焊工能够很容易地观察电弧和熔池的情况,从而改善控制。

GMAW还对气流和风特别敏感,它们会将保护气体吹开,留下未保护的金属。

正是这个原因,气体保护焊不大适合工地焊接。

应充分认识到,气体流量大于推荐值的上限,并不能保证对熔池适当的保护。

实际上,大的气体流量反而导致气体紊乱,并增大气孔产生的可能性,这是因为增大气体流量实际上可能将空气带入焊接区。

2.FCAW获得广泛的认可,是因为它能提供优良的性能。

可能最重要的优点是它能提供很高的生产效率,即单位时间内所熔敷的焊缝金属量。

它是手工焊接工艺中效率最高的。

这是由于焊丝盘提供连续不断的焊丝,同GMAW一样增加了电弧时间。

该工艺还被分类为大熔深弧焊,这有助于减少熔合性缺陷的可能性。

由于该方法主要用于半自动工艺,其操作技能要求远低于手工方法的要求。

无论有无保护气体的辅助,FCAW因有焊剂,它比GMAW对母材污染有更大的容许。

正是这个原因,使得FCAW适合工地焊接,在现场,风使得保护气体流失,而GMAW会受到极大的影响。

然而,检验师应当明白该工艺有它的局限。

首先,由于有焊剂,所以在后序焊道焊接前和外观检查前必须去除这层固体焊渣。

药芯焊丝电弧焊(FCAW)在压力容器制造中的应用

药芯焊丝电弧焊(FCAW)在压力容器制造中的应用
Hi g h& Ne w T e c h n o l o g y
药芯焊丝电弧焊 ( F C A W )在压力容器制造中的应用
任 春 嫒
【 大连派思燃气系统股份有限公 司 。辽 宁 大连 1 1 6 0 0 0)
【 摘
际 应 用
ห้องสมุดไป่ตู้
要】 浅谈 药芯焊 丝电弧焊 的优缺点及在压 力容 器中的实
5 . F C A W在 压力容器制造 中的实际应用 例:浙 能萧 山天然气热 电联产工程项 目 D N I O 0 0 ×2 4过滤器 简体材料为 Q 3 4 5 R ,设计压力 6 . 3 M P a ,介质 :天然气,设计温
度 5 O ℃。
气孔敏 感性 较低。同氩弧焊相比,药芯焊丝焊的焊接工艺性能与氩
钢 板 的抗 拉 强 度 上 限 值 也 达 到 4 9 0  ̄6 2 0 M P a。N B / T 4 7 0 1 5 — 2 0 1 1 第
3 . 2 . 2 . a )条规 定焊缝金属 的力学性能应高于 或等于母材规 定的限
值 。 可 见 ,A W S E 7 1 T 一 1 C强 度基 本 满 足 要 求 。
6 结 论
(1) 对 碳 素 钢 与 Q 3 4 5 R 选 用 的 药 芯 焊 丝 是 同 一 种
( A W S E 7 1 T 一 1 C ) , 造 成 熔 敷 金 属 的抗 拉 强 度 偏 高 , 与N B / T 4 7 0 1 5 — 2 0 1 1 、
N B / T 4 7 0 1 8 . 1  ̄4 7 0 1 8 . 7 - 2 0 1 1等标准规 定不符 ,产品试板拉伸试验 时抗拉 强度值有时超过上 限的现象发生 。 ( 2) 采 用 奥 氏 体 不 锈 钢 药 芯 焊 丝 时 , 焊 接 接 头 在 按 G B / T 4 3 3 4 — 2 0 0 8进行晶间腐 蚀试 验弯曲法 评定时基本都有裂纹和断
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

药芯焊丝电弧焊FCAW介绍及优缺点
下一种介绍的工艺是药芯焊丝电弧焊。

它与气体保护焊非常相似,差别在药芯焊丝焊采用的是管状焊丝,其中装有粒状的焊剂,而不是气体保护焊所用的实芯焊丝。

其差别可以从图3.16中看到,图
中给出了采用自保护药芯焊丝焊焊接的工件和焊接过程中电弧区域的特写。

图中显示管状的焊丝通过焊枪中的导电嘴送进,并在焊丝和工件之间产生电弧。

随着向前焊接而熔敷焊缝金属,和手工电弧焊一样,在焊缝金属上覆盖着一层焊渣。

根据使用的焊丝类型不同,可以对药芯焊附带或不附带额外的保护气体。

有些焊丝被设计成靠内部焊剂提供所有需要的保护,它们被称为自保护性。

其它的焊丝要求附加的保护气体提供附加的保护。

同其它焊接工艺一样,FCAW有一个系统用于标识各种类型的焊丝,见图 3.17。

查阅所有类型的焊丝会发现,它规定了极性,保护要求,化学成分和焊接位置。

标识以字母”E”开头表示焊丝。

第一位的数字表示焊缝熔敷金属的抗拉强度,单位是10000磅/英寸2,如“7”表示焊缝熔敷金属的抗拉强度至少为70,000psi.第二个数字是“0”或“1”。

“0”表示这种焊丝只适用于平焊或
角焊缝的横焊,而“1”说明该焊丝可用于
所有位置。

接下来的一位是字母“T”,它表示管
状焊丝。

然后是一横线和一个数字,数字
表示按焊缝熔敷金属化学成分进行的特定
分类,电流类型,极性,是否需要保护气
体,以及其它用于分类的特定信息。

根据这个标识系统,能够对焊丝是否
需要附加保护气体进行明确分类。

这对焊
接检验师十分重要,因为药芯焊丝在有或
没有额外保护气体的情况下均可焊接。


3.18是两种类型的焊枪。

一些焊丝分类为可以在只有自保护,没有附加保护的情况下使用。

这些焊丝使用后缀数字3,4,6,7,8,10,11,13和14表示。

而另外一些焊丝用后缀数字1,2,5,9或12表示要求额外的保护来辅助保护熔化的金属。

根据应用情况,两种类型的焊丝均能提供优良的性能。

另外,后缀G和GS分别表示多道焊和单道焊。

例如,自保护型焊丝更适用于工地焊接,在工地,风会引起保护气体的流失。

气体保护型的焊丝主要用于需要改善焊缝金属性能的地方,但这会增加成本。

药芯焊丝焊气体包括CO2或75%氩气+25%CO2,但其它的混合气体也可适用。

FCAW使用的设备与GMAW的基本一致,参见图3.19。

所不同的是FCAW可能需要更高容量的焊枪和电源,对于自保护型焊丝和送丝机构,不需要附带保护气体装置。

和GMAW一样,FCAW使用平特性直流电源。

根据所使用的焊丝类型,使用直流反接(DCEP)(1,2,3,4,6,9,12)或直流正接(DCEN)(7,8,10,11,13,14)或二者均可(DCEP,DCEN)(5)。

药芯焊丝焊工艺由于被一些工业应用所选用而迅速得到认可。

它在污染表面上的良好表现和高熔敷效率帮助FCAW在一些应用中取代了SMAW和GMAW。

药芯焊工艺在工业应用中主要用于铁基金属。

在车间焊和工地焊应用中均能获得满意的效果。

虽然药芯焊丝主要适于铁基金属制造(碳钢和不锈钢),一些非铁基金属也能的到很好的应用。

一些不锈钢焊丝实际上是用碳钢外皮包裹着焊剂,焊剂中含有诸如铬、镍的颗粒状元素。

FCAW获得广泛的认可,是因为它能提供优良的性能。

可能最重要的优点是它能提供很高的生产效率,即单位时间内所熔敷的焊缝金属量。

它是手工焊接工艺中效率最高的。

这是由于焊丝盘提供连续不断的焊丝,同GMAW一样增加了电弧时间。

该工艺还被分类为大熔深弧焊,这有助于减少熔合性缺陷的可能性。

由于该方法主要用于半自动工艺,其操作技能要求远低于手工方法的要求。

无论有无保护气体的辅助,FCAW因有焊剂,它比GMAW对母材污染有更大的容许。

正是这个原因,使得FCAW适合工地焊接,在现场,风使得保护气体流失,而GMAW会受到极大的影响。

然而,检验师应当明白该工艺有它的局限。

首先,由于有焊剂,所以在后序焊道焊接前和外观检查前必须去除这层固体焊渣。

由于存在焊剂,在焊接过程中会产生大量的烟。

长时间暴露在没有通风条件的地方会危害焊工的健康。

这些烟还会降低焊工的视线,会给接头中的电弧正确操作带来困难。

虽然可以采用烟雾抽除系统,但要在焊枪加上附件,这会增加其重量并降低焊工的视线。

当采用附加保护气体时,它还会扰乱保护气氛。

即使FCAW被认为是有烟工艺,但它在单位熔敷金属时产生的烟量没有SMAW多。

FCAW所要求的设备比SMAW的复杂,因而其先期成本和机械故障的可能性限制了它在一些环境中的使用。

和所有的工艺一样,FCAW自身存在一些问题。

首先是于焊剂有关。

由于焊剂的存在,在层间清理不当或操作技术不当时,会有焊渣残留在焊缝金属中的可能性。

对于FCAW,至关重要的是焊接速度要足够快,以保持电弧在熔池的前缘。

当焊接速度太慢,使电弧在熔池的中前部或后部,熔化的焊渣会被卷入熔池中形成夹渣。

另一个自身的问题与送丝机构有关。

与GMAW情形一样,缺少保养维护会导致焊丝送进问题,这会影响焊缝的质量。

FCAW同样产生包括未焊透、夹渣和气孔在内的典型缺陷。

相关文档
最新文档