运筹学期末考试试卷(AB)卷

合集下载

运筹学考试题b卷附标准答案

运筹学考试题b卷附标准答案

运筹学期末考试题( b 卷)注意事项:1、答题前,考生务必将自己的姓名、班级填写在答题卡上。

2、答案用钢笔或圆珠笔写在答题卡上,答在试卷上不给分。

3、考试结束,将试卷和答题卡一并交回。

一、单项选择题(每小题 1 分,共 10分) 1:下列关于运筹学的缺点中,不正确的是()A.在建立数学模型时,若简化不慎,用运筹学求得的最优解会因与实际相差大而失去意义B.运筹学模型只能用借助计算机来处理C.有时运筹学模型并不能描述现实世界D.由于运筹学方法的复杂性使一些决策人员难以接受这些解决问题的方法2:在下面的数学模型中,属于线性规划模型的为()max S 4X Y min S 3X Y max S X2Y2min S 2XYA. s.t. XY 3B. s.t. 2X Y 1 C. s.t. XY2 D. s.t. XY3X,Y 0 X,Y 0 X,Y 0 X,Y 03.线性规划一般模型中,自由变量可以用两个非负变量的()代换。

A.和 B .商 C.积 D.差4:以下关系中,不是线性规划与其对偶问题的对应关系的是()。

A.约束条件组的系数矩阵互为转置矩阵B.一个约束条件组的常数列为另一个目标函数的系数行向量C.两个约束条件组中的方程个数相等D.约束条件组的不等式反向 5.对偶问题的对偶是()A.原问题 B .解的问题 C.其它问题 D.基本问题 6:若原问题中x i0 ,那么对偶问题中的第i 个约束一定为()A.等式约束 B .“≤”型约束矚慫润厲钐瘗睞枥庑赖。

C.“≥”约束D .无法确定7:若运输问题已求得最优解,此时所求出的检验数一定是全部()A .小于或等于零B .大于零C.小于零D .大于或等于零8:考虑某运输问题,其需求量和供应量相等,且供应点的个数为 m,需求点的个数是 n。

若以西北角法求得其初始运输方案,则该方案中数字格的数目应为()聞創沟燴鐺險爱氇谴净。

A.( m+n)个B.( m+n-1 )个C.( m-n)个D. ( m-n+1)个9:关于动态规划问题的下列命题中错误的是()A、动态规划分阶段顺序不同,则结果不同B、状态对决策有影响C、动态规划中,定义状态时应保证在各个阶段中所做决策的相对独立性D、动态规划的求解过程都可以用列表形式实现10:若 P为网络 G 的一条流量增广链,则 P中所有逆向弧都为 G 的()A .非零流弧B .饱和边C .零流弧D .不饱和边 残骛楼諍锩瀨濟溆塹籟。

运筹学2024学年期末考试题A卷及答案

运筹学2024学年期末考试题A卷及答案

运筹学2024学年期末考试题A卷及答案一、选择题(每题5分,共25分)1. 运筹学的主要研究方法是()A. 定性分析B. 定量分析C. 定性分析与定量分析相结合D. 案例分析答案:C2. 下列哪个不是运筹学的基本分支?()A. 线性规划B. 非线性规划C. 动态规划D. 英语翻译答案:D3. 在线性规划问题中,约束条件是()A. 等式约束B. 不等式约束C. 等式与不等式约束D. 以上都对答案:D4. 下列哪个算法适用于解决非线性规划问题?()A. 单纯形法B. 拉格朗日乘数法C. 牛顿法D. 二分法答案:C5. 在库存管理中,EOQ模型适用于()A. 确定性库存系统B. 随机库存系统C. 连续库存系统D. 离散库存系统答案:A二、填空题(每题5分,共25分)6. 运筹学起源于__________战争期间。

答案:第二次世界大战7. 线性规划问题的标准形式是:max(或min)__________,s.t.__________。

答案:目标函数;约束条件8. 在非线性规划问题中,若目标函数和约束条件均为凸函数,则该问题为__________规划问题。

答案:凸规划9. 库存管理中的ABC分类法是根据__________、__________和__________三个指标进行的。

答案:重要性、价值、需求量10. 在排队论中,顾客到达和服务时间的分布通常假设为__________分布。

答案:负指数分布三、计算题(每题15分,共60分)11. 某工厂生产A、B两种产品,生产一个A产品需要2个工时和3个原材料,生产一个B产品需要1个工时和2个原材料。

工厂每周可利用的工时为120小时,原材料为150个。

A产品的利润为30元,B产品的利润为20元。

请制定生产计划,以使工厂获得最大利润。

答案:生产A产品20个,B产品50个,最大利润为1300元。

12. 某公司有两种投资方案:方案一需投资100万元,年收益率为10%;方案二需投资150万元,年收益率为12%。

运筹学期末复习题

运筹学期末复习题

《运筹学》期末考试试卷(A)学院班级学号一、填空题以下是关于目标函数求最大值的单纯行表的一些结论,请根据所表述的意思判断解的情况:1.所有的检验数非正,这时的解是。

2.有一个正检验数所对应的列系数均非正,这时线性规划的解。

3.非基变量检验数中有一个为零时,线性规划的解。

4.在两阶段法中,如果第一阶段的最优表中的基变量中有人工变量,则该线性规划。

6.基变量取值为负时的解为。

7.最优表中的非基变量检验数的相反数就是。

8.已知一个线性规划两个最优解是:(3,2),和(5,9),请写出其他解:9.线性规划的解有唯一最优解、无穷多最优解、无界解和无可行解四种。

10.在求运费最少的调度运输问题中,如果某一非基变量的检验数为4,则说明如果在该空格中增加一个运量运费将增加4。

11.“如果线性规划的原问题存在可行解,则其对偶问题一定存在可行解”,这句话对还是错? 错 12.如果某一整数规划:MaxZ=X 1+X 2X 1+9/14X 2≤51/14 -2X 1+X 2≤1/3 X 1,X 2≥0且均为整数所对应的线性规划(松弛问题)的最优解为X 1=3/2,X 2=10/3,MaxZ=6/29,我们现在要对X 1进行分枝,应该分为 X1≤1 和 X1≥2 。

13.在用逆向解法求动态规划时,f k (s k )的含义是: 从第k 个阶段到第n 个阶段的最优解。

14. 假设某线性规划的可行解的集合为D ,而其所对应的整数规划的可行解集合为B ,那么D 和B 的关系为 D 包含 B15. 已知下表是制订生产计划问题的一LP 最优单纯形表(极大化问题,约束条件均为“≤”型不等式)其中X3,X4,X5为松驰变量。

问:(1)写出B -1=⎪⎪⎪⎭⎫ ⎝⎛---1003/20.3/1312(2)对偶问题的最优解:Y =(5,0,23,0,0)T16. 线性规划问题如果有无穷多最优解,则单纯形计算表的终表中必然有___某一个非基变量的检验数为0______;17. 极大化的线性规划问题为无界解时,则对偶问题_ 无解_____;18. 若整数规划的松驰问题的最优解不符合整数要求,假设X i =b i 不符合整数要求,INT (b i )是不超过b i 的最大整数,则构造两个约束条件:Xi ≥INT (b i )+1和 Xi ≤INT (b i ),分别将其并入上述松驰问题中,形成两个分支,即两个后继问题。

运筹学试卷及答案

运筹学试卷及答案

……学院2009—2010学年第二学期09行政管理专业<<运筹学>>期末考试试卷(A)一、不定项选择题(每小题2分共20分)1、配送是一种先进的物资管理模式,其本质是()A、存储集中化B、存储分散化C、运输时间最短D、运送效率最低2、对系统因环境变化显示出来的敏感程度进行分析是()A、变化性分析B、灵敏度分析C、时间序列分析D、线性规划3、物流中心选址主要考虑的因素有()A、供货点到物流中心的费用B、物流中心到用户的费用C、各物流中心的容量限制D、物流中心的个数限制4、下面对AHP评价正确的是()A、本质上是一种思维方式B、是一种定性与定量相结合的的方法C、标度方法及一致性判断具有认知基础D、不是一种定性与定量相结合的的方法5、任意一个顾客的服务时间都是固定的常数B,此时服务时间的分布函数是()A、负指数分布B、正指数分布C、爱尔朗分布D、定长分布6、下列指标是评价一家图书馆的输出指标的是()A、书库面积B、工作人员数量C、图书借出数D、所在地人口7、单纯形算法的一个重要前提是()A、未知数个数不能超过3个B、线性规划问题必须是标准形式C、线性规划问题必须是非标准形式D、线性规划问题可以是标准形式或非标准形式8、运用分析中常用的数学方法有()A、线性规划B、动态规划C、最优控制D、非线性规划9、混沌的主要特征有()A、内随机性B、整体稳定性C、具有分形特征D、整体不稳定性10、运筹学的正确发展之路有()A、理念更新B、以实践为本C、学科交融D、以抽象的理论为主,主要用于高深的理论研究二、名词解释(每小题4分,共20分)1、运筹学2、线性规划3、经典型聚类4、系统的综合性原则5、TSP问题三、简答题(每小题7分,共28分)1、列出一些企业产品结构优化的柔性模型约束条件。

2、排队规则3、运筹学的特点。

4、神经元的功能四、应用题。

(第1题6分,第2题10分,第3题8分,第四题8分)1、货物从仓库送到销售点1、2、3、4、5。

《管理运筹学》考试试卷A,B卷及答案

《管理运筹学》考试试卷A,B卷及答案

《管理运筹学》考试试卷A,B卷及答案一、选择题(每题2分,共20分)1. 运筹学的英文全称是:A. Operation ResearchB. Operation ManagementC. Operational ResearchD. Operations Management2. 线性规划问题的标准形式中,目标函数是:A. 最大化B. 最小化C. 既可以是最大化也可以是最小化D. 无法确定3. 在线性规划中,约束条件可以用以下哪个符号表示?A. ≤B. ≥C. =D. A、B、C都对4. 简单线性规划问题中,如果一个变量在任何解中都不为零,则称这个变量为:A. 基变量B. 非基变量C. 独立变量D. 依赖变量5. 以下哪个方法可以用来求解线性规划问题?A. 单纯形法B. 拉格朗日乘数法C. 对偶理论D. A、B、C都可以二、填空题(每题3分,共15分)6. 在线性规划中,如果一个约束条件的形式为“≥”,则称这个约束为______约束。

7. 在线性规划问题中,若决策变量为非负整数,则该问题为______规划问题。

8. 在目标规划中,目标函数通常表示为______。

9. 在运输问题中,如果产地和销地的数量相等,则称为______。

10. 在排队论中,顾客到达的平均速率通常表示为______。

三、计算题(每题10分,共30分)11. 某工厂生产甲、乙两种产品,甲产品每件利润为200元,乙产品每件利润为150元。

工厂每月最多生产甲产品100件,乙产品150件。

同时,生产甲产品每件需要3小时,乙产品每件需要2小时,工厂每月最多可利用工时为300小时。

试建立该问题的线性规划模型,并求解。

12. 某公司有三个工厂生产同一种产品,分别供应给四个销售点。

各工厂的产量和各销售点的需求量如下表所示。

求最优的运输方案,并计算最小运输成本。

工厂\销售点 A B C D产量 20 30 50需求量 10 20 30 4013. 设某商店有三个售货员,负责四个收款台。

《管理运筹学》考试试卷A,B卷

《管理运筹学》考试试卷A,B卷

《管理运筹学》考试试卷(A)一、(20分)下述线性规划问题Max z=-5x1+5x2+13x3ST-x1+x2+3x3 w 20 ——12x1+4x2+10x3 w 90 ②一x1,x2,x3 > 0先用单纯形法求出最优解,然后分析在下列条件下,最优解分别有什么变化?(1 )约束条件①的右端常数由20变为30 ;(2 )约束条件②的右端常数由90变为70 ;(3 )目标函数中的x3的系数由13变为8 ;(4 )增加一个约束条件③2x1+3x2+5x3 w 50(5 )将原有约束条件②变为10x1+5x2+10x3 w 100二、(10分)已知线性规划问题Max z= 2x1+x2+5x3+6x4 对偶变量2x1 +x3+x4 w 8 y12x1+2x2+x3+2x4 w 12 y2x1,x2,x3,x4 > 0其对偶问题的最优解为y1*=4 , y2*=1 ,试用对偶问题的性质,求原问题的最优解。

三、(10分)某地区有三个化肥厂,除供应外地区需要外,估计每年可供应本地区的数字为:化肥厂A ―― 7万吨,B ―― 8万吨,C ―― 3万吨。

有四个产粮区需要该种化肥,需要量为:甲地区一一6万吨,乙地区一一6万吨,丙地区一一3万吨,丁地区一一3万吨。

已知从各化肥厂到各产粮区的每吨化肥的运价如下表所示(单位:元/吨):根据上述资料指定一个使总的运费最小的化肥调拨方案。

四、(10分)需要分配5人去做5项工作,每人做各项工作的能力评分见下表。

应如何分派,才能使总的得分最大?五、(10分)用动态规划方法求解:Max F=4x 1 2 -x 2 2 +2x 3 2 +123x 1 +2x 2 +x 3 =9x1,x2,x3 > 0六、(10分)公司决定使用1000万元开发A、B、C三种产品,。

经预测估计开发上述三种产品的投资利润率分别为5% , 7% , 10% 。

由于新产品开发有一定风险,公司研究后确定了下列优先顺序目标:第一,A产品至少投资300万元;第二,为分散投资风险,任何一种新产品的开发投资不超过投资总额的35% ;第三,应至少留有10%的投资总额,以备急用;第四,使总的投资利润最大。

运筹学考试题a卷及答案

运筹学期末考试题(a 卷)注意事项:1、答题前,考生务必将自己的姓名、班级填写在答题卡上。

2、答案用钢笔或圆珠笔写在答题卡上,答在试卷上不给分。

3、考试结束,将试卷和答题卡一并交回。

一、 单项选择题(每小题1分,共10分)1:在下面的数学模型中,属于线性规划模型的为( ) ⎪⎩⎪⎨⎧≥≤+=0Y ,X 3XY .t .s Y X 4S max .A ⎪⎩⎪⎨⎧≥-≥-+=0Y ,X 1Y X 2.t .s Y X 3S min .B ⎪⎩⎪⎨⎧≥≤-+=0Y ,X 2Y X .t .s Y X S max .C 22 ⎪⎩⎪⎨⎧≥≥+=0Y ,X 3Y X .t .s XY2S min.D 2.线性规划问题若有最优解,则一定可以在可行域的 ( )上达到。

A .内点 B .顶点 C .外点 D .几何点 3:在线性规划模型中,没有非负约束的变量称为 ( )A .多余变量B .松弛变量 C.自由变量 D .人工变量4:若线性规划问题的最优解同时在可行解域的两个顶点处达到,那么该线性规划问题最优解为( )A.两个B.零个C.无穷多个D.有限多个 5:原问题与对偶问题的最优( )相同。

A .解B .目标值C . 解结构D .解的分量个数 6:若原问题中i x 为自由变量,那么对偶问题中的第i 个约束一定为 ( )A .等式约束B .“≤”型约束C .“≥”约束D .无法确定7:若运输问题已求得最优解,此时所求出的检验数一定是全部( ) A .小于或等于零 B .大于零 C .小于零 D .大于或等于零 8:对于m 个发点、n 个收点的运输问题,叙述错误的是( ) A .该问题的系数矩阵有m ×n 列 B .该问题的系数矩阵有m+n 行 C .该问题的系数矩阵的秩必为m+n-1 D .该问题的最优解必唯一 9:关于动态规划问题的下列命题中错误的是( ) A 、动态规划分阶段顺序不同,则结果不同 B 、状态对决策有影响C 、动态规划中,定义状态时应保证在各个阶段中所做决策的相对独立性D 、动态规划的求解过程都可以用列表形式实现10:若P 为网络G 的一条流量增广链,则P 中所有正向弧都为G 的( ) A .对边 B .饱和边 C .邻边 D .不饱和边 二、 判断题(每小题1分,共10分)1:图解法和单纯形法虽然求解的形式不同,但从几何上理解,两者是一致的。

《运筹学》期末考试试卷A-答案

《运筹学》期末考试试卷A-答案一、选择题(每题5分,共25分)1. 运筹学是一门研究在复杂系统中进行决策的科学,以下哪个选项不属于运筹学的研究内容?A. 优化问题B. 随机过程C. 系统建模D. 心理咨询答案:D2. 在线性规划中,若一个线性规划问题的可行域是空集,则该问题称为:A. 无界问题B. 无解问题C. 无可行解问题D. 有解问题答案:C3. 线性规划问题中,目标函数和约束条件均为线性函数的是:A. 线性规划B. 非线性规划C. 动态规划D. 随机规划答案:A4. 在整数规划中,若决策变量只能取整数值,则该问题称为:A. 线性规划B. 整数规划C. 非线性规划D. 动态规划答案:B5. 在排队论中,以下哪个因素对服务效率影响最大?A. 服务速率B. 到达率C. 排队长度D. 服务时间答案:A二、填空题(每题5分,共25分)1. 运筹学的基本方法是________、________和________。

答案:模型化、最优化、计算机模拟2. 线性规划的标准形式包括________、________和________。

答案:目标函数、约束条件、非负约束3. 在非线性规划中,目标函数和约束条件至少有一个是________函数。

答案:非线性4. 动态规划适用于解决________决策问题。

答案:多阶段5. 排队论中的基本参数包括________、________和________。

答案:到达率、服务率、服务台数量三、简答题(每题10分,共30分)1. 请简要介绍线性规划的基本概念。

答案:线性规划是运筹学的一个基本分支,主要研究在一定的线性约束条件下,如何求解目标函数的最大值或最小值问题。

线性规划问题通常包括目标函数、约束条件和非负约束。

目标函数是决策者要优化的目标,约束条件是决策者需要满足的条件,非负约束要求决策变量取非负值。

2. 请简要阐述整数规划的特点。

答案:整数规划是线性规划的一种特殊情况,要求决策变量取整数值。

运筹学期末试卷A卷答案-01-23

运筹学期末试卷(A 卷)系别: 工商管理学院 专业: 工商管理 考试日期:年月日姓名:学号:成 绩: 1.[12分]某公司正在制造两种产品:产品I 和产品II,每天的产量分别为30个和120个,利润分别为500元/个和400元/个.公司负责制造的副总经理希望了解是否可以通过改变这种产品的数量而提高公司的利润.公司各个车间的加工能力和制造单位产品所需的加工工时如下表:(1) 假设生产的全部产品都能销售出去,试建立使公司获利最大的生产计划模型.(2) 用图解法求出最优解。

P25 No72.[12分] 某超市实行24小时营业,各班次所需服务员和管理人员如下:何安排使得超市用人总数最少?(1) 建立线性规划模型(只建模不求具体解); (2) 写出基于Lindo 软件的源程序(代码)。

3.[10分]设xA ,xB 分别代表购买股票A 和股票B 的数量,f 代表投资风险指数,建立线性规划模型如下: 目标函数:Min f=8x A +3x B约束条件:投资总额120万元 投资回报至少6万501001200000A B x x +≤100300000B x ≥5460000A B x x +≥股票B 投资不少于30万元利用教材附带软件进行求解,结果如下:**********************最优解如下*************************目标函数最优值为 : 62000变量 最优解 相差值—-————— ———--—-— —-——---— x1 4000 0 x2 10000 0约束 松弛/剩余变量 对偶价格———--—- —---—---—-——— -—-————- 1 0 .057 2 0 —2.167 3 700000 0 目标函数系数范围 :变量 下限 当前值 上限——--—-- ——--—--— ——-—--—- --——---—x1 3.75 8 无上限 x2 无下限 3 6.4 常数项数范围 :约束 下限 当前值 上限-—-——-- --—-——-- ——-——-—- --—----—1 780000 1200000 15000002 48000 60000 1020003 无下限 300000 1000000试回答下列问题:(1) 在这个最优解中,购买股票A 和股票B 的数量各为多少?这时投资风险是多少?(2) 上述求解结果中松弛/剩余变量的含义是什么?(3) 当目标函数系数在什么范围内变化时,最优购买计划不变?(4) 请对右端常数项范围的上、下限给予具体解释,应如何应用这些数据?(5) 当每单位股票A 的风险指数从8降为6,而每单位股票B 的风险指数从3升为5时,用百分一百法则能否断定其最优解是否发生变化?为什么? 4.[6分]设有矩阵对策},,{21A S S G =,其中,{}112345,,,,S ααααα=,{}212345,,,,S βββββ=2343564132421457346454126A --⎛⎫ ⎪- ⎪ ⎪=-- ⎪-- ⎪ ⎪⎝⎭求矩阵对策的最优纯策略(要求图示).W5.[6分]某建筑工地每月需求水泥1200吨,每吨定价为1500元,不允许缺货.设每吨的年存储费为定价的2%,每次订货费为1800元,每年的工作日为365天,请求出:(1)经济订货批量;(2)每年的订货次数及两次订货之间的间隔。

运筹学试卷及答案

1、解:
加入人工变量,化问题为标准型式如下:
(3分)
下面用单纯形表进行计算得终表为:
3
3
0
0
0

0
1
0
2/3
1
0
—1/6
0
5
0
4/3
0
1
1/6
3
3
1
1/3
0
0
1/6
0
0
0
0
-1/2
(5分)
所以原最优解为(2分)
(1)设变化,将得变化带入最终单纯形表得的变化范围为;(5分)
(2)若右边常数向量变为,将变化带入最终单纯形表得:最优基解不变,最优解的值由(3,0)T变为(10/3,0)T。(5分)
1.5-4M
M
M
0
0
0
1
1/3
1
—1/3
0
1/3
0
0
1
2/3
0
1/3
—1
-1/3
1
0。5—2M/3
0
0。5-M/3
M
4M/3—0。5
0
0
1/2
0
1
—1/2
1/2
1/2
—1/2
3
3/2
1
0
1/2
-3/2
-1/2
3/2
0
0
1/4
3/4
M-1/4
M-3/4
由于所有系数都为正,所以此为最优解,
最优目标函数值为:。
4、若线性规划的原问题有无穷多最优解,则其最偶问题也一定具有无穷多最优解。
()
5、运输问题是一种特殊的线性规划模型,因而求解结果也可能出现下列四种情况之一:有惟一最优解,有无穷多最优解,无界解,无可行解。()
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

福建农林大学考试试卷 ( A )卷
学年 第 学期
课程名称: 运 筹 学 考试时间 分钟
专业 年级 班 学号 姓名
一、填空题(每空 分,共 分)
ax d d g -
+
+-=,求ax 最大的目标函数为min()d d -+
-。

增广链上的调整量 大于 零。

用 算法求解最短路问题时,距离矩阵的元素必须满足 非负要求 。

线性规划的退化基本解的非零分量 至多 个。

树是 无圈 的连通图。

二、单项选择题(选择正确答案的字母填入空格,每小题 分,共 分)
线性规划的基本解中,非基变量取 值。

.零 .非零 .非负 .非正 增广链是在 下定义的。

.零流 .可行流 .不可行流 .非零流
在约束为0,0≥≥X b AX =的线性规划中 (),ij m n A A a r m ⨯==,则基的最小数目为 。

.m
n C . . .
互为对偶的两个线性规划问题,如果其中一个无有限最优解,则另外一个 。

.无可行解 .有可行解
.有最优解 .无有限最优解 如果目标规划问题( )没有满意解,则 。

.( )无可行解 .( )有可行解 .( )有无穷多最优解 .( )可能有可行解
四、问答题(每小题 分,共 分)
⑴建立初始规范型(检验数非正,有负的限定常数),转⑵。

⑵解的检验:出现无可行解特征,停止;限定常数非负,转单纯型法;其他转⑶。

⑶进行基变换,转⑵。

最大流算法中流量调整量的确定。

设f 为可行流,在 下进行标号,如果无法给 标上号,f 为最大流,无需确定流量调整量,否则()t l v θ=。

网络计划中时差的计算。

五、(第一小题 分,第二小题 分,第三小题 分,共 分) 对)(P :要求: )(D ;
用单纯形法或对偶单纯形法确定)(P 或)(D 的最优解;
从)(P 或)(D 的最终表出发,据对偶理论直接确定)(D 或)(P 的解。

)(P :12
12212
max 210
..15,0z x x x x s t x x x =++≤⎧⎪≤⎨⎪≥⎩
解: )(D :
12
11212
min 10152..1,0w y y y s t y y y y =+≥⎧⎪+≥⎨⎪≥⎩
(P的最优解;
选择⑴用单纯形法或确定)
**(10,0,0,15),20T x z ==。

**20w =
六、对图 ,求网络图的最大流。

(共 分)
解:⑴ 取{}()0
0,0f v f
==,用标号法确定0
μ如图 所示 由图 知, {}001
000113
30,,,()6,()()6s t t
a a a l v v f v f μμθθ+=====+=,1
f 见图 。

⑵用标号法确定1μ如图 所示 由图 知, {}112
111221,,()4,()
()10s t t a a l v v f v f μμθθ+=====+=,2f 见图 。

⑶用标号法确定2μ
如图 所示 由图 知, 2μ不存在,故*2
f f =。

七、对表 ,用动态规划方法确定最优策略(共 分)
*1,3(2){,,}p K K K = 1(3)25f =
八、( 分)表 是某厂原材料和产品规格的基础数据,要求建立一个线性规划模
型,以确定净收入最大的产品方案。

(不求解)

模型略,具体可参考 例 。

九、视图 的问题中*
ij ij c f 为 的长度,要求用 算法确定 到 的最短路。

(共 分)
最短路线2s t v v v →→,最短路长 。

s t
2
资限额为 万元;
项目 ,第 年年末可以投资,并于第 年年末收回本利 %;
项目 ,从第 年年末可以投资,并于第 年年末收回本利 %;
项目 , 年内每年年初可以购买公债,并于当年年末收回本利 %。

该部门拟在第 年年初投入资金 万元,在第 年年初再投入资金 万元(不含已收回的本利),第 年年末提走资金 万元,收回的本利可以用于再投资。

请建立一个线性规划模型,以确定第 年年末回收的本利最大的投资方案。

(不求解)。

相关文档
最新文档