变频器整流桥电路图之电路运作
变频器基本电路图

变频器基本电路图目前,通用型变频器绝大多数是交—直—交型变频器,通常尤以电压器变频器为通用,其主回路图(见图1.1),它是变频器的核心电路,由整流回路(交—直交换),直流滤波电路(能耗电路)及逆变电路(直—交变换)组成,当然还包括有限流电路、制动电路、控制电路等组成部分。
1)整流电路如图1.2所示,通用变频器的整流电路是由三相桥式整流桥组成。
它的功能是将工频电源进行整流,经中间直流环节平波后为逆变电路和控制电路提供所需的直流电源。
三相交流电源一般需经过吸收电容和压敏电阻网络引入整流桥的输入端。
网络的作用,是吸收交流电网的高频谐波信号和浪涌过电压,从而避免由此而损坏变频器。
当电源电压为三相380V时,整流器件的最大反向电压一般为1200—1600V,最大整流电流为变频器额定电流的两倍。
2)滤波电路逆变器的负载属感性负载的异步电动机,无论异步电动机处于电动或发电状态,在直流滤波电路和异步电动机之间,总会有无功功率的交换,这种无功能量要靠直流中间电路的储能元件来缓冲。
同时,三相整流桥输出的电压和电流属直流脉冲电压和电流。
为了减小直流电压和电流的波动,直流滤波电路起到对整流电路的输出进行滤波的作用。
通用变频器直流滤波电路的大容量铝电解电容,通常是由若干个电容器串联和并联构成电容器组,以得到所需的耐压值和容量。
另外,因为电解电容器容量有较大的离散性,这将使它们随的电压不相等。
因此,电容器要各并联一个阻值等相的匀压电阻,消除离散性的影响,因而电容的寿命则会严重制约变频器的寿命。
3)逆变电路逆变电路的作用是在控制电路的作用下,将直流电路输出的直流电源转换成频率和电压都可以任意调节的交流电源。
逆变电路的输出就是变频器的输出,所以逆变电路是变频器的核心电路之一,起着非常重要的作用。
最常见的逆变电路结构形式是利用六个功率开关器件(GTR、IGBT、GTO等)组成的三相桥式逆变电路,有规律的控制逆变器中功率开关器件的导通与关断,可以得到任意频率的三相交流输出。
整流桥电路图工作原理

整流桥电路图工作原理整流桥电路是一种常见的电子电路,它通常用于将交流电转换为直流电。
在本文中,我们将深入探讨整流桥电路的工作原理,以及它在电子设备中的应用。
首先,让我们来了解整流桥电路的基本结构。
整流桥电路由四个二极管组成,这些二极管被连接成一个桥式结构。
在这个结构中,交流电输入端连接到桥的两个对角线,而直流电输出端则连接到另外的两个对角线。
当交流电输入时,整流桥电路将交流电信号转换为直流电信号,从而实现了电流的单向流动。
整流桥电路的工作原理可以通过以下步骤来解释。
首先,当正半周的交流电信号到达整流桥电路时,它将使得桥的两个二极管导通,从而使得电流通过桥的负载电阻。
在这个过程中,电流的方向是从交流电源到负载电阻,这样就实现了电流的单向流动。
当负半周的交流电信号到达时,桥的另外两个二极管将导通,同样使得电流通过负载电阻。
因此,整流桥电路可以将交流电信号转换为单向的直流电信号。
整流桥电路在电子设备中有着广泛的应用。
例如,它常常被用于直流电源的供电部分。
在这种情况下,交流电信号首先经过整流桥电路转换为直流电信号,然后再经过滤波电路进行滤波处理,最终得到稳定的直流电源。
此外,整流桥电路还可以用于电动机的控制电路中,以及各种类型的电子设备中的电源管理部分。
总之,整流桥电路是一种常见且重要的电子电路,它可以将交流电转换为直流电,并在各种电子设备中发挥着重要的作用。
通过本文的介绍,相信读者对整流桥电路的工作原理有了更深入的了解,也能更好地理解它在实际应用中的重要性。
桥式整流电路图及工作原理

桥式整流电路图及工作原理桥式整流电路如图1所示,图(a)、(b)、(c)是桥式整流电路的三种不同画法。
由电源变压器、四只整流二极管D1~4 和负载电阻R L组成。
四只整流二极管接成电桥形式,故称桥式整流。
图1 桥式整流电路图桥式整流电路的工作原理如图2所示。
在u2的正半周,D1、D3导通,D2、D4截止,电流由TR次级上端经D1→RL→D3回到TR次级下端,在负载RL上得到一半波整流电压在u2的负半周,D1、D3截止,D2、D4导通,电流由Tr次级的下端经D2→RL→D4回到Tr次级上端,在负载RL上得到另一半波整流电压。
这样就在负载RL上得到一个与全波整流相同的电压波形,其电流的计算与全波整流相同,即UL = 0.9U2IL = 0.9U2/RL流过每个二极管的平均电流为ID = IL/2 = 0.45 U2/RL每个二极管所承受的最高反向电压为什么叫硅桥,什么叫桥堆目前,小功率桥式整流电路的四只整流二极管,被接成桥路后封装成一个整流器件,称"硅桥"或"桥堆",使用方便,整流电路也常简化为图Z图1(c)的形式。
桥式整流电路克服了全波整流电路要求变压器次级有中心抽头和二极管承受反压大的缺点,但多用了两只二极管。
在半导体器件发展快,成本较低的今天,此缺点并不突出,因而桥式整流电路在实际中应用较为广泛。
二极管整流电路原理与分析半波整流二极管半波整流电路实际上利用了二极管的单向导电特性。
当输入电压处于交流电压的正半周时,二极管导通,输出电压vo=v i-v d。
当输入电压处于交流电压的负半周时,二极管截止,输出电压vo=0。
半波整流电路输入和输出电压的波形如图所示。
二极管半波整流电路对于使用直流电源的电动机等功率型的电气设备,半波整流输出的脉动电压就足够了。
变频器工作原理-整流逆变演示幻灯片

SPWM 2. 电压型正弦波脉宽调制(SPWM)
变频器及应用技术
35
2.6 SPWM变频器的工作原理:
❖所谓正弦波脉宽调制(SPWM)就是把正弦波 等效为一系列等幅不等宽的矩形脉冲波形, 如图4所示,等效的原则是面积相等。
u
u rU
uc urV
urW
O
t
u UN'
Ud
2
O
Ud
t
2
u VN'
电路有公共端,连线方便。
T
a
VT1
b
VT2
c ud
VT3
R id
图3-19 三相半波可控整流电路
10
2.3.2共阳极三相半波可控整流电路
❖电路
➢ 共阳极电路,即将三个晶 闸管的阳极连在一起,其 阴极分别接变压器三相绕 组,变压器的零线作为输
T
a
b
VT1 VT2
c
VT3
出电压的正端,晶闸管共 阳极端作为输出电压的负 端,如图2-26所示。
16
(3)ud一周期脉动6次,每次脉动的波形都一样,所以三相全桥电路称 为6脉波整流电路;
(4)需保证同时导通的2个晶闸管均有脉冲: 可采用两种方法:一种是宽脉冲触发(大于600)
另一种是双脉冲触发(常用):在Ud的六个时间段,均给应该导 通的SCR提供触发脉冲,而不管其原来是否导通。所以每隔600 就需要提供两个触发脉冲。 实际提供脉冲的顺序为:1,2 - 2,3 - 3,4 - 4,5 - 5,6 - 6,1 - 1,2,不断 重复。 (5)晶闸管承受的电压波形与三相半波时相同, 晶闸管承受最大正、反向电压的关系也相同为:
➢ 这种共阳极电路接法,对
整流桥电路图原理图解析图解

整流桥电路图原理图解析
如图所示,通用变频器的整流电路是由三相桥式整流桥组成。
它的功能是将工频电源进行整流,经中间直流环节平波后为逆变电路和控制电路提供所需的直流电源。
三相交流电源一般需经过吸收电容和压敏电阻网络引入整流桥的输入端。
网络的作用,是吸收交流电网的高频谐波信号和浪涌过电压,从而避免由此而损坏变频器。
当电源电压为三相380V时,整流器件的最大反向电压一般为1200—1600V,最大整流电流为变频器额定电流的两倍。
三相整流桥电路图
三相整流桥的作用也是将交流电流装换成直流电流,那么与单相整流桥的区别是采用6颗芯片的结构,可以完成对三相交流电的整流工作。
三相整流桥电路图根据芯片的不用有几种画法,如晶闸管与普通二
极管芯片的符号区别,但基本电路结构均是一样的。
如下图所示:采用这种二极管符号的电路图,表明该芯片是采用的普通整流二极管芯片。
其中VD1、VD2与VD3等三颗芯片共阴极连接,VD4、VD5与VD6等三颗芯片共阳极连接,VD1/VD4、VD2/VD5与VD3/VD6之间阴阳对接并用导向引出作为交流输入端。
共阴级组对接负载电器的输入端,共阳极组对接负载电器的输出端形成回路。
同单相整流桥电路图一样需要注意的是6颗二极管芯片极性不能错误放置,否则电路一样不能正常工作。
整流桥电路图工作原理

整流桥电路图工作原理整流桥电路是一种常见的电子电路,它主要用于将交流电转换为直流电。
在现代电子设备中,直流电是非常常见的电力形式,因此整流桥电路在各种电子设备中得到了广泛的应用。
本文将介绍整流桥电路的工作原理,帮助读者更好地理解这一电路的工作原理。
整流桥电路由四个二极管组成,这四个二极管分别被连接成一个桥型结构。
在整流桥电路中,交流电源的两个输出端分别连接到整流桥电路的两个输入端,而整流桥电路的两个输出端则连接到负载电阻。
当交流电源施加在整流桥电路上时,整流桥电路会将交流电转换为直流电,并将直流电送往负载电阻。
整流桥电路的工作原理可以通过以下步骤来理解,首先,当交流电源的极性为正极时,二极管D1和D3导通,而二极管D2和D4截止。
这时,电流会从交流电源的正极经过二极管D1和D3,然后流向负载电阻,最终返回到交流电源的负极。
在这个过程中,电流的流向是从正极到负极,即为正向电流,这样就实现了对交流电的半波整流。
接下来,当交流电源的极性为负极时,二极管D2和D4导通,而二极管D1和D3截止。
这时,电流会从交流电源的负极经过二极管D2和D4,然后同样流向负载电阻,最终返回到交流电源的正极。
在这个过程中,电流的流向仍然是从正极到负极,即为正向电流,这样就实现了对交流电的另一半波的整流。
通过上述步骤,整流桥电路可以将交流电转换为直流电,并将直流电送往负载电阻。
这样,负载电阻就可以得到稳定的直流电供电,从而实现了整流桥电路的基本功能。
总结一下,整流桥电路通过四个二极管的工作原理,将交流电转换为直流电,并将直流电送往负载电阻。
通过对整流桥电路的工作原理的理解,我们可以更好地应用这一电路,解决实际电子设备中的电力供应问题。
希望本文对读者能有所帮助,谢谢阅读!。
变频器电路全图及说明

《康沃CVF-G-5.5kW变频器》主电路图《康沃CVF-G-5.5kW变频器》主电路图说这台5.5kW康沃变频器的主电路,就是一个模块加上四只电容器呀。
除了模块和电容,没有其它东西了。
在维修界,流行着这样的说法:宁修三台大的,不修一台小的;小机器风险大,大机器风险小。
小功率变频器结构紧凑,有时候检查电路都伸不进表笔去,只有引出线来测量,确实麻烦。
此其一;小功率变频器,主电路就一个模块,整流和逆变都在里面了。
内部坏了一只IGBT管子,一般情况下只有将整个模块换新,投入的成本高,利润空间小。
而且万一出现意外情况,换上的模块再坏一次,那就是赔钱买卖了。
要高了价,用户不修了,要低的价,有一定的修理风险。
如同鸡肋,食之无味,弃之可惜。
修理风险也大。
大机器空间大,在检修上方便,无论是整流电路还是逆变电路,采用分立式模块,坏一只换一只,维修成本偏偏低下来了。
而大功率变频器的维修收费上,相应空间也大呀。
修一台大功率机器,比修小的三台,都合算啊。
因变频器直流电路的储能电容器容量较大,且电压值较高,整流电路对电容器的直接充电,有可能会造成整流模块损坏和前级电源开关跳闸。
其实这种强Y充电,对电容器的电极引线,也是一个大的冲击,也有可能造成电容器的损坏。
故一般在整流电路和储能电容器之间接有充电电阻和充电继电器(接触器)。
变频器在上电初期,由充电电阻限流给电容器充电,在电容器上建立起一定电压后,充电继电器闭合,整流电路才与储能电容器连为一体,变频器可以运行。
充电电阻起了一个缓冲作用,实施了一个安全充电的过程。
当负载转速超过变频器的输出转速,由U、V、W输出端子向直流电路馈回再生能量时,若不能及时将此能量耗散掉,异常升高的直流电压会危及储能电容和逆模块的安全。
BSM15GP120模块内置制动单元,机器内部内置制动电阻RXG28-60。
虽有内置制动电阻,但机器也有P1、PB外接制动电阻端子,当内置电阻不能完全消耗再行能量时,可由端子并接外部制动电阻,完成对电机发电的再生能量的耗散。
变频器的电路原理图及其调速原理

变频器电路原理图一、变频器开关电源电路变频器开关电源主要包括输入电网滤波器、输入整流滤波器、变换器、输出整流滤波器、控制电路、保护电路。
我们公司产品开关电源电路如下图,是由UC3844组成的开关电路:开关电源主要有以下特点:1,体积小,重量轻:由于没有工频变频器,所以体积和重量吸有线性电源的20~30%2,功耗小,效率高:功率晶体管工作在开关状态,所以晶体管的上功耗小,转化效率高,一般为60~70%,而线性电源只有30~40%二、二极管限幅电路限幅器是一个具有非线性电压传输特性的运放电路。
其特点是:当输入信号电压在某一范围时,电路处于线性放大状态,具有恒定的放大倍数,而超出此范围,进入非线性区,放大倍数接近于零或很低。
在变频器电路设计中要求也是很高的,要做一个好的变频器维修技术员,了解它也相当重要。
1、二极管并联限幅器电路图如下所示:2、二极管串联限幅电路如下图所示:三、变频器控制电路组成如图1所示,控制电路由以下电路组成:频率、电压的运算电路、主电路的电压、电流检测电路、电动机的速度检测电路、将运算电路的控制信号进行放大的驱动电路,以及逆变器和电动机的保护电路。
在图1点划线内,无速度检测电路为开环控制。
在控制电路增加了速度检测电路,即增加速度指令,可以对异步电动机的速度进行控制更精确的闭环控制。
1)运算电路将外部的速度、转矩等指令同检测电路的电流、电压信号进行比较运算,决定逆变器的输出电压、频率。
2)电压、电流检测电路与主回路电位隔离检测电压、电流等。
3)驱动电路为驱动主电路器件的电路,它与控制电路隔离使主电路器件导通、关断。
4)I/0输入输出电路为了变频器更好人机交互,变频器具有多种输入信号的输入(比如运行、多段速度运行等)信号,还有各种内部参数的输出“比如电流、频率、保护动作驱动等)信号。
5)速度检测电路以装在异步电动轴机上的速度检测器(TG、PLG等)的信号为速度信号,送入运算回路,根据指令和运算可使电动机按指令速度运转。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
从半波整流桥电路图怎么看整流桥好坏?ASEMI整流桥是专业把交流转变成直流的整流元件,那么变频器整流桥电路图是怎么样的,本节我们将分别从正向和反向两个方向为大家讲解:
上图所示,是输入电流为正向时,D1,D3工作,整流桥的输出波形,从它的输出波形图中可以看出,在这一方向时刻,整流桥负半轴的电流通过整流桥后都变为正半轴,这是它正向的一个工作电路图。
下图所示,为反向时它的工作电路图:
反向工作时,D2和D4工作,整流桥依然可以把负半轴的电流变为正半轴,右图当中是它的波形输出图。
图中a所示即为标准单相整流桥电路图画法,内部4个二极管的极性为D1与D2阴极对接,D4与D3阳极对接,D4/D1与D3/D2两组分别阴阳极对接,两两芯片之间用导线引出,即构成一个桥式电路,需要注意的是4个二极管的极性不能错误放置,否则电路将不能正常工作。
图中b所示即为简易画法,这种一般是工程设计草图所用到的简易标识,说明电路里需要一个整流桥产品。
通常我们所说的整流桥电路图,一般是指图a所示这样的标准图纸。
上述就是ASEMI变频器整流桥电路图的介绍。