2019年中考数学一轮复习第三章函数第1节平面直角坐标系及函数练习
第三章函数(测试)(原卷版)-2025年中考数学一轮复习讲练测(全国通用)

第三章函数(考试时间:100分钟试卷满分:120分)一.选择题(共10小题,满分30分,每小题3分)1.如图,△OAB的顶点O(0,0),顶点A,B分别在第一、四象限,且AB⊥x轴,若AB=6,OA=OB=5,则点A的坐标是()A.(5,4)B.(3,4)C.(5,3)D.(4,3)【新考法】从图象中获取信息2.甲、乙两位同学放学后走路回家,他们走过的路程s(千米)与所用的时间t(分钟)之间的函数关系如图所示.根据图中信息,下列说法错误的是()A.前10分钟,甲比乙的速度慢B.经过20分钟,甲、乙都走了1.6千米C.甲的平均速度为0.08千米/分钟D.经过30分钟,甲比乙走过的路程少3.在函数y=√x+3中,自变量x的取值范围是()xA.x≥3B.x≥﹣3C.x≥3且x≠0D.x≥﹣3且x≠04.如图,四边形ABCD是边长为2cm的正方形,点E,点F分别为边AD,CD中点,点O为正方形的中心,连接OE,OF,点P从点E出发沿E−O−F运动,同时点Q从点B出发沿BC运动,两点运动速度均为1cm/s ,当点P 运动到点F 时,两点同时停止运动,设运动时间为ts ,连接BP,PQ ,△BPQ 的面积为Scm 2,下列图像能正确反映出S 与t 的函数关系的是( )A .B .C .D .5.【创新题】直线y =x +a 不经过第二象限,则关于x 的方程ax 2+2x +1=0实数解的个数是( ).A .0个B .1个C .2个D .1个或2个6.在同一平面直角坐标系中,一次函数y =ax +b 与y =mx +n(a <m <0)的图象如图所示,小星根据图象得到如下结论:⊥在一次函数y =mx +n 的图象中,y 的值随着x 值的增大而增大;⊥方程组{y −ax =b y −mx =n的解为{x =−3y =2; ⊥方程mx +n =0的解为x =2;⊥当x =0时,ax +b =−1.其中结论正确的个数是( )A .1B .2C .3D .4【新考法】 反比例函数与几何综合的图像过点C,则k的值为()A.4B.﹣4C.﹣3D.3(x>0)的图像上,以OA为一边作等腰直角三角形OAB,其中8.【创新题】如图,点A在反比例函数y=2x⊥OAB=90°,AO=AB,则线段OB长的最小值是()A.1B.√2C.2√2D.49.二次函数y=ax2+bx+1的图象与一次函数y=2ax+b在同一平面直角坐标系中的图象可能是()A.B.C.D.10.已知抛物线y=ax2+bx+c(a,b,c是常数,0<a<c)经过点(1,0),有下列结论:⊥2a +b <0;⊥当x >1时,y 随x 的增大而增大;⊥关于x 的方程ax 2+bx +(b +c)=0有两个不相等的实数根.其中,正确结论的个数是( )A .0B .1C .2D .3二.填空题(共6小题,满分18分,每小题3分)11.如图,点A 的坐标为(1,3),点B 在x 轴上,把ΔOAB 沿x 轴向右平移到ΔECD ,若四边形ABDC 的面积为9,则点C 的坐标为 .12.某食品零售店新上架一款冷饮产品,每个成本为8元,在销售过程中,每天的销售量y (个)与销售价格x (元/个)的关系如图所示,当10≤x ≤20时,其图象是线段AB ,则该食品零售店每天销售这款冷饮产品的最大利润为 元(利润=总销售额-总成本).13.【原创题】把二次函数y =x 2+4x +m 的图像向上平移1个单位长度,再向右平移3个单位长度,如果平移后所得抛物线与坐标轴有且只有一个公共点,那么m 应满足条件: .14.若点A(1,y 1),B(−2,y 2),C(−3,y 3)都在反比例函数y =6x 的图象上,则y 1,y 2,y 3的大小关系为 .15.已知一次函数y =3x -1与y =kx (k 是常数,k ≠0)的图象的交点坐标是(1,2),则方程组{3x −y =1kx −y =0的解是 .【新考法】 二次函数与几何综合16.在平面直角坐标系xOy 中,一个图形上的点都在一边平行于x 轴的矩形内部(包括边界),这些矩形中面积最小的矩形称为该图形的关联矩形.例如:如图,函数y=(x−2)2(0≤x≤3)的图象(抛物线中的是矩形OABC,则b=.三.解答题(共9小题,满分72分,其中17、18、19题每题6分,20题、21题每题7分,22题8分,23题9分,24题10分,25题13分)17.某燃气公司计划在地下修建一个容积为V(V为定值,单位:m3)的圆柱形天然气储存室,储存室的底面积S(单位:m2)与其深度d(单位:m)是反比例函数关系,它的图象如图所示.(1)求储存室的容积V的值;(2)受地形条件限制,储存室的深度d需要满足16≤d≤25,求储存室的底面积S的取值范围.(m≠0,x>0)的图像交于点A(2,n),与18.如图,一次函数y=kx+2(k≠0)的图像与反比例函数y=mxy轴交于点B,与x轴交于点C(−4,0).(1)直接写出y与x的函数关系式;(2)若每天销售所得利润为1200元,那么销售单价应定为多少元?(3)当销售单价为多少元时,每天获利最大?最大利润是多少元?21.如图,隧道的截面由抛物线DEC和矩形ABCD构成,矩形的长AB为4m,宽BC为3m,以DC所在的直线为x轴,线段CD的中垂线为y轴,建立平面直角坐标系.y轴是抛物线的对称轴,最高点E到地面距离为4米.(1)求出抛物线的解析式.(2)在距离地面134米高处,隧道的宽度是多少?(3)如果该隧道内设单行道(只能朝一个方向行驶),现有一辆货运卡车高3.6米,宽2.4米,这辆货运卡车能否通过该隧道?通过计算说明你的结论.22.【创新题】已知函数y=−x2+bx+c(b,c为常数)的图象经过点(0,﹣3),(﹣6,﹣3).(1)求b,c的值.(2)当﹣4≤x≤0时,求y的最大值.(3)当m≤x≤0时,若y的最大值与最小值之和为2,求m的值.23.如图,点A(a,2)在反比例函数y=4x 的图象上,AB//x轴,且交y轴于点C,交反比例函数y=kx于点B,已知AC=2BC.(1)求直线OA的解析式;(2)求反比例函数y=kx的解析式;(3)点D为反比例函数y=kx上一动点,连接AD交y轴于点E,当E为AD中点时,求△OAD的面积.24.已知二次函数y=ax2+bx+c的图象过点(−1,0),且对任意实数x,都有4x−12≤ax2+bx+c≤2x2−8x+6.(1)求该二次函数的解析式;(2)若(1)中二次函数图象与x轴的正半轴交点为A,与y轴交点为C;点M是(1)中二次函数图象上的动点.问在x轴上是否存在点N,使得以A、C、M、N为顶点的四边形是平行四边形.若存在,求出所有满足条件的点N的坐标;若不存在,请说明理由.25.如图(1),二次函数y=−x2+bx+c的图像与x轴交于A、B两点,与y轴交于C点,点B的坐标为(3,0),点C的坐标为(0,3),直线l经过B、C两点.(1)求该二次函数的表达式及其图像的顶点坐标;(2)点P为直线l上的一点,过点P作x轴的垂线与该二次函数的图像相交于点M,再过点M作y轴的垂线与该MN时,求点P的横坐标;二次函数的图像相交于另一点N,当PM=12(3)如图(2),点C关于x轴的对称点为点D,点P为线段BC上的一个动点,连接AP,点Q为线段AP上一点,且AQ=3PQ,连接DQ,当3AP+4DQ的值最小时,直接写出DQ的长.。
专题13 平面直角坐标系与函数基础知识(必刷题)-2019年中考数学必备之考点精讲与真题演练(解析版

考点13 平面直角坐标系与函数基础知识【真题精炼】1. (2018广西贵港,5,3分)若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则m+n的值是()A.﹣5 B.﹣3 C.3 D.1【答案】D【点睛】本题主要考查关于x、y轴对称的点的坐标,解题的关键是掌握两点关于y轴对称,纵坐标不变,横坐标互为相反数.2.(2018江苏扬州)在平面直角坐标系的第二象限内有一点M,点M到x轴的距离为3,到y轴的距离为4,则点M的坐标是()A.(3,﹣4)B.(4,﹣3)C.(﹣4,3)D.(﹣3,4)【答案】C【解析】解:由题意,得x=﹣4,y=3,即M点的坐标是(﹣4,3),故选:C.【点睛】本题考查了点的坐标,熟记点的坐标特征是解题关键.3.(2018广东广州)在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m.其行走路线如图所示,第1次移动到A1,第2次移动到A2,…,第n次移动到A n.则△OA2A2018的面积是()A.504m2B.m2C.m2D.1009m2【答案】A【点睛】本题主要考查点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半,据此可得.4.(2018北京)如图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣11,﹣5)时,表示左安门的点的坐标为(11,﹣11);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5).上述结论中,所有正确结论的序号是()A.①②③B.②③④C.①④D.①②③④【答案】D④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5),此结论正确.故选:D.【点睛】本题主要考查坐标确定位置,解题的关键是确定原点位置及各点的横纵坐标.5.(2018浙江金华)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A.(5,30)B.(8,10)C.(9,10)D.(10,10)【答案】C【点睛】此题考查了坐标确定位置,根据题意确定出CD=9,AD=10是解本题的关键.6.(2018辽宁大连)在平面直角坐标系中,点(﹣3,2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】解:点(﹣3,2)所在的象限在第二象限.故选B.【点睛】此题主要考查了点的坐标,正确记忆各象限内点的坐标符号是解题关键.7.下列函数中,自变量x的取值范围为x>1的是()A.B.C.D.y=(x﹣1)0【答案】B【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.8.(2018湖北荆门)在函数y中,自变量x的取值范围是()A.x≥1B.x>1 C.x<1 D.x≤1【答案】B【解析】解:根据题意得x﹣1≥0,1﹣x≠0,解得x>1.故选:B.【点睛】本题主要考查了函数自变量的取值范围的确定,根据分母不等于0,被开方数大于等于0列式计算即可,是基础题,比较简单.9.(2018湖北黄冈)函数y中自变量x的取值范围是()A.x≥﹣1且x≠1B.x≥﹣1 C.x≠1D.﹣1≤x<1【答案】A【解析】解:根据题意得到:,解得x≥﹣1且x≠1,故选:A.【点睛】本题考查了函数自变量的取值范围问题,判断一个式子是否有意义,应考虑分母上若有字母,字母的取值不能使分母为零,二次根号下字母的取值应使被开方数为非负数.易错易混点:学生易对二次根式的非负性和分母不等于0混淆.10.(2018青海)函数中自变量x的取值范围是()A.x≥﹣2 B.x≥﹣2且x≠1C.x≠1D.x≥﹣2或x≠1【答案】B【点睛】考查了函数自变量的取值范围,注意函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.11.(2018重庆B)根据如图所示的程序计算函数y的值,若输入的x值是4或7时,输出的y值相等,则b等于()A.9 B.7 C.﹣9 D.﹣7【答案】C【解析】解:∵当x=7时,y=6﹣7=﹣1,∴当x=4时,y=2×4+b=﹣1,解得:b=﹣9,故选:C.学科&网【点睛】本题主要考查函数值,解题的关键是掌握函数值的计算方法.12.(2018青海)均匀地向一个容器注水,最后将容器注满.在注水过程中,水的高度h随时间t的变化规律如图所示,这个容器的形状可能是()A.B.C.D.【答案】D【点睛】本题考查利用函数的图象解决实际问题,正确理解函数的图象所表示的意义是解题的关键,注意容器粗细和水面高度变化的关系.13.(2018内蒙古赤峰)有一天,兔子和乌龟赛跑.比赛开始后,兔子飞快地奔跑,乌龟缓慢的爬行.不一会儿,乌龟就被远远的甩在了后面.兔子想:“这比赛也太轻松了,不如先睡一会儿.”而乌龟一刻不停地继续爬行.当兔子醒来跑到终点时,发现乌龟已经到达了终点.正确反映这则寓言故事的大致图象是()A.B.C.D.【答案】D【解析】解:乌龟运动的图象是一条直线,兔子运动的图象路程先增大,而后不变,再增大,并且乌龟所用时间最短,故选:D.【点睛】此题考查函数图象问题,本题需先读懂题意,根据实际情况找出正确函数图象即可.14.(2018江苏镇江)甲、乙两地相距80km,一辆汽车上午9:00从甲地出发驶往乙地,匀速行驶了一半的路程后将速度提高了20km/h,并继续匀速行驶至乙地,汽车行驶的路程y(km)与时间x(h)之间的函数关系如图所示,该车到达乙地的时间是当天上午()A.10:35 B.10:40 C.10:45 D.10:50【答案】B【点睛】此题主要考查了函数的图象值,根据速度之间的关系和函数图象解答是解题关键.15.(2018宁夏)如图,一个长方体铁块放置在圆柱形水槽容器内,向容器内按一定的速度均匀注水,60秒后将容器内注满.容器内水面的高度h(cm)与注水时间t(s)之间的函数关系图象大致是()A.B.C.D.【答案】D【解析】解:根据题意可知,刚开始时由于实心长方体在水槽里,长方体底面积减小,水面上升的速度较快,水淹没实心长方体后一直到水注满,底面积是圆柱体的底面积,水面上升的速度较慢,故选:D.【点睛】此题考查函数的图象问题,关键是根据容器内水面的高度h(cm)与注水时间t(s)之间的函数关系分析.16.(2018黑龙江齐齐哈尔)如图是自动测温仪记录的图象,它反映了齐齐哈尔市的春季某天气温T如何随时间t的变化而变化,下列从图象中得到的信息正确的是()A.0点时气温达到最低B.最低气温是零下4℃C.0点到14点之间气温持续上升D.最高气温是8℃【答案】D【解析】解:A、由函数图象知4时气温达到最低,此选项错误;B、最低气温是零下3℃,此选项错误;C、4点到14点之间气温持续上升,此选项错误;D、最高气温是8℃,此选项正确;故选:D.【点睛】本题考查了函数图象,由纵坐标看出气温,横坐标看出时间是解题关键.17.(2018内蒙古通辽)小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时间后到达学校,小刚从家到学校行驶路程s(单位:m)与时间t(单位:min)之间函数关系的大致图象是()A.B.C.D.【答案】B【点睛】此题考查了函数的图象,由图象理解对应函数关系及其实际意义是解本题的关键.18.(2018湖北随州)“龟兔赛跑”这则寓言故事讲述的是比赛中兔子开始领先,但它因为骄傲在途中睡觉,而乌龟一直坚持爬行最终贏得比赛,下列函数图象可以体现这一故事过程的是()A.B.C.D.【答案】B【点睛】本题主要考查函数图象,解题的关键是弄清函数图象中横、纵轴所表示的意义及实际问题中自变量与因变量之间的关系.19.(2018四川达州)如图,在物理课上,老师将挂在弹簧测力计下端的铁块浸没于水中,然后缓慢匀速向上提起,直至铁块完全露出水面一定高度,则下图能反映弹簧测力计的读数y(单位:N)与铁块被提起的高度x(单位:cm)之间的函数关系的大致图象是()A.B.C.D.【答案】D【点睛】本题考查函数图象,解答本题的关键是明确题意,利用数形结合和分类讨论的数学思想解答.20.(2018湖南长沙)小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图反映了这个过程中,小明离家的距离y与时间x之间的对应关系.根据图象,下列说法正确的是()A.小明吃早餐用了25minB.小明读报用了30minC.食堂到图书馆的距离为0.8kmD.小明从图书馆回家的速度为0.8km/min【答案】B【解析】解:小明吃早餐用了(25﹣8)=17min,A错误;小明读报用了(58﹣28)=30min,B正确;食堂到图书馆的距离为(0.8﹣0.6)=0.2km,C错误;小明从图书馆回家的速度为0.8÷10=0.08km/min,D错误;故选:B.学科*网【点睛】本题考查的是函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合题意正确计算是解题的关键.21.(2018山东滨州)如果规定[x]表示不大于x的最大整数,例如[2.3]=2,那么函数y=x﹣[x]的图象为()A.B.C.D.【答案】A【点睛】本题考查函数的图象,解题的关键是正确理解[x]的定义,然后对函数进行化简,本题属于中等题型.22.如图1,在矩形ABCD中,点E在CD上,∠AEB=90°,点P从点A出发,沿A→E→B的路径匀速运动到点B停止,作PQ⊥CD于点Q,设点P运动的路程为x,PQ长为y,若y与x之间的函数关系图象如图2所示,当x=6时,PQ的值是()A.2 B.C.D.1【答案】B【点睛】本题考查的是动点问题函数图象,涉及到解直角三角形或三角形相似,解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.23.如图,在△ABC中,∠C=90°,AC=BC=3cm,动点P从点A出发,以cm/s的速度沿AB方向运动到点B,动点Q同时从点A出发,以1cm/s的速度沿折线AC→CB方向运动到点B.设△APQ的面积为y(cm2),运动时间为x(s),则下列图象能反映y与x之间关系的是()A.B.C.D.【答案】D【点睛】本题主要考查动点问题的函数图象,解题的关键是根据题意弄清两点的运动路线,据此分类讨论并得出函数解析式.24.如图,矩形ABCD中,E是AB的中点,将△BCE沿CE翻折,点B落在点F处,tan∠DCE.设AB=x,△ABF的面积为y,则y与x的函数图象大致为()A.B.C.D.【答案】D【点睛】本题为代数几何综合题,考查了解直角三角形、轴对称图形性质、相似三角形的性质等知识.解答关键是做到数形结合.25.如图,边长为2的正△ABC的边BC在直线l上,两条距离为1的平行直线a和b垂直于直线l,a和b 同时向右移动(a的起始位置在B点),速度均为每秒1个单位,运动时间为t(秒),直到b到达C点停止,在a和b向右移动的过程中,记△ABC夹在a和b之间的部分的面积为s,则s关于t的函数图象大致为()A.B.C.D.【答案】B∴DE(2﹣t),FG(t﹣1),∴s=S△CFG(3﹣t)(3﹣t)3t,综上所述,当0≤t<1时,函数图象为开口向上的抛物线的一部分;当1≤t<2时,函数图象为开口向下的抛物线的一部分;当2≤t≤3时,函数图象为开口向上的抛物线的一部分,故选:B.【点睛】本题主要考查了动点问题的函数图象,函数图象是典型的数形结合,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.26.如图,在▱ABCD中,AB=6,BC=10,AB⊥AC,点P从点B出发沿着B→A→C的路径运动,同时点Q从点A出发沿着A→C→D的路径以相同的速度运动,当点P到达点C时,点Q随之停止运动,设点P运动的路程为x,y=PQ2,下列图象中大致反映y与x之间的函数关系的是()A.B.C.D.【答案】B【点睛】本题考查了动点问题的函数图象以及勾股定理,分0≤x≤6、6≤x≤8及8≤x≤14三种情况找出y关于x的函数关系式是解题的关键.27.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作Rt△ABC,使∠BAC=90°,∠ACB=30°,设点B的横坐标为x,点C的纵坐标为y,能表示y与x的函数关系的图象大致是()A.B.C.D.【答案】C则选项C符合题意.故选:C.【点睛】此题主要考查了动点问题的函数图象,正确利用相似得出函数关系式是解题关键.28.(2018四川广安)已知点P为某个封闭图形边界上一定点,动点M从点P出发,沿其边界顺时针匀速运动一周,设点M的运动时间为x,线段PM的长度为y,表示y与x的函数图象大致如图所示,则该封闭图形可能是()A.B.C.D.【答案】A【点睛】本题考查了动点问题的函数图象:函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.29.(2018新疆乌鲁木齐)如图①,在矩形ABCD中,E是AD上一点,点P从点B沿折线BE﹣ED﹣DC运动到点C时停止;点Q从点B沿BC运动到点C时停止,速度均为每秒1个单位长度.如果点P、Q同时开始运动,设运动时间为t,△BPQ的面积为y,已知y与t的函数图象如图②所示,以下结论:①BC=10;②cos∠ABE;③当0≤t≤10时,y t2;④当t=12时,△BPQ是等腰三角形;⑤当14≤t≤20时,y=110﹣5t,其中正确的有()A.2个B.3个C.4个D.5个【答案】B【点睛】本题为双动点问题,解答时既要注意两个动点相对位置变化又要注意函数图象的变化与动点位置变化之间的关联.30.(2018山东省烟台)如图,矩形ABCD中,AB=8cm,BC=6cm,点P从点A出发,以1cm/s的速度沿A→D→C 方向匀速运动,同时点Q从点A出发,以2cm/s的速度沿A→B→C方向匀速运动,当一个点到达点C时,另一个点也随之停止.设运动时间为t(s),△APQ的面积为S(cm2),下列能大致反映S与t之间函数关系的图象是()A.B.C.D.【答案】A【解析】解:由题意得:AP=t,AQ=2t,S△APQ AP•AB4t,故选项B不正确;故选:A.【点睛】本题考查了动点问题的函数图象,根据动点P和Q的位置的不同确定三角形面积的不同,解决本题的关键是利用分类讨论的思想求出S与t的函数关系式.31.(2018安徽)如图,直线l1,l2都与直线l垂直,垂足分别为M,N,MN=1.正方形ABCD的边长为,对角线AC在直线l上,且点C位于点M处.将正方形ABCD沿l向右平移,直到点A与点N重合为止.记点C平移的距离为x,正方形ABCD的边位于l1,l2之间部分的长度和为y,则y关于x的函数图象大致为()A.B.C.D.【答案】A【点睛】本题考查动点问题函数图象、分段函数等知识,解题的关键是理解题意,学会构建函数关系式解决问题,属于中考常考题型.32.如图所示,已知△ABC中,BC=12,BC边上的高h=6,D为BC上一点,EF∥BC,交AB于点E,交AC 于点F,设点E到边BC的距离为x.则△DEF的面积y关于x的函数图象大致为()A.B.C.D.【答案】D【点睛】此题考查根据几何图形的性质确定函数的图象和函数图象的读图能力.要能根据几何图形和图形上的数据分析得出所对应的函数的类型和所需要的条件,结合实际意义画出正确的图象.33.如图,在△ABC中,∠B=90°,AB=3cm,BC=6cm,动点P从点A开始沿AB向点B以1cm/s的速度移动,动点Q从点B开始沿BC向点C以2cm/s的速度移动,若P,Q两点分别从A,B两点同时出发,P点到达B点运动停止,则△PBQ的面积S随出发时间t的函数关系图象大致是()A.B.C.D.【答案】C【点睛】此题主要考查了动点问题的函数图象,正确得出函数关系式是解题关键.34.(2018广西柳州)如图,在平面直角坐标系中,点A的坐标是________.【答案】(﹣2,3)【点睛】此题主要考查了点的坐标,正确利用平面坐标系是解题关键.35.在平面直角坐标系中,对于点P(a,b),我们把Q(﹣b+1,a+1)叫做点P的伴随点,已知A1的伴随点为A2,A2的伴随点为A3,…,这样依次下去得到A1,A2,A3,…,A n,若A1的坐标为(3,1),则A2018的坐标为_______.【答案】(0,4)【解析】解:∵点A1的坐标为(3,1),∴A2的坐标为(0,4),A3的坐标为(﹣3,1),A4的坐标为(0,﹣2),A5的坐标为(3,1),∴每连续的四个点一个循环,∵2018÷4=504…2,∴A2018的坐标为(0,4),故答案为:(0,4).学科@网【点睛】本题考查规律型:点的坐标,解答本题的关键是明确题意,发现题目中点的变化规律,求出相应的点的坐标.36.如图,等边三角形ABC的边长为1,顶点B与原点O重合,点C在x轴的正半轴上,过点B作BA1⊥AC 于点A1,过点A1作A1B1∥OA,交OC于点B1;过点B1作B1A2⊥AC于点A2,过点A2作A2B2∥OA,交OC于点B2;……,按此规律进行下去,点A2020的坐标是_______.【答案】(,)…∴A n(,),A2020的坐标是(,).故答案为:(,).【点睛】本题考查了点的坐标,等边三角形的性质,关键是能根据求出的数据得出规律,题目比较好,但是有一定的难度.37.(2018辽宁抚顺)如图,正方形AOBO2的顶点A的坐标为A(0,2),O1为正方形AOBO2的中心;以正方形AOBO2的对角线AB为边,在AB的右侧作正方形ABO3A1,O2为正方形ABO3A1的中心;再以正方形ABO3A1的对角线A1B为边,在A1B的右侧作正方形A1BB1O4,O3为正方形A1BB1O4的中心;再以正方形A1BB1O4的对角线A1B1为边,在A1B1的右侧作正方形A1B1O5A2,O4为正方形A1B1O5A2的中心:…;按照此规律继续下去,则点O2018的坐标为_________.【答案】(21010﹣2,21009)∴点O2018的坐标为(21010﹣2,21009).故答案为(21010﹣2,21009).【点睛】本题考查规律型:点的坐标,一次函数的应用,解题的关键是学会探究规律的方法,灵活运用所学知识解决问题,属于中考常考题型.38.(2018四川绵阳)如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,﹣1)和(﹣3,1),那么“卒”的坐标为_________.【答案】(﹣2,﹣2)【解析】解:“卒”的坐标为(﹣2,﹣2),故答案为:(﹣2,﹣2).【点睛】此题主要考查了坐标确定位置,关键是正确确定原点位置.39.(2018湖北恩施)函数y的自变量x的取值范围是______.【答案】x且x≠3【点睛】本题主要考查了函数自变量的取值范围的确定,根据分母不等于0,被开方数大于等于0列式计算即可,是基础题,比较简单.。
(东营专版)最新2019年中考数学复习-第三章-函数-第一节-平面直角坐标系与函数初步习题

(东营专版)最新2019年中考数学复习-第三章-函数-第一节-平面直角坐标系与函数初步习题第三章函数第一节平面直角坐标系与函数初步姓名:________ 班级:________ 用时:______分钟1.(2019·易错题)点A的坐标为(-1,2),则点A关于y轴的对称点的坐标为( )A.(1,2) B.(-1,-2)C.(1,-2) D.(2,-1)2.(2018·成都中考)在平面直角坐标系中,点P(-3,-5)关于原点对称的点的坐标是( )A.(3,-5) B.(-3,5)C.(3,5) D.(-3,-5)3.(2018·攀枝花中考)若点A(a+1,b-2)在第二象限,则点B(-a,1-b)在( )A.第一象限B.第二象限C.第三象限D.第四象限4.(2018·绍兴中考)如图,一个函数的图象由射线BA,线段BC,射线CD组成,其中点A(-1,2),B(1,3),C(2,1),D(6,5),则此函数( )A.当x<1时,y随x的增大而增大________________.10.(2018·咸宁中考)如图,将正方形OEFG放在平面直角坐标系中,O是坐标原点,点E的坐标为(2,3),则点F的坐标为__________________11.已知:A(0,1),B(2,0),C(4,3).(1)在坐标系中描出各点,画出△ABC;(2)求△ABC的面积;(3)若点P在坐标轴上,且△ABP与△ABC的面积相等,求点P的坐标.12.(2018·南通中考)如图,等边△ABC的边长为 3 cm,动点P从点A出发,以每秒 1 cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(s),y=PC2,则y关于x的函数的图象大致为( )13.(2018·北京中考)如图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x轴、y 轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(-6,-3)时,表示左安门的点的坐标为(5,-6);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(-12,-6)时,表示左安门的点的坐标为(10,-12);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(-11,-5)时,表示左安门的点的坐标为(11,-11);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(-16.5,-7.5)时,表示左安门的点的坐标为(16.5,-16.5).上述结论中,所有正确结论的序号是( )A .①②③B .②③④C .①④D .①②③④14.(2018·宜宾中考)已知点A 是直线y =x +1上一点,其横坐标为-12.若点B 与点A 关于y 轴对称,则点B 的坐标为________.15.(2018·德阳中考)已知函数y =⎩⎨⎧(x -2)2-2,x≤4,(x -6)2-2,x>4 使y =a 成立的x 的值恰好只有3个时,a 的值为______.16.(2018·呼和浩特中考)已知变量x ,y 对应关系如下表已知值呈现的对应规律. x … -4 -3 -2 -1 1234 …y …12231 2-2-1-23-12…(1)依据表中给出的对应关系写出函数解析式,并在给出的坐标系中画出大致图象;(2)在这个函数图象上有一点P(x,y)(x<0),过点P分别作x轴和y轴的垂线,并延长与直线y=x-2交于A,B两点,若△PAB的面积等于252,求出P点坐标.17.(2019·创新题)如图,把平面内一条数轴x绕原点O逆时针旋转角θ(0°<θ<90°)得到另一条数轴y,x 轴和y轴构成一个平面斜坐标系.规定:过点P作y轴的平行线,交x轴于点A,过点P作x轴的平行线,交y轴于点B.若点A在x轴上对应的实数为a,点B在y 轴上对应的实数为b,则称有序实数对(a,b)为点P的斜坐标.在某平面斜坐标系中,已知θ=60°,点M的斜坐标为(3,2),点N与点M关于y轴对称,则点N的斜坐标为________________.参考答案【基础训练】1.A 2.C 3.D 4.A 5.C6.二7.x≥-12且x≠38.(-7,-5)或(7,-5)9.(-1,2) 10.(-1,5)11.解:(1)如图所示.(2)S△ABC =3×4-12×2×3-12×2×4-12×2×1=12-3-4-1=4.(3)当点P在x轴上时,S△ABP =12AO·BP=4,即12×1·BP=4,解得BP=8,∴点P的坐标为(10,0)或(-6,0);当点P在y轴上时,S△ABP =12BO·AP=4,即12×2AP=4,解得AP=4,∴点P的坐标为(0,5)或(0,-3),∴点P的坐标为(0,5)或(0,-3)或(10,0)或(-6,0).【拔高训练】12.C 13.D14.(12,12) 15.216.解:(1)y=-2x .反比例函数图象如下.(2)设点P(x,-2x),则点A(x,x-2).由题意知△PAB是等腰直角三角形.∵S△PAB =252,∴PA=PB=5.∵x<0,∴PA=yP -yA=-2x-x+2,即-2x-x+2=5,解得x1=-2,x2=-1,∴P点的坐标为(-2,1)或(-1,2).【培优训练】17.(-3,5)。
中考数学第一轮复习 第章第讲 平面直角坐标系ppt(共20张PPT)

技法点拨►在平面直角坐标系中,解决点所处的象限与坐标符号之间的关系问题,综合各象限的坐标特征,经常利用不等式(组)解答.
技法点拨C►.应(用2函0数1图1,象解2题)的三D步.骤:(2(10)找1:0,找清0图)象的横、纵坐标各自具有的含义;
典型例题运用 类型1 平面直角坐标系中点的坐标
(【3)思点路P(分x,析y【A】)到.根原例据点第每1的一】一距A段离函象等数若于图限⑤象点_的__A倾_(B斜a.程+度第,1反,二映b象了-水限面1上)升在速第度的二快慢象,限再观,察则容器点的粗B(细-,作a出,判断b.+2)在(
)
.第三象限 .第四象限 C D (2)点P(x,y)在第二、四象限角平分线上⇔x+y=0
提示
确定位置常用的方法一般有两种:(1)用有序实数对(a,b)表示;(2)用方向和 距离表示.
考点2 点的坐标特征
象限内的点 第一象限:x>0,y>0; 第二象限:x<0,y>0;
第三象限:x<0,y<0; 第四象限:x>0,y<0
(1)点P(x,y)在x轴上⇔y=0,x为任意实数;
坐标轴上的点
(2)点P(x,y)在y轴上⇔x=0,y为任意实数; (3)点P(x,y)既在x轴上,又在y轴上⇔x=y=0,即点
B 以时间为点P的下标.观察,发现规律:P0(0,0),P1(1,1), P2(2,0),P3(3,-1),P4(4,0),P5(5,1),…,∴P4n(4n,0),P4n +1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,-1).∵2017= 504×4+1,∴第2017秒时,点P的坐标为(2017,1).
中考数学复习第三章函数讲义

第三章函数第一节函数及其图象【考点1】平面直角坐标系及点的坐标1. 在平面内两条且有公共原点的数轴组成了平面直角坐标系。
2. 建立了平面直角坐标系的平面称为坐标平面。
3.坐标平面内每一个点P都对应着一个坐标x和一个坐标y,我们称一对有序实数P(x,y),即点P的坐标。
4. 平面直角坐标系中点的特征【考点2】函数的有关概念及其表达式1. 变量:某一变化的过程中可以取不同数值的量叫做变量。
2. 常量:某一变化的过程中保持相同数值的量叫做常量。
3. 函数:在某一变化的过程中有两个量x和y,如果对于x的每一个值,y都有的值与它对应,那么称y是x的函数,其中x是,y是因变量。
4. 函数的表示方法有:、、。
在解决一些与函数有关的问题时,有时可以同时用两种或两种以上的方法来表示函数。
5. 画函数图象的一般步骤:列表、、。
【考点3】函数自变量的取值范围与函数值【中考试题精编】 1. 在函数中3-x =y ,自变量x 的取值范围是 ( )A. x ≠3B. x >3C. x <3D. x ≥32. 王芳同学为参加学校组织的科技知识竞赛,她周末到新华书店购买资料,如图是王芳离家的距离与时间的函数关系图象,若黑点表示王芳家的位置,则王芳走的路线可能是( )A. B. C. D.3. 函数1-x 2=y 中,自变量的取值范围是 。
4. 在函数x x y +-=31中,自变量x 的取值范围是 .5. 根据图中的程序,当输入x=2时,输出结果是 。
第二节 一次函数【考点1】一次函数的概念如果y=kx+b (k,b 为常数,且 ),那么y 叫做x 的一次函数。
当b=0时,也就是y=kx(k ≠0),这时称y 是x 的正比例函数。
【考点2】一次函数的图象和性质 的增大而减小【考点3】一次函数与一次方程和一次不等式的关系一次函数y=kx+b (k,b 为常数,k ≠0) (1)当y=0时,一元一次方程kx+b=0(2) 当y >0或y <0时,一元一次不等式kx+b >0或kx+b <0【提示】当一次函数中的一个变量的值确定时,可用一元一次方程确定另一个变量的值;当 已知一次函数中的一个变量取值的范围时,可用一元一次不等式(组)确定另一个变量的取值。
中考数学 第三章 函数 第1课时 平面直角坐标系与函数考点突破课件

动了t秒,记△BPQ的面积为s,下面图象中能表示s与t
之间的函数关系的是(
D)
A.
B.
C.
考点梳理
1 2
考点梳理
解决动点问题的函数图象关键是对照图象联 系题意发现y随x的变化而变化的趋势.应根 据0≤t<2和2≤t<4 两种情况进行讨论.把t 当作已知数值,就可以求出s,从而得到函 数的解析式,进一步即可求解.
段上运动的时间相同,故选项D不正确;故选:B.
一、选择题 D
中考特训
2. 如果点P(m,1-2m)在第四象限,那么m的 取值范围是(D )
A.0<m<12 0
C.m<0
1 2
B.-
<m<
1 2
D.m>
中考特训
3.将点A(-2,-3)向右平移3个单位长度得
到点B,则点B所处的象限是( D )
A.第一象限
求a的值; (1)∵点A到x轴的距离与到y轴的距离相等,
∴2a+3=1,解得a=-1; (2)若点A到x轴的距离小于到y轴的距离,
求a的取值范围. (2)∵点A到x轴的距离小于到y轴的距离,点
A在第一象限,∴2a+3<1且2a+3>0, 解得a<-1且a>-32 ,∴-32<a<-1.
中考特训
2.钓鱼岛自古就是中国领土,中国政府已对钓鱼 岛开展常态化巡逻.某天,为按计划准点到达指 定海域,某巡逻艇凌晨1:00出发,匀速行驶一 段时间后,因中途出现故障耽搁了一段时间,故 障排除后,该艇加快速度仍匀速前进,结果恰好 准点到达.如图是该艇行驶 的路程y(海里)与所用时间t (小时)的函数图象,则该巡 逻艇原计划准点到达的时刻 是几点?
A.
B
.
C.
D
感谢聆听
安徽省中考数学一轮复习第一讲数与代数第三章函数3.1平面直角坐标系及函数测试(2021年整理)
安徽省2019年中考数学一轮复习第一讲数与代数第三章函数3.1 平面直角坐标系及函数测试编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(安徽省2019年中考数学一轮复习第一讲数与代数第三章函数3.1 平面直角坐标系及函数测试)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为安徽省2019年中考数学一轮复习第一讲数与代数第三章函数3.1 平面直角坐标系及函数测试的全部内容。
第三章函数3.1平面直角坐标系及函数学用P23[过关演练](30分钟65分)1。
(2018·江苏扬州)在平面直角坐标系的第二象限内有一点M,点M到x轴的距离为3,到y轴的距离为4,则点M的坐标是(C)A。
(3,—4)B.(4,—3)C.(—4,3)D.(-3,4)【解析】由题意,得x=—4,y=3,即点M的坐标是(-4,3).2.在平面直角坐标系中,点P(—2,x2+1)所在的象限是(B)A。
第一象限B。
第二象限C.第三象限D。
第四象限【解析】∵x2≥0,∴x2+1≥1,∴点P(-2,x2+1)在第二象限.3。
如图,数轴上表示的是某个函数自变量的取值范围,则这个函数的解析式为(C)A.y=x+2B.y=x2+2C。
y= D.y=【解析】y=x+2,x为任意实数,故A错误;y=x2+2,x为任意实数,故B错误;y=,x+2≥0,即x≥—2,故C正确;y=,x+2>0,即x〉-2,故D错误。
4。
(2018·重庆)根据如图所示的程序计算函数y的值,若输入的x值是4或7时,输出的y 值相等,则b等于(C)A.9 B。
7 C。
—9 D。
-7【解析】∵当x=7时,y=6-7=-1,∴当x=4时,y=2×4+b=-1,解得b=-9.5.(2018·四川内江)如图,在物理课上,小明用弹簧秤将铁块A悬于盛有水的水槽中,然后匀速向上提起,直至铁块完全露出水面一定高度,则下图能反映弹簧秤的读数y(单位:N)与铁块被提起的高度x(单位:cm)之间的函数关系的大致图象是(C)【解析】露出水面前排开水的体积不变,受到的浮力不变,根据称重法可知y不变;铁块开始露出水面到完全露出水面时,排开水的体积逐渐变小,根据阿基米德原理可知受到的浮力变小,根据称重法可知y变大;铁块完全露出水面后一定高度,不再受浮力的作用,弹簧秤的读数为铁块的重力,故y不变.观察知C项正确.6。
河北省2019年中考数学第3章第1节精练试题
第三章 函数及其图像 第一节 函数及其图像1.(2019泸州中考)下列曲线中不能表示y 是x 的函数的是( C ),A),B),C),D)2.(2019南宁中考)在平面直角坐标系中,把点P(-3,2)绕原点O 顺时针旋转180°,所得到的对应点P′的坐标为( D )A .(3,2)B .(2,-3)C .(-3,-2)D .(3,-2)3.(2019成都中考)一个大烧杯中装有一个小烧杯,在小烧杯中放入一个浮子(质量非常轻的空心小圆球)后再往小烧杯中注水,水流的速度恒定不变,小烧杯被注满后水溢出到大烧杯中,浮子始终保持在容器的正中间.用x 表示注水时间,用y 表示浮子的高度,则能用来表示y 与x 之间关系的图像是( B ),A),B),C ),D)4.在函数y =2-xx +1中,自变量x 的取值范围是__x≤2且x≠-1__.5.(莆田中考)甲车从A 地驶往B 地,同时乙车从B 地驶往A 地,两车相向而行,匀速行驶.甲车距B 地的距离y(km)与行驶时间x(h)的函数关系如图所示,乙车的速度是60 km/h.(1)求甲车的速度;(2)当甲乙两车相遇后,乙车速度变为a(km/h),并保持匀速行驶,甲车速度保持不变,结果乙车比甲车晚38 min 到达终点,求a 的值.解:(1)v 甲=280-1202=80(km/h);(2)设甲车距B 地的距离与行驶时间的函数关系式为y =kx +b ,将(0,280),(2,120)代入,得⎩⎪⎨⎪⎧b =280,2k +b =120,解得⎩⎪⎨⎪⎧k =-80,b =280,则函数关系式为y =-80x +280,将y =0代入,得x =3.5,甲车到达终点的时间为 3.5 h .∵乙车速度为60 km/h ,∴乙车距B 地距离与行驶时间之间的函数关系式为y =60x ,联立方程可得-80x +280=60x ,即x =2.则甲车、乙车在2 h 相遇后的速度变为a ,即60×2+a×⎝⎛⎭⎪⎫3.5-2+3860=280,解得a =75. 答:a 的值是75.6.(自贡中考)小刚以400 m/min 的速度匀速骑车5 min ,在原地休息了6 min ,然后以500 m/min 的速度骑回出发地.下列函数图像能表达这一过程的是( C ),A) ,B),C) ,D)7.(重庆中考)为了增强学生体质,某中学在体育课中加强了学生的长跑训练.在一次女子800 m 耐力测试中,小静和小茜在校园内200 m 的环形跑道上同时起跑,同时到达终点,所跑的路程s(m)与所用的时间t(s)之间的函数图像如图所示,则她们第一次相遇的时间是起跑后的第__120__s.2019-2020学年数学中考模拟试卷一、选择题1.下列四个多边形:①等边三角形;②正方形;③正五边形;④正六边形.其中,既是轴对称图形又是中心对称图形的是( ) A .①②B .②③C .②④D .①④2.已知抛物线y =﹣x 2+bx+2﹣b 在自变量x 的值满足﹣1≤x≤2的情况下,若对应的函数值y 的最大值为6,则b 的值为( ) A .﹣1或2B .2或6C .﹣1或4D .﹣2.5或83.如图,从A 点出发的光线,经C 点反射后垂直地射到B 点,然后按原路返回A 点.若∠AOC =33°,OC =1,则光线所走的总路线约为( )A .3.8B .2.4C .1.9D .1.24.计算﹣6+1的结果为( ) A .﹣5B .5C .﹣7D .75.下列各式中,是3x 2y 的同类项的是 ( ) A .2a 2bB .-2x 2yzC .x 2yD .3x 36.使得关于x 的不等式组22141x m x m >-⎧⎨-+≥-⎩有解,且使分式方程1222m xx x --=--有非负整数解的所有的m 的和是( ) A .﹣1B .2C .﹣7D .07.港珠澳大桥是中国第一例集桥、双人工岛、隧道为一体的跨海通道. 其中海底隧道是由33个巨型沉管连接而成,沉管排水总量约76000吨. 将数76000用科学记数法表示为( ) A .47.610⨯B .37610⨯C .50.7610⨯D .57.610⨯8.如图1,等边△ABD 与等边△CBD 的边长均为2,将△ABD 沿AC 方向向右平移k 个单位到△A′B′D′的位置,得到图2,则下列说法:①阴影部分的周长为4;②当k =2时,图中阴影部分为正六边形;③当k =2;正确的是( )A .①B .①②C .①③D .①②③9.如图,抛物线21y x 3x 42=++与x 轴交于A 、B 两点,与y 轴交于点C ,连接BC ,AC ,则ABC 的面积为( )A .1B .2C .4D .810.如图,平行四边形ABCD 的对角线相交于点O ,且AD >AB ,过点O 作OE ⊥AC 交AD 于点E ,连接CE ,若平行四边形ABCD 的周长为20,则△CDE 的周长是( )A.10B.11C.12D.1311.如图,在▱ABCD 中,对角线AC ,BD 相交于点O ,AC=6,BD=10,则AD 的长度可以是( )A.2B.7C.8D.1012.将一张宽为5cm 的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是( )A .3cm 2 B .252cm 2C .25cm 2D 2二、填空题13.在△ABC中,AB=AC,CD是AB边上的中线,点E在边AC上(不与A,C重合),且BE=CD.设AB BC=k,若符合条件的点E有两个,则k的取值范围是_____.14.有一组单项式依次为﹣x2,3456,,,3579x x x x--,…,则第n个单项式为_____.15.如图,∠3=40°,直线b平移后得到直线a,则∠1+∠2=_____°.16.分式方程212xx-=的解为 __________.17.因式分解:a3-ab2=______________.18.已知|a﹣=a,则a﹣20072的值是_____.三、解答题19.已知:如图,九年一班在进行方向角模拟测量时,A同学发现B同学在他的北偏东75°方向,C同学在他的正南方向,这时,D同学与BC在一条直线上,老师觉得他们的站位很有典型性,就组织同学又测出A、B距离为80米,B、D两同学恰好在C同学的东北方向且AD=BD.求C、D两名同学与A同学的距离分别是多少米(结果保留根号).20.如图,正方形ABCD中,AB=O是BC边的中点,点E是正方形内一动点,OE=2,连接DE,将线段DE绕点D逆时针旋转90°得DF,连接AE,CF(1)如图1,求证:AE=CF;(2)如图2,若A,E,O三点共线,求点F到直线BC的距离.21.如图,已知在Rt ABC ∆中,90ABC ∠=︒,在AB 上取点D ,使得AD CD =,若//CD BE . (1)求证:AB BE =;(2)若CD 平分ACB ∠,求ABE ∠的度数.22.如图,抛物线y =ax 2+bx ﹣2交x 轴负半轴于点A (﹣1,0),与y 轴交于B 点.过B 点的直线l 交抛物线于点C (3,﹣1).过点C 作CD ⊥x 轴,垂足为D .点P 为x 轴正半轴上的动点,过P 点作x 轴的垂线,交直线l 于点E ,交抛物线于点F .设P 点的横坐标为t . (1)求抛物线的解析式;(2)连接OE ,求△POE 面积的最大值;(3)连接DE ,CF ,是否存在这样的t 值:以点C ,D ,E ,F 为顶点的四边形是平行四边形?请说明理由.23.五一期间,某商场计划购进甲、乙两种商品,已知购进甲商品1件和乙商品3件共需240元;购进甲商品2件和乙商品1件共需130元.(1)求甲、乙两种商品每件的进价分别是多少元?(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.24.如图,在▱ABCD 中,点E 为边BC 上的中点,请仅用无刻度的直尺,按要求画图(保留画图痕迹,不写画法).(1)在图1中,作EF ∥AB 交AD 于点F ;(2)在图2中,若AB =BC ,作一矩形,使得其面积等于▱ABCD 的一半.25.小明是“大三”学生,按照学校积分规则,如果他的学期数学成绩达到95分,就能获得“保研”资格.在满分为100分的期中、期末两次数学考试中,他的两次成绩的平均分为90分.如果按期中数学成绩占30%,期末数学成绩占70%计算学期数学成绩,那么小明能获得“保研”资格吗?请你运用所学知识帮他做出判断,并说明理由.【参考答案】*** 一、选择题二、填空题13k <<且1k ≠ 14.n 1x (1)2n 1n+--15.220 16.417.a (a+b )(a ﹣b ) 18.2008 三、解答题19.C 、D 两名同学与A 同学的距离分别是米和3米. 【解析】 【分析】作AE ⊥BC ,利用直角三角形的三角函数解得即可. 【详解】解:作AE ⊥BC 交BC 于点E ,则∠AEB =∠AEC =90°,由已知,得∠NAB =75°,∠C =45°, ∴∠B =30°, ∵BD =AD ,∴∠BAD=∠B=30°,∴∠ADE=60°,∵AB=80,∴AE=12AB=40,∴40ADsin sin60====∠︒AEADE40AC45AEsin C sin====∠︒答:C、D两名同学与A同学的距离分别是米.【点睛】本题考查了解直角三角形的应用−−方向角问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.20.(1)详见解析;(2)点F到直线BC.【解析】【分析】(1)由旋转的性质可得∠EDF=90°,DE=DF,由正方形的性质可得∠ADC=90°,DE=DF,可得∠ADE =∠CDF,由“SAS”可证△ADE≌△CDF,可得AE=CF;(2)由勾股定理可求AO的长,可得AE=CF=3,通过证明△ABO∽△CPF,可得CF PFAO BO=,即可求PF的长,即可求点F到直线BC的距离.【详解】证明:(1)∵将线段DE绕点D逆时针旋转90°得DF,∴∠EDF=90°,DE=DF.∵四边形ABCD是正方形,∴∠ADC=90°,DE=DF,∴∠ADC=∠EDF,∴∠ADE=∠CDF,且DE=DF,AD=CD,∴△ADE≌△CDF(SAS),∴AE=CF,(2)解:如图2,过点F作FP⊥BC交BC延长线于点P,则线段FP的长度就是点F到直线BC的距离.∵点O是BC中点,且AB=BC=∴BO∴AO5,∵OE=2,∴AE=AO﹣OE=3.∵△ADE≌△CDF,∴AE=CF=3,∠DAO=∠DCF,∴∠BAO=∠FCP,且∠ABO=∠FPC=90°,∴△ABO∽△CPF,∴CF PF AO BO=,∴35 =∴PF,∴点F到直线BC.【点睛】本题考查了旋转的性质,全等三角形的判定和性质,正方形的性质,相似三角形的判定和性质,证明△ABO∽△CPF是本题的关键.21.(1)见解析;(2)∠ABE=120°.【解析】【分析】(1)欲证明AB=BE,只需推知∠A=∠E即可.(2)由三角形内角和定理和等腰三角形的性质求得∠A=30°,结合(1)中的∠A=∠E和△ABE的内角和是180°解答.【详解】(1)∵AD=CD ∴∠A=∠ACD.又∵CD∥BE ∴∠ACD=∠E.∴∠A=∠E.∴AB =BE ;(2)∵在Rt △ABC 中,∠ABC =90° ∴∠A+∠ACB =90°. ∵CD 平分∠ACB , ∴∠ACD =∠BCD . 又∵∠A =∠ACD ,∴∠A+∠ACD+∠BCD =3∠A =90°. ∴∠A =30°.∵由(1)得∠A =∠E =30°. ∴∠ABE =180°﹣2∠A =120°. 【点睛】考查了等腰三角形的性质,平行线的性质.解题过程中,注意“等角对等边”、“等边对等角”以及三角形内角和是180度等性质的运用,难度一般. 22.(1)271721212y x x =--;(2)32;(3)存在这样的t 值:以点C ,D ,E ,F 为顶点的四边形是平行四边形. 【解析】 【分析】1)将点A 、C 的坐标代入函数解析式,利用解方程组求得系数的值即可; (2)根据三角形的面积公式,函数图象上点的坐标特征求得S △POE =12t•(13t-2)=16(t-3)2-32,所以由二次函数的性质求得答案;(3)根据平行四边形的对边相等的性质和坐标与图形的性质求得答案. 【详解】(1)把A (﹣1,0),C (3,﹣1)代入y =ax 2+bx ﹣2,得209321a b a b --=⎧⎨+-=-⎩. 解得7121712a b ⎧=⎪⎪⎨⎪=-⎪⎩.则该抛物线的解析式为271721212y x x =--; (2)由(1)知,抛物线的解析式为271721212y x x =--,则B (0,﹣2). 设直线BC 的解析式为:y =kx+d (k≠0).把B (0,﹣2)、C (3,﹣1)代入,得d 23k d 1=-⎧⎨+=-⎩. 解得132k d ⎧=⎪⎨⎪=-⎩.故直线BC 的解析式为 1y x 23=-.∴E (t ,13t ﹣2) ∴S △POE =12t•(13t-2)=16(t-3)2-32. ∴△POE 面积的最大值是32; (3)存在这样的t 值.理由:E (t ,123t -),F (t ,271721212t t --). 若以点C ,D ,E ,F 为顶点的四边形是平行四边形,则EF =CD =1, 即﹣(271721212t t --)﹣(2﹣13t )=1. 整理得:7t 2﹣21t+12=0.∵△=(﹣21)2﹣4×7×12>0,∴方程7t 2﹣21t+12=0有解.∴存在这样的t 值:以点C ,D ,E ,F 为顶点的四边形是平行四边形.【点睛】本题主要考查的是二次函数的综合应用,本题主要涉及了待定系数法求一次函数、二次函数的解析式、三角形的面积公式、平行四边形的性质等知识点.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.23.(1)甲商品每件进价30元,乙商品每件进价70元;(2)甲商品进80件,乙商品进20件,最大利润是1200元.【解析】【分析】(1)根据购进甲商品1件和乙商品3件共需240元,甲商品2件和乙商品1件共需130元可以列出相应的方程组,从而可以求得甲、乙两种商品每件的进价分别是多少元;(2)根据题意可以得到利润与购买甲种商品的函数关系式,从而可以解答本题.【详解】(1)设商品每件进价x元,乙商品每件进价y元,得3240 2130 x yx y+=⎧⎨+=⎩解得:3070 xy=⎧⎨=⎩,答:甲商品每件进价30元,乙商品每件进价70元;(2)设甲商品进a件,乙商品(100﹣a)件,由题意得,a≥4(100﹣a),a≥80,设利润为y元,则,y=10 a+20(100﹣a)=﹣10 a+2000,∵y随a的增大而减小,∴要使利润最大,则a取最小值,∴a=80,∴y=2000﹣10×80=1200,答:甲商品进80件,乙商品进20件,最大利润是1200元.【点睛】本题考查一次函数的应用、二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.24.(1)详见解析;(2)详见解析【解析】【分析】(1)连接AC和BD,它们的交点为0,延长EO并延长交AD于F,则F点为所作;(2)延长EO交AD于G,连接CG、ED交于点P,作直线OP交AB于H,交CD于F,则四边形EHGF为所作.【详解】解:(1)如图1,F点就是所求作的点;(2)如图2,矩形EGFH就是所求作的四边形.【点睛】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行四边形的判定与性质.25.见解析【解析】【分析】据加权平均数的算法公式进行计算,再与95分比较大小即可求解.【详解】按期中数学成绩占30%,期末数学成绩占70%计算学期数学成绩,可得期末数学成绩100分,期中数学成绩80分的成绩最高,80×30%+100×70%=24+70=94(分)∵94分<95分,∴小明不能获得“保研”资格.【点睛】本题考查的是加权平均数,熟记加权平均数的计算公式是解决本题的关键.2019-2020学年数学中考模拟试卷一、选择题1.下列图形都是由同样大小的黑色菱形纸片组成,其中第①个图中有3个黑色菱形纸片,第②个图中有5个黑色菱形纸片,第③个图中有7个黑色菱形纸片,…按此规律排列下去,第20个图中黑色菱形纸片的张数为( )A.38 B.39 C.40 D.412.如图,在平面直角坐标系中,△A1A2A3,△A3A4A5,△A5A6A7,△A7A8A9,…,都是等腰直角三角形,且点A1,A3,A5,A7,A9的坐标分别为A1(3,0),A3(1,0),A5(4,0),A7(0,0),A9(5,0),依据图形所反映的规律,则A102的坐标为()A.(2,25)B.(2,26)C.(52,﹣532)D.(52,﹣552)3.某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形(作品不完全重合).现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如,用9枚图钉将4张作品钉在墙上,如图).若有36枚图钉可供选用,则最多可以展示绘画作品( )A.22张B.23张C.24张D.25张4.已知:1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,…,根据前面各式的规律可猜测:101+103+105+…+199=()A.7500 B.10000 C.12500 D.25005.如图,在四边形ABCD中,∠DAB=90°,∠DCB=90°,E、F分别是BD、AC的中点,AC=6,BD=10,则EF的长为()A .3B .4C .5 D624a =5===;④= )A .①B .②C .③D .④7.如图,ABC ∆内接于⊙O ,25OAC ∠=︒,则ABC ∠的度数为()A .110°B .115°C .120°D .125°8.下列计算正确( )A .222a b a b +=+()B .235a a a ⋅=C .822a a a ÷=D .325a a a +=9.下列命题中,正确的是( )A .两条对角线相等的四边形是平行四边形B .两条对角线相等且互相垂直的四边形是矩形C .两条对角线互相垂直平分的四边形是菱形D .两条对角线互相平分且相等的四边形是正方形10.2018年舌尖上的浪费让人触目惊心,据统计中国每年浪费的食物总量折合粮食约499.5亿千克,这个数用科学记数法应表示为( )A .4.995×1010B .49.95×1010C .0.4995×1011D .4.995×101111.如图,a ∥b ,点B 在直线b 上,且AB ⊥BC ,∠1=36°,那么∠2=( )A .54°B .56°C .44°D .46°12.2019年1月3日上午10时26分,嫦娥四号探测器成功着陆在月球背面,开启了月球探测的新篇章,中国人迈开了走向星辰大海的第一步.如图是某正方体的展开图,在原正方体上“星”字所在面相对的面上的汉字是( )A .走B .向C .大D .海二、填空题13.若a ,b 都是实数,b ﹣2,则a b 的值为_____.14.如图,已知▱OABC 的顶点A 、C 分别在直线x=1和x=4上,O 是坐标原点,则对角线OB 长的最小值为__.15.因式分解:_________.16.如图,菱形OABC 的一边OA 在x 轴的负半轴上,O 是坐标原点,tan ∠AOC=43,反比例函数y=﹣12x的图象经过点C ,与AB 交与点D ,则△COD 的面积的值等于_____;17.2019年4月10日,全球六地同步发布“事件视界望远镜”获取的首张“黑洞”煕片,这个位于室女座足系团中的黑洞,质量约为太阳的6500000000倍.将6500000000用科学记数法表示为_____.18.已知直线1:(k 1)x k 1l y =-++和直线2:2l y kx k =++,其中k 为不小于2的自然数,设直线1l ,2l 与x 轴围成的三角形的面积为k S :①当2k =时,直线1:3l y x =+,2:24l y x =+与x 轴围成的三角形的面积21S =;②当3k =时,直线1:24l y x =+,2:35l y x =+与x 轴围成的三角形的面积313S =; ③当4k =时,直线1:35l y x =+,2:46l y x =+与x 轴围成的三角形的面积416S =;④当5k =时,直线1:46l y x =+,2:57l y x =+与x 轴围成的三角形的面积5110S =;…… 问:2342010S S S S ++++=__________.三、解答题19.如图,抛物线y=-x 2+bx+c 的顶点为C ,对称轴为直线x=1,且经过点A (3,-1),与y 轴交于点B .(1)求抛物线的解析式;(2)判断△ABC 的形状,并说明理由;(3)经过点A 的直线交抛物线于点P ,交x 轴于点Q ,若S △OPA =2S △OQA ,试求出点P 的坐标.20.先化简,再求值:21111x x x ⎛⎫+÷ ⎪-+⎝⎭,其中x = 21.计算:021)()2π-+.22.五一期间,某商场计划购进甲、乙两种商品,已知购进甲商品1件和乙商品3件共需240元;购进甲商品2件和乙商品1件共需130元.(1)求甲、乙两种商品每件的进价分别是多少元?(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.23.求解不等式组21211224x x x x -≥-⎧⎪⎨⎛⎫+>- ⎪⎪⎝⎭⎩24.(1)计算:(﹣3)2﹣|﹣2|+(﹣1)0+2cos30°;(2)化简:22b a b÷(a a b -﹣1)25.如图,在RI △ABC 中,∠C=90°,AC=BC=4cm ,点P 从点A 出发沿线段AB cm/s 的速度向点B 运动,设运动时间为ts .过点P 作PD ⊥AB ,PD 与△ABC 的腰相交于点D .(1)当t=()s 时,求证:△BCD ≌△BPD ;(2)当t 为何值时,S △APD =3S △BPD ,请说明理由.【参考答案】***一、选择题二、填空题13.414.15.(a―1)216.17.5×10918.20091005三、解答题19.(1)y=-x 2+2x+2;(2)详见解析;(3)点P 的坐标为(,1)、(,1)、(,-3)或(,-3).【解析】【分析】(1)根据题意得出方程组,求出b 、c 的值,即可求出答案;(2)求出B 、C 的坐标,根据点的坐标求出AB 、BC 、AC 的值,根据勾股定理的逆定理求出即可;(3)分为两种情况,画出图形,根据相似三角形的判定和性质求出PE 的长,即可得出答案.【详解】解:(1)由题意得:()121931bb c⎧-=⎪⨯-⎨⎪-++=-⎩,解得:22bc=⎧⎨=⎩,∴抛物线的解析式为y=-x2+2x+2;(2)∵由y=-x2+2x+2得:当x=0时,y=2,∴B(0,2),由y=-(x-1)2+3得:C(1,3),∵A(3,-1),∴,,∴AB2+BC2=AC2,∴∠ABC=90°,∴△ABC是直角三角形;(3)①如图,当点Q在线段AP上时,过点P作PE⊥x轴于点E,AD⊥x轴于点D ∵S△OPA=2S△OQA,∴PA=2AQ,∴PQ=AQ∵PE∥AD,∴△PQE∽△AQD,∴PEAD=PQAQ=1,∴PE=AD=1∵由-x2+2x+2=1得:x=1,∴P(,1)或(,1),②如图,当点Q在PA延长线上时,过点P作PE⊥x轴于点E,AD⊥x轴于点D ∵S△OPA=2S△OQA,∴PA=2AQ,∴PQ=3AQ∵PE∥AD,∴△PQE∽△AQD,∴PE AD =PQ AQ =3, ∴PE=3AD=3∵由-x 2+2x+2=-3,∴P (,-3),或(,-3),综上可知:点P 的坐标为(,1)、(,1)、(,-3)或(,-3).【点睛】本题考查了二次函数的图象和性质,用待定系数法求二次函数的解析式,相似三角形的性质和判定等知识点,能求出符合的所有情况是解此题的关键.20.1x x -,2+ 【解析】【分析】括号内先通分进行分式的加减运算,然后再进行分式的除法运算,最后把数值代入进行计算即可.【详解】原式=()()211111x x x x x -+++- =1x x -,当x2=. 【点睛】 本题考查了分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.21.-1.【解析】【分析】原式利用零指数幂、负整数指数幂法则,平方根、立方根定义计算即可求出值.【详解】解:原式=1+4﹣3+(﹣3)=﹣1.【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.22.(1)甲商品每件进价30元,乙商品每件进价70元;(2)甲商品进80件,乙商品进20件,最大利润是1200元.【解析】【分析】(1)根据购进甲商品1件和乙商品3件共需240元,甲商品2件和乙商品1件共需130元可以列出相应的方程组,从而可以求得甲、乙两种商品每件的进价分别是多少元;(2)根据题意可以得到利润与购买甲种商品的函数关系式,从而可以解答本题.【详解】(1)设商品每件进价x 元,乙商品每件进价y 元,得32402130x y x y +=⎧⎨+=⎩解得:3070x y =⎧⎨=⎩, 答:甲商品每件进价30元,乙商品每件进价70元;(2)设甲商品进a 件,乙商品(100﹣a )件,由题意得,a≥4(100﹣a ),a≥80,设利润为y 元,则,y =10 a+20(100﹣a )=﹣10 a+2000,∵y 随a 的增大而减小,∴要使利润最大,则a 取最小值,∴a =80,∴y =2000﹣10×80=1200,答:甲商品进80件,乙商品进20件,最大利润是1200元.【点睛】本题考查一次函数的应用、二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.23.11x -≤<【解析】【分析】根据题意将不等式一一解出,求解集的公共部分即可【详解】21211224x x x x -≥-⎧⎪⎨⎛⎫+>- ⎪⎪⎝⎭⎩①②由①得2x-x≥-2+1,所以x≥-1 由②得11222x x --->所以x <1∴解集为11x -≤<【点睛】此题考查解不等式组,难度不大24.1a b +. 【解析】【分析】(1)根据零指数幂的意义以及实数的运算法则即可求出答案.(2)根据分式的运算法则即可求出答案.【详解】解:(1)原式=9﹣2+1+2×2=(2)原式=()()b a b a b a b b -⋅+- =1a b+. 【点睛】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.25.(1)见解析;(2)当t 为3s 时,S △APD =3S △BPD .理由见解析.【解析】【分析】(1)由勾股定理得出cm ,当t=()s 时,,得出BP=AB-AP=4cm=BC ,由HL 证明Rt △BCD ≌Rt △BPD 即可;(2)当S △APD =3S △BPD 时,AP=3BP ,由题意得出方程,解方程即可.【详解】(1)证明:如图1所示:∵在RI △ABC 中,∠C=90°,AC=BC=4cm ,∴,当t=()s 时,,∴BP=AB-AP=4cm ,∴BP=BC ,∵PD ⊥AB ,∴∠BFD=∠C=90°,在Rt △BCD 和Rt △BPD 中,{BD BDBC BP ==,∴Rt △BCD ≌Rt △BPD (HL );(2)解:如图2所示:∵PD ⊥AB ,当S △APD =3S △BPD 时,AP=3BP ,t=3(t ),解得:t=3,∴当t 为3s 时,S △APD =3S △BPD .【点睛】本题考查了全等三角形的判定、等腰直角三角形的性质、勾股定理等知识;熟练掌握等腰直角三角形的性质,证明三角形全等是解题的关键.。
精品2019届中考数学一轮复习第三章函数及其图象第3节一次函数的应用试题79
第三节一次函数的应用课标呈现指引方向能用一次函数解决简单实际问题.考点梳理夯实基础1.利用一次函数性质解决实际问题的步骤:(1)确定实际问题中的自变量和因变量.(2)根据条件中的等量关系确定一次函数表达式及自变量的取值范围.(3)利用函数性质解决实际问题.2.结合一次函数的图象解决实际问题:(1)通过函数图象获取信息时,要分清楚是一个一次函数问题还是几个一次函数问题;要读懂横纵坐标表示的实际意义,要注意平面直角坐标系中点的特征与意义,还需学会将图象中的点的坐标转化为数学语言,建立一次函数模型.(2)数形结合是解决与一次函数应用题的关键方法,能起到事半功倍的作用.考点精析专项突破考点一利用一次函数解析式解决实际问题【例1】(2016洛阳)如图,某个体户购进一批时令水果,20天销售完毕,他将本次销售情况进行跟踪记录,根据所记录的数据绘制的函数图象,其中日销售量y(千克)与销售时间x(天)之间的函数关系如图甲所示,销售单价p(元/千克)与销售时间x(天)之间的函数关系如图乙所示.(1)直接写出y与x之间的函数关系;(2)分别求出第10天和第15天的销售金额;(3)若日销售量不低于24千克的时间段为“最佳销售期”,则此次销售过程中“最佳销售期”共有多少天?在此期间销售单价最高为多少元?图乙))图甲解题点拨:(1)用待定系数法分别求出0≤x≤15、15<x≤20时销售量y关于销售时间x的函数关系式;(2)由图乙先求出0≤x<10、10≤x≤20时销售单价p关于销售时间x的函数关系式,再求出x=10和x=15时的销售单价,最后根据销售额=销售单价×销售量分别求之;(3)分别求出0≤x≤15、15<x≤20时销售量y≥24时x的范围。
可知共有多少天,再结合上述x的范围根据一次函数性质求p的最大值即可.解:(1)分两种情况:①当0≤x≤15时,设日销售量y与销售时间x的函数解析式为y=k1x,∵y=k1x过点(15,30),∴15k1=30,解得k1=2,∴y=2x(0≤x≤15);②当15<x≤20时,设日销售量y与销售时间x的函数解析式为y=k2x+b,∵点(15,30),(20,0)在y=k2x+b的图象上,∴221530200k b k b +=⎧⎨+=⎩,解得26120k b =-⎧⎨=⎩,∴y =-6x +120(15<x ≤20);综上,可知y 与x 之间函数关系式为:y =2(015)6120(1520)x x x x ⎧⎨-+⎩≤≤<≤.(2)∵第10天和第15天在第10天和第20天之间,∴当10≤x ≤20时,设销售单价p (元/千克)与销售时间x (天)之间的函数解析式为p =mx +n ,∵点(10,10),(20,8)在p =mx +n 的图象上,∴1010208m n m n +=⎧⎨+=⎩,解得1512m n ⎧=-⎪⎨⎪=⎩,∴p =-15x +12(10≤x ≤20),当x =10时,p =10,y =2×10=20,销售金额为:10×20=200(元), 当x =15时,p =-15×15+12=9,y =30,销售金额为:9×30=270(元).故第10天和第15天的销售金额分别为200元,270元. (3)若日销售量不低于24千克,则y ≥24.当0≤x ≤15时,y =2x ,解不等式2x ≥24,得x ≥12;当15<x ≤20时,y =-6x +120,解不等式-6x +120≥24,得x ≤16, ∴12≤x ≤16,∴“最佳销售期”共有:16-12+1=5(天);∵p =-15x +12(10≤x ≤20),-15<0,∴p 随x 的增大而减小,∴当12≤x ≤16时,x 取12时,p 有最大值,此时p =-15×12+12=9.6(元/千克).故此次销售过程中“最佳销售期”共有5天,在此期间销售单价最高为9.6元. 考点二 综合一次函数解析式和图象解决实际问题 【例2】(2016无锡)某公司今年如果用原线下销售方式销售一产品,每月的销售额可达100万元.由于该产品供不应求,公司计划于3月份开始全部改为线上销售,这样,预计今年每月的销售额y (万元)与月份x (月)之间的函数关系的图象如图1中的点状图所示(5月及以后每月的销售额都相同),而经销成本p (万元)与销售额y (万元)之间函数关系的图象如图2中线段AB 所示.(万元)图2图1(月)(1)求经销成本p (万元)与销售额y (万元)之间的函数关系式; (2)分别求该公司3月,4月的利润;(3)问:把3月作为第一个月开始往后算,最早到第几个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少多出 200万元?(利润=销售额-经销成本) 解题点拨:(1)设p =ky +b ,A (100,60),B ( 200,110),代入即可解决问题. (2)根据利润=销售额-经销成本,即可解决问题.(3)设最早到第x 个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元,列出不等式即可解决问题.解:(1)设p=ky+b,A(100,60),B(200,110),代入得10060200110k bk b+=⎧⎨+=⎩,解得1210kb⎧=⎪⎨⎪=⎩,∴p=12y+10.(2)∵y=150时,p=85,∴三月份利润为150-85=65万元.∵y=175时,p=97.5,∴四月份利润为175-97.5=77.5万元.(3)设最早到第x个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元.∵5月份以后的每月利润为90万元,∴65+77.5+90(x-2)-40x≥200,∴x≥4.75,∴最早到第5个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元.课堂训练当堂检测1.从甲地到乙地,先是一段平路,然后是一段上坡路,小明骑车从甲地出发,到达乙地后立即返回甲地,途中休息了一段时间.假设小明骑车在平路、上坡、下坡时分别保持匀速前进,已知小明骑车上坡的速度比在平路上的速度每小时少5km.下坡的速度比在平路上的速度每小时多5km.设小明出发x h后,到达离甲地y km的地方,图中的折线OABCDE表示y与x之间的函数关系,则下列说法正确的有()个①小明骑车在平路上的速度为15km/h;②小明途中休息了0.1h;③如果小明两次经过途中某一地点的时间间隔为0.15h,那么该地点离甲地5.75km.A.0 B.1 C.2 D.3/h【答案】C2.(2015连云港)如图是某地区一种产品30天的销售图象,图①是产品日销售量y(单位:件)与时间t(单位:天)的函数关系,图②是一件产品的销售利润z(单位:元)与时间(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润.下列结论错误的是()A.第24天的销售量为200件B.第10天销售一件产品的利润是15元C.第12天与第30天这两天的日销售利润相等D.第30天的日销售利润是750元天)图②图①天)【答案】C 3.(2016重庆)为增强学生体质,某中学在体育课中加强了学生的长跑训练.在一次女子800米耐力测试中,小静和小茜在校园内200米的环形跑道上同时起跑,同时到达终点;所跑的路程S (米)与所用的时间t (秒)之间的函数图象如图所示,则她们第一次相遇的时间是起跑后的第________秒.t小茜小静(秒)200150【答案】120 4.(2016武汉)某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x 件.已知产销两种产品的有关信其中为常数,且3≤≤5.(1)若产销甲、乙两种产品的年利润分别为y 1万元、y 2万元,直接写出y 1、y 2与x 的函数关系式; (2)分别求出产销两种产品的最大年利润;(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由.解:(1)y 1=(6-a )x -20(0<x ≤200),y 2=-0.05x 2+10x -40(0<x ≤80); (2)甲产品:∵3≤a ≤5,∴6-a >0,∴y 1随x 的增大而增大, ∴当x =200时,y 1max =1180-200a (3≤a ≤5).乙产品:y 2=-0.05x 2+10x -40(0<x ≤80) ∴当0<x ≤80时,y 2随x 的增大而增大, ∴当x =80时,y 2max =440(万元).∴产销甲种产品的最大年利润为(1180-200a )万元,产销乙种产品的最大年利润为440万元; (3)1180-200a >440,解得3≤a <3.7时,此时选择甲产品; 1180-200a =440,解得a =3.7时,此时选择甲乙产品; 1180-200a <440,解得3.7<a ≤5时,此时选择乙产品.∴当3≤a <3.7时,生产甲产品的利润高;当a =3.7时,生产甲乙两种产品的利润相同;3.7<a ≤5时,生产乙产品的利润高. 中考达标模拟自测A组基础训练一、选择题1.(2016宜宾)如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度【答案】C2.小明从家出发,外出散步,到一个公共阅报栏前看了一会报后,继续散步了一段时间,然后回家,如图描述了小明在散步过程中离家的距离s(米)与散步所用时间t(分)之间的函数关系,根据图象,下列信息错误的是()A.小明看报用时8分钟B.公共阅报栏距小明家200米C.小明离家最远的距离为400米D.小明从出发到回家共用时16分钟【答案】A3.(2016安徽)一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A出发,甲以15千米/时的速度匀速跑至点B.原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C.下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象是( )【答案】A4.(2016荆门)如图,正方形ABCD的边长为2cm.动点P从点A出发,在正方形的边上沿A→B→C的方向运动到点C停止,设点P的运动路程为x( cm),在下列图象中,能表示△ADP的面积y(2cm)关于x( cm)的函数关系的图象是()【答案】A二、填空题5.(2016重庆)甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是米.【答案】1756.(2016沈阳)在一条笔直的公路上有A、B、C三地,C地位于A、B两地之间,甲,乙两车分别从A、B两地出发,沿这条公路匀速行驶至C地停止.从甲车出发至甲车到达C地的过程,甲、乙两车各自与C地的距离y( km)与甲车行驶时间t(h)之间的函数关系如图表示,当甲车出发 h时,两车相距350km.【答案】3 27.(2016苏州)某商场在“五一”期间举行促销活动,根据顾客按商品标价一次性购物总额,规定相应的优惠方法:①如果不超过500元,则不予优惠;②如果超过500元,但不超过800元,则按购物总额给予8折优惠;③如果超过800元,则其中800元给予8折优惠,超过800元的部分给予6折优惠.促销期间,小红和她母亲分别看中一件商品,若各组单独付款,则应分别付款480元和520元;若合并付款,则她们总共只需付款元.【答案】830或910三、解答题8.某政府为了增强城镇居民抵御大病风险的能力,积极完善城镇居民医疗保险制度,纳入医疗保险的居民的大病住院医疗费用的报销比例标准如下表:设享受医保的某居民一年的大病住院医疗费用为x元,按上述标准报销的金额为y元.(1)直接写出x≤50000时,y关于x的函数关系式,并注明自变量x的取值范围;(2)若某居民大病住院医疗费用按标准报销了20000元,问他住院医疗费用是多少元?解:(1)由题意得:①当x≤8000时,y=0;②当8000<x≤30000时,y=(x-8000) ×50% =0.5x-4000;③当30000<x≤50000时.y=(30000-8000)×50%+(x-30000)× 60%= 0.6x-7000:(2)当花费30000元时,报销钱数为:y=0.5×30000-4000=11000,∵20000>11000.∴他的住院医疗费用超过30000元,把y=20000代入y=0.6x-7000中得:20000=0.6x-7000,解得:x= 45000.答:他住院医疗费用是45000元.9.(2016荆门)A城有某种农机30台,B城有该农机40台,现要将这些农机全部运往C,D两乡,调运任务承包给某运输公司.已知C乡需要农机34台.D乡需要农机36台,从A城往C.D两乡运送农机的费用分别为250元/台和200元/台,从B城往C,D两乡运送农机的费用分别为150元/台和240元/台.(1)设A城运往C乡该农机x台,运送全部农机的总费用为W元,求W关于x的函数关系式,并写出自变量x的取值范围;(2)现该运输公司要求运送全部农机的总费用不低于16460元,则有多少种不同的调运方案?将这些方案设计出来;(3)现该运输公司决定对A城运往C乡的农机,从运输费中每台减免a元(a≤200)作为优惠,其它费用不变,如何调运,使总费用最少?解:(1)W=250x+200( 30-x) +150( 34-x) +240( 6+x)= 140x+12540(0<x≤30);(2)根据题意得140x+12540≥16460,∴x≥28.∵x≤30.∴28≤x≤30.∴有3种不同的调运方案,第一种调运方案:从A城调往C城28台,调往D城2台,从B城调往C城6台,调往D城34台;第二种调运方案:从A城调往C城29台,调往D城1台,从B城调往C城5台,调往D城35台;第三种调运方案:从A城调往C城30台,调往D城0台,从B城调往C城4台,调往D城36台.(3)W=(250-a)x+200( 30-x) +150( 34-x) +240( 6+x)=(140一a)x+12540.所以当a= 200时,y最小=- 60x +12540,此时x=30时y最小=10740元.此时的方案为:从A城调往C城30台,调往D城0台,从B城调往C城4台,调往D城36台.B组提高练习10.(2016衢州)如图,在△ABC中,AC=BC=25,AB= 30,D是AB上的一点(不与A、B重合),DE⊥BC,垂足是点E,设BD=x,四边形ACED的周长为y.则下列图象能大致反映y与x之间的函数关系的是()(提示:如图,作CM⊥AB于M.∵CA=CB,AB=30,CM⊥AB,∴AM=BM=15,CM=20,∵DE⊥BC,∴∠DEB =∠CMB =90°,∵∠B =∠B ,∴△DEB ∽△CMB ,∴BD DE EB BC CM BM==,∴252015x DE EB==,∴DE =45x ,EB =35x ,∴四边形ACED 的周长为y =25+(25-35x )+45x +30-x =-45x +80.∵0<x <30,∴图象是D【答案】D11.(2016重庆巴蜀)如图,在平面直角坐标系xOy 中,直线y =32x 与双曲线y =6x相于A 、B 两点,C 是第一象限内双曲线上一点,连接CA 并延长交y 轴于点P ,连接BP ,BC .若△PBC 的面积是24,则点C 的坐标为 .【答案】(6,1)提示:设BC 交y 轴于D ,如图,设C 点坐标为(a ,6a ),解方程组326y x y x⎧=⎪⎪⎨⎪=⎪⎩得 23x y =⎧⎨=⎩或23x y =-⎧⎨=-⎩,∴A 点坐标为(2,3),B 点坐标为(―2,―3),设直线BC 的解析式为y =kx +b ,把B (―2,―3)、C (a ,6a )代入得236k b ak b a -+=-⎧⎪⎨+=⎪⎩,解得363k ab a ⎧=⎪⎪⎨⎪=-⎪⎩,∴直线BC 的解析式为y =3x a +6a ―3,当x =0时,y =3x a +6a ―3=6a ―3,∴D 点坐标为(0,6a ―3),设直线AC 的解析式为y =mx +n ,把A (2,3),C (a ,6a),代入得236m n am n a +=⎧⎪⎨+=⎪⎩,解得363m an a ⎧=-⎪⎪⎨⎪=+⎪⎩,∴直线AC 的解析式为y =―3x a +6a +3,当x =0时,y =―3x a +6a +3=6a +3,∴P 点坐标为(0,6a +3),PD =(6a +3)―(6a―3)=6,∵PBCPBD CPD S S S =+,∴12×2×6+12×a ×6=24,解得a =6,∴C 点坐标为(6,1).12.(2014扬州)某店因为经营不善欠下38400元的无息贷款的债务,想转行经营服装专卖店又缺少资金.“中国梦想秀”栏目组决定借给该店30000元资金,并约定利用经营的利润偿还债务(所有债务均不计利息).已知该店代理的品牌服装的进价为每件40元,该品牌服装日销售量y (件)与销售价x (元/件)之间的关系可用图中的一条折线(实线)来表示,该店应支付员工的工资为每人每天82元,每天还应支付其它费用为106元(不包含债务). (1)求日销售量y (件)与销售价x (元/件)之间的函数关系式:(2)若该店暂不考虑偿还债务,当某天的销售价为48元/件时,当天正好收支平衡(收人=支出),求该店员工的人数:(3)若该店只有2名员工,则该店最早需要多少天能还清所有债务,此时每件服装的价格应定为多少元? 解:(1)当40≤x ≤58时,设y 与x 的函数解析式为y =1k x +1b ,由图象可得 111140605824k b k b +=⎧⎨+=⎩,解得112140k b =-⎧⎨=⎩.∴y =-2x +140. 当58<x ≤71时,设y 与x 的函数解析式为y =2k x +2b ,由图象可得 222258247111k b k b +=⎧⎨+=⎩,解得22182k b =-⎧⎨=⎩,∴y =-x +82. 综上所述:y =()()21404058825871x x x x ⎧-+⎪⎨-+⎪⎩≤≤<≤.(2)设人数为a ,当x =48时,y =-2×48+140=44,∴(48-40)×44=106+82a ,解得a =3; 答:该店员工人数为3人.(3)设需要b 天,该店还清所有债务,则:b [(x -40)·y -82×2-106]≥68400,∴b ≥()6840040822106x y -⋅-⨯-,当40≤x ≤58时,∴b ≥()()68400402140270x x --+-=26840022205870x x -+-,x =()22022-⨯-=55时,-22x +220 x -5870的最大值为180,∴b ≥68400180-,即b ≥380; 当58<x ≤71时,b ≥()()684004082270x x --+-=2684001223550x x -+-,当x =()12221-⨯-=61时,-2x +122 x -3550的最大值为171,∴b ≥68400171,即b ≥400. 综合两种情形得b ≥380,即该店最早需要380天能还清所有债务,此时每件服装的价格应定为55元.※精品试卷※推荐下载。
(江苏专版)2019年中考数学一轮复习 第三章 函数及其图象 3.1 平面直角坐标系与函数(试卷部分)课件
A.5 L B.3.75 L C.2.5 L D.1.25 L 答案 B 由图可知:前4 min进水速度为20÷4=5(L/min),后8 min实际进水量为30-20=10(L),实 际进水速度为10÷8=1.25(L/min),又实际进水速度=进水速度-出水速度,故每分钟出水量为5-1. 25=3.75(L).故选B. 思想方法 读懂题意,数形结合分析问题.
答案 A 由题意可得AM=AC= ( 2)2 ( 2)2 =2,所以0≤x≤3.
当0≤x≤1时,如图1所示,
图1 可得y=2× 2 x=2 2 x; 当1<x≤2时,如图2所示,连接BD,与AC交于点O,过F作FG⊥BD于G.
图2
易知CE=DF= 2 (x-1),所以DF+DE=DE+CE= 2 ,所以y=2 2 ; 当2<x≤3时,如图3所示,设AD与l2交于点P,AB与l2交于点Q,
米/分;
解析 (1)24;40.
(2)v甲= 2 4=0400(米/分),
60
v甲+乙= 2 4=01000(米/分),
24
∴v乙=v甲+乙-v甲=100-40=60(米/分),
故乙到达学校所用时间为 2 4=0400(分钟),
60
线段AB表示:当乙到达学校,甲离学校的距离y(米)与甲从学校出发t(分钟)之间的函数关系, ∴线段AB的表达式:y=40t(40≤t≤60).
6.(2016苏州,9,3分)矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA 的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为 ( )
A.(3,1)
B.
3,
4 3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1节平面直角坐标系及函数
(必考,1~2道,2018A、B卷考查1道,2018、2015,A、B卷考查2道,4或8分)
玩转重庆10年中考真题(2008~2018年)
命题点1 平面直角坐标系中点的坐标特征(10年2考,单独考查、与概率结合考查各1次)
1. (2015重庆B卷4题4分)在平面直角坐标系中,若点P的坐标为(-3,2),则点P所在的象限是( )
A. 第一象限
B. 第二象限
C. 第三象限 D . 第四象限
命题点2函数自变量的取值范围(10年4考)
2. (2018重庆A卷7题4分)函数y=1
x+2
中,x的取值范围是( )
A. x≠0
B. x>-2
C. x<-2
D. x≠-2
命题点3 分析判断函数图象(必考)
类型一实际问题中函数图象的分析判断(10年13考)
判断函数图象(10年7考,2010~2014年连续考查)
3. (2014重庆A卷10题4分)2014年5月10日上午,小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿.接到通知后,小华立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一会儿,小华继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为x,录入字数为y,下面能反映y与x的函数关系的大致图象是( )
4. (2012重庆8题4分)2012年“国际攀岩比赛”在重庆举行.小丽从家出发开车前去观看,途中发现忘了带门票,于是打电话让妈妈马上从家里送来,同时小丽也往回开,遇到妈妈后聊了一会儿,接着继续开车前往比赛现场.设小丽从家出发后所用时间为t,小丽与比赛现场的距离为s.下面能反映s与t的函数关系的大致图象是( )
5. (2013重庆A卷11题4分)万州某运输公司的一艘轮船在长江上航行,往返于万州、朝天门两地,假设轮船在静水中的速度不变,长江的水流速度不变,该轮船从万州出发,逆水航行到朝天门,停留一段时间(卸货、装货、加燃料等),又顺水航行返回万州,若该轮船从万州出发后所用的时间为x(小时),轮船距万州的距离为y(千米),则下列各图中,能够反映y与x之间函数关系的大致图象是( )
分析函数图象(近3年A、B卷连续考查)
6. (2015重庆A卷10题4分)今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示,下
列说法错误
..的是( )
A. 小明中途休息用了20分钟
B. 小明休息前爬山的平均速度为每分钟70米
C. 小明在上述过程中所走的路程为6600米
D. 小明休息前爬山的平均速度大于休息后爬山的平均速度
第6题图
7. (2018重庆B卷17题4分)为增强学生体质,某中学在体育课中加强了学生的长跑训练.在一次女子800米耐力测试中,小静和小茜在校园内200米的环形跑道上同时起跑,同时到达终点;所跑的路程s(米)与所用的时间t(秒)之间的函数图象如图所示,则她们第一次相遇的时间是起跑后的第________秒.
第7题图
8. (2018重庆A卷17题4分)甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息.已知甲先出发30秒后,乙才出发.在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是________米.
第8题图
9. (2018重庆B卷17题4分)甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车。