桥梁深水基础施工方案及施工工艺

合集下载

桥梁深水基础施工方案

桥梁深水基础施工方案

问题与改进建议
01
环境保护不足
在施工过程中,存在对周围环境 产生一定的影响,需要加强环保 措施。
02
安全管理待加强
03
施工监测需完善
部分施工环节存在一定的安全隐 患,需要加强安全管理制度和培 训。
对施工过程中的监测工作有待加 强,以确保及时发现和解决潜在 问题。
项目未来发展前景
01
技术创新推动
02
安全设施设置
在施工现场设置安全设施,如安全网、安全护栏、警示标识等,确保施工安全。
安全检查与监督
定期进行安全检查和监督,及时发现和处理安全隐患,确保施工过程的安全。
06
环境保护与生态修复
水体污染控制
施工废水处理
施工废水应进行集中处理, 去除悬浮物、油和其他有害 物质,避免对水体产生污染

污水排放控制
人力资源提出较高要求。
02
工程水文地质勘察
水文情况分析
河流流量
分析施工区域的水流速度、流量及其变化规律,以判断对施工的 影响。
水位及水位变化
了解施工区域的水位高度和水位变化情况,以确定是否需要采取 防洪措施。
洪水期与枯水期
分析施工区域的洪水期和枯水期,以便合理安排施工时间。
地质勘察
地形地貌
01
基础结构施工
1 2
围堰施工
根据工程需要,选择合适的围堰类型和材料,进 行围堰施工。
沉箱施工
根据桥梁结构和工程环境,进行沉箱设计和施工 。
3
灌注桩施工
采用旋挖钻、冲击钻等施工方法,进行灌注桩施 工。
锚定系统施工
锚定桩施工
根据桥梁结构和工程环境,进行锚定桩设计和 施工。
锚定梁施工

桥梁沉井方案及施工方法(3篇)

桥梁沉井方案及施工方法(3篇)

第1篇一、引言桥梁沉井是一种常见的桥梁基础施工方法,广泛应用于深水基础、软土地基等复杂地质条件下。

本文针对桥梁沉井方案及施工方法进行详细介绍,旨在为桥梁基础施工提供参考。

二、桥梁沉井方案1. 沉井类型根据沉井的结构形式和施工方法,桥梁沉井可分为以下几种类型:(1)圆形沉井:适用于深水基础和软土地基,结构简单,施工方便。

(2)方形沉井:适用于地基承载力较好的桥梁基础,可节省材料,降低成本。

(3)矩形沉井:适用于桥梁基础宽度较大的情况,结构稳定性较好。

(4)组合沉井:由多个沉井组合而成,适用于复杂地质条件下的桥梁基础。

2. 沉井尺寸沉井尺寸应根据桥梁基础尺寸、地质条件、施工设备等因素确定。

一般而言,沉井尺寸应满足以下要求:(1)沉井内部空间足够,满足施工和设备安装需求。

(2)沉井壁厚满足抗浮和抗渗要求。

(3)沉井尺寸与地质条件相匹配,确保施工安全。

3. 沉井结构沉井结构主要包括以下部分:(1)沉井壁:采用钢筋混凝土结构,壁厚应根据地质条件和抗浮、抗渗要求确定。

(2)底板:采用钢筋混凝土结构,厚度应满足抗浮和抗渗要求。

(3)隔水层:在沉井底部设置隔水层,防止地下水渗入沉井内部。

(4)导流系统:在沉井壁上设置导流系统,方便施工过程中的排水。

三、桥梁沉井施工方法1. 施工准备(1)现场勘察:对施工现场进行勘察,了解地质条件、水文条件等。

(2)施工方案编制:根据勘察结果,编制详细的施工方案。

(3)施工设备准备:准备挖掘机、起重机、混凝土搅拌车等施工设备。

(4)人员培训:对施工人员进行技术培训和安全教育。

2. 沉井制作(1)模板制作:根据沉井尺寸和结构,制作模板。

(2)钢筋绑扎:按照设计要求,绑扎钢筋。

(3)混凝土浇筑:在模板内浇筑混凝土,确保混凝土质量。

(4)养护:混凝土浇筑完成后,进行养护,确保混凝土强度。

3. 沉井下沉(1)排水:在沉井底部设置排水系统,排除地下水。

(2)导流:在沉井壁上设置导流系统,引导水流。

桥梁深水基础施工技术(一)2024

桥梁深水基础施工技术(一)2024

桥梁深水基础施工技术(一)引言:桥梁深水基础施工技术是桥梁设计与施工中一项关键的技术,尤其在深水区域的桥梁建设中扮演着重要角色。

本文将详细介绍桥梁深水基础施工技术的相关内容,重点讨论施工过程的安全性、施工方法、材料选择等方面的要点。

正文:一、施工过程的安全性1. 桥梁深水基础施工前的场地勘察工作2. 施工前的安全预案制定与施工区域的隔离3. 安全设备与个人防护的配备4. 深水基础施工中的水下作业安全管理5. 施工现场的安全监控体系建设二、施工方法的选择1. 常用的深水基础施工方法2. 施工方法的选取原则及其适用范围3. 不同深水基础施工方法的优缺点对比4. 施工方法的调整与改良5. 施工过程中的质量控制与检测三、材料选择与使用1. 深水基础施工中常用的材料类型2. 材料选择时的考虑因素与技术要求3. 材料的品质保证体系构建4. 材料的储存与保养要点5. 材料的运输与施工现场的配送管理四、现场施工管理与协调1. 深水基础施工的人力资源管理2. 施工过程中的施工周期控制3. 各个施工单元的协调与配合4. 施工中的技术难题解决5. 施工现场的环境保护措施与管理五、桥梁深水基础施工的经验总结1. 深水基础施工中常见问题与解决方案总结2. 桥梁深水基础施工的经验教训与启示3. 深水基础施工技术的发展趋势与展望4. 推广与应用桥梁深水基础施工技术的思考5. 结语总结:本文针对桥梁深水基础施工技术进行了详细的阐述,重点关注了施工过程中的安全性、施工方法、材料选择等方面的要点。

通过对深水基础施工的安全管理、施工方法的选取、材料的选择与使用、施工现场的管理与协调等方面的探讨与总结,希望能为桥梁深水基础施工技术的提升与推广提供参考。

深水桩基施工工艺

深水桩基施工工艺

深水桩基施工工法(YJGF)一、前言深水中修建桥梁等其他建筑物时,为了确保施工安全,使基础施工方便易行,减少施工干扰,降低工程成本,可采取钢管桩水中平台方案施工水中钻孔桩的施工。

二、工法特点1、施工过程中陆地之间的联系非常方便,顺利地解决了水中运输问题,并且安全可靠。

2、平台搭设方法简单,并且施工过程中处处有平台,即使毫无水上生活经验,工人也可顺利施工而不会造成晕船现象。

三、适用范围1、水深在30米范围的深水基础施工,2、跨越水库、河流、海湾的铁路公路桥梁深水基础。

四、施工工艺(一)工艺原理将浮箱、工字钢、桁架、卷扬机、卷扬机带动的旋转底座和起重机大臂等拼装组成浮吊,利用浮吊将浮箱和工字钢组成的导向船为导向框架,使用浮吊依靠导向船打设钢管桩,搭设水中平台,以水中作业平台为依托,下设钢护筒、钻孔、下放钢筋笼、灌注混凝土。

(二)工艺流程(见图一)(三)施工方法要点1、钢管桩及钢护筒的制作钢管桩所用的钢管和钻孔的水中部分所用的钢护筒,均现场卷制。

一般选用10~14mm厚的钢板,卷成小节后,将小节焊接成大节。

每节钢管之间采用内外周圈焊接,焊缝宽度不小于2cm。

2、浮箱拼装浮箱是浮吊的基础,由若干个小钢箱组成。

小钢箱外型为长方体底部周边为圆角,顶部为长方形,钢箱钢板厚度3mm,内部有钢制中隔板,顶部焊有带螺栓眼和卡销眼的角钢及钢板,小钢箱之间通过螺栓和卡销来互相连接,顶部预留有锚栓孔,以连接固定锚机或其他需要固定的设备。

深水桩基施工工艺流程图(图一)在岸边用汽车吊依次将小钢箱吊放下水,通过螺栓连接和卡销连接并用的方式拼装成一个大浮箱。

(三)施工方法要点1、钢管桩及钢护筒的制作钢管桩所用的钢管和钻孔的水中部分所用的钢护筒,均现场卷制。

一般选用10~14mm厚的钢板,卷成小节后,将小节焊接成大节。

每节钢管之间采用内外周圈焊接,焊缝宽度不小于2cm。

2、浮箱拼装浮箱是浮吊的基础,由若干个小钢箱组成。

小钢箱外型为长方体底部周边为圆角,顶部为长方形,钢箱钢板厚度3mm,内部有钢制中隔板,顶部焊有带螺栓眼和卡销眼的角钢及钢板,小钢箱之间通过螺栓和卡销来互相连接,顶部预留有锚栓孔,以连接固定锚机或其他需要固定的设备。

深水桥梁基础施工

深水桥梁基础施工

深水区桥梁基础施工渝怀铁路沿线经过重庆市、贵州省和湖南省,山高坡陡,溪河纵横,地形、地貌、地质条件非常复杂,使沿线桥隧分布较密,而且高桥、特大桥、多线桥、复杂桥以及长大隧道等分布较广。

本线桥梁基础分为扩大基础和桩基础两大类。

其中深水区桥梁基础施工方案叙述如下:㈠、工程概况()桥位于()省境内,上跨()河,该桥()墩位于深水中,水深约()米,设计为钻孔桩桩基础,设计为高桩承台。

上部为()。

地质水文情况为:()。

主要工程量为()。

㈡、总体施工方案⒈据我单位以往的深水区桥梁基础施工经验,总体方案设计如下:⑴方案一:搭设以钢管桩为支撑的施工平台形成水上施工场地。

利用双壁钢围堰围水进行水下圬工的施工。

采用施工便桥和舟船运输两条线路相结合的运输系统。

⑵方案二:采用双壁钢沉箱浮运方案。

㈢、双壁钢围堰方案1.主要施工顺序为:搭设施工平台→桩基础施工→双壁钢围堰围水→承台及墩身浇筑→拆除2.施工平台①结构形式施工平台的结构形式设计时不仅要考虑水上桩基的施工问题,而且还要考虑到下步双壁钢围堰拼装下沉及水下圬工的施工问题。

本方案施工平台采用矩形平面,长()米,宽()米。

见下图。

平台顶面标高()米=洪水位()米+浪涌()米+安全高度0.8米。

平台基础采用Φ325钢管桩支撑,网格型布置,每根长度为()米,共计()根,支撑桩端部设置在()地质层上(据具体情况个别设计)。

平台上部采用I32a型工字钢做为纵横联,与支撑钢管焊接相连。

平台顶面铺设5cm的车行板,外围设防护栏杆。

②平台搭设施工工艺平台搭设施工工艺见下图平台搭设施工工艺框图平台搭设施工a.施工准备:施工机具:使用打桩船、水上浮吊、运输船等水上施工设备,采用电动打桩锤施打平台支撑桩,根据施工需要,加工所需的桩帽、桩卡、替打和送桩器等。

测量放样:在岸边测设大地四边形,计算墩位等相关数据,利用两台经纬仪,采用交会法准确测出每根支撑桩桩桩位。

纵向经纬仪控制桩及桩架的纵向垂直度,横向经纬仪控制导向桩及桩的预留斜度和横向垂直度;二者交会则定出桩位中心点。

资阳沱江二桥深水基础施工工艺

资阳沱江二桥深水基础施工工艺

资阳沱江二桥深水基础钻孔平台施工四川路桥集团桥梁分公司仇宁涛田炜关键词:深水基础钻孔平台施工1.工程概况:四川资阳沱江二桥位于资阳城东五公里处,主桥为5×40米简支T梁。

桥墩结构为单排3柱式墩,墩中心距离7.2米。

桩基础直径2.0米,墩身直径1.8米。

大桥主桥8∽11墩位于主河床中,最大水深8号墩处12米,最小水深11号墩处1.3米。

由于桥位处开采砂石,水深呈无规律变化。

各墩覆盖层厚度为4∽11米,基本为4∽20厘米的卵石堆积,含沙量很少。

桥位下游30公里处为一座电站,造成沱江水流速很缓,在发电时最大流速低于0.5米/秒。

基岩为较软的页岩。

2.总体施工方案结合本桥河床断面、覆盖层、地质和水深情况,决定采用适应性最强的钢管桩钻平台施工方案。

由于基岩较软,钢管桩在40吨震动锤作用下,可以轻松穿过卵石覆盖层,直接进入基岩强风化层。

在此特殊情况下,较以往的钢管桩平台,在本桥实施时省去了水面以下的钢管间空间连接,节省钢管约30%。

3.龙门船和浮桥3.1龙门船水上施工需要起重机械,本区域没有浮吊,船支最大吨位为60吨运沙船。

我们决定利用运输船拼装成龙门船,作为水上唯一动力机械。

龙门船需要转移冲锤(7吨),完成从桩基础到盖梁施工任务(15米高)。

因此龙门船设计参数为:最大吊重10吨,最大吊高18米。

3.2龙门船构造采用两艘60吨运输船作为承重船,在其上拼装万能杆件门式起重结构。

立柱采用万能杆件N1单肢拼装,基本尺寸为2米×2米,底部尺寸为2米×6米,两船间立柱中心距离12米,高度12米。

起重横梁采用万能杆件N1双肢拼装,尺寸为2米×2米。

与传统龙门船不同的是,本龙门船在桩基钻孔施工前将其横梁顶部一端接高6米,并向外悬拼4米,设计吊重10吨,从而解决了盖梁难题,并将桩基钢筋笼制作由3节段改为2节段制作,不仅节约了时间和成本,还大大降低了跨孔的风险险。

3.3龙门船拼装3.3.1在60吨运输船低部焊接20工字钢基础。

研发大跨度深水深基础桥梁建造技术

研发大跨度深水深基础桥梁建造技术

一、绪论随着我国经济的快速发展和城市化进程,交通基础设施建设的需求日益增长。

大跨度深水深基础桥梁作为重要交通载体,在跨越江、海、湖等水域时具有显著优势。

此外,深水深基础桥梁建造技术还能为我国海洋战略、一带一路倡议等提供有力支持。

二、大跨度深水深基础桥梁建造技术(一)深水基础施工技术:研究新型桩基、沉井、钢管桩等基础形式,优化施工工艺,提高施工效率和安全性。

钻孔桩施工技术:钻孔桩是一种在深水或复杂地质条件下常用的基础形式。

施工过程中,先在水面下钻挖一个孔洞,然后将钢筋混凝土桩吊入孔中,最后灌注混凝土形成桩基础。

钻孔桩施工技术的关键在于控制钻孔精度、防止孔壁塌陷、确保桩身质量等。

钢板桩围堰施工技术:钢板桩围堰是一种常用的深水基础施工方法,适用于深水、流速较大的水域。

施工过程中,先在水中打入钢板桩,形成一个封闭的围堰,然后在围堰内部施工基础结构。

钢板桩围堰施工技术的关键在于确保钢板桩的打入深度、围堰的密封性以及基础施工的安全性。

锁口钢管桩围堰施工技术:锁口钢管桩围堰是一种在深水、岩层地质条件下常用的基础施工方法。

施工过程中,先在水中钻挖钢管桩的孔洞,然后将钢管桩插入孔中,并采用焊接或锁口方式连接。

锁口钢管桩围堰施工技术的关键在于钢管桩的插打精度、孔壁稳定性以及围堰的整体稳定性。

双壁钢套箱围堰施工技术:双壁钢套箱围堰是一种适用于深水、复杂地质条件下的基础施工方法。

施工过程中,先在水中组装双壁钢套箱,然后将套箱下沉至设计位置,并在内部施工基础结构。

双壁钢套箱围堰施工技术的关键在于套箱的组装、下沉及密封性控制。

钢吊箱围堰施工技术:钢吊箱围堰是一种适用于深水、大型基础工程的基础施工方法。

施工过程中,先在陆地上预制钢吊箱,然后通过吊装设备将钢吊箱安装到设计位置,并在内部施工基础结构。

钢吊箱围堰施工技术的关键在于吊箱的预制质量、安装精度以及基础施工的安全性。

(二)深水深基础大跨度钢桁梁施工技术:是在水域环境中针对大跨度钢桁梁结构进行安装和施工的一整套技术方法。

桥梁深水基础施工方案

桥梁深水基础施工方案

桥梁深水基础施工方案1. 引言深水基础施工是指在水下的一种基础施工工艺,常见于桥梁的建设项目中。

由于深水区域的水深较大,传统的基础施工方法已无法适应深水建设需求,因此需要采用新的技术方法和工艺来解决深水桥梁基础的施工问题。

本文将根据深水桥梁基础施工的特点和要求,提出一套具体的施工方案,并对其进行详细的介绍和分析。

2. 深水桥梁基础施工方案2.1 数据准备在进行深水桥梁基础施工前,首先需要进行数据准备工作。

包括但不限于测量水深、水下地质勘探、海底地质调查等。

这些数据将为后续施工提供重要的依据。

2.2 桩基施工桩基施工是深水桥梁基础施工的关键环节,常见的桩基类型有钻孔灌注桩、钢管灌注桩等。

深水桥梁基础桩基施工的具体步骤如下:1.在水下用定位设备确定桩位,使用起重机将桩机吊装到预定位置。

2.根据设计要求,在水下钻孔取土,并进行相应的测量和监测。

3.在钻孔中注入预制筏板灌注桩桩体。

4.桩基完成后,进行桩身的检查和测试,并对不符合要求的桩体进行修补或更换。

2.3 埋管施工桥梁的深水基础中,埋管施工是常见的一种方式。

埋管的材质多为钢管、混凝土管等。

深水桥梁基础埋管施工的步骤如下:1.在水下用测量仪器确定管道的位置和长度。

2.使用沉管技术将管道沉入海底,其中包括管道的下沉、固定等工作。

3.对管道进行自流沉管或者使用定位器控制下沉过程。

4.完成管道的下沉后,进行管道连接和固定,确保管道的稳固和牢固。

2.4 其他施工工艺除了桩基和埋管施工外,深水桥梁基础施工还可以采用吹砂、砂水泥注浆等工艺。

这些工艺可以在施工过程中根据实际需求进行选择和应用。

3. 施工安全措施在深水桥梁基础施工过程中,为保障施工人员的安全,采取以下安全措施:1.现场人员必须配备防滑鞋、救生衣等个人防护装备,并接受相关安全培训。

2.严格按照操作规程进行操作,防止发生危险事故。

3.施工现场必须划定安全警戒区,禁止非施工人员进入施工区域。

4.安排专人进行安全监督和巡视,确保施工过程中的安全。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.2.1.某桥梁深水基础施工方案及施工工艺5.2.1.1.概况大桥位于巴中侵蚀低山区,在曾口场下游约3km跨越某河,桥位处航道等级为Ⅶ级,航道尺度(航深×航宽×回旋半径)0.9×12×249m ,桥位处河面宽约110m。

本桥采用大跨混凝土连续梁桥,中心里程为D1K24+610,桥跨布置:8×32+(48+80+48)+7×3。

桥位处轨底至河底高50m。

两座桥梁下部结构均采用T形桥台,圆端形桥墩及圆端形空心墩,基础采用钻(挖)孔桩基础。

水中墩基础采用双壁钢围堰施工,需搭设水中栈桥及钻孔平台。

5.2.1.2.施工方案见“表5.2.1-1”。

5.2.1.3.施工方法及工艺本桥陆地桩基、浅水桩基、墩台、现浇连续梁施工法同“3.5.桥梁工程”,不再详述。

重点主要是深水基础施工,施工方法及措施如下:表5.2.1-1 深水基础施工方案表5.2.1.3.1.施工栈桥施工分别从两岸浅水区修建便道,再分别搭设栈桥,栈桥宽6m,栈桥为15m一跨,每个临时墩布置3根Φ80cm钢管桩、桩间设置横向剪刀撑连接系,桩顶设置钢结构分配梁,栈桥梁部采用贝雷梁拼装、铺设桥面板,栈桥与桥墩基础施工平台连接,以保证吊机到墩位作业。

具体见施工栈桥示意图5.2.1-1。

栈桥基础采用打入钢管桩,钢管桩顶部设型钢承台,承台上设钢支座,沿线路纵向架设贝雷梁,贝雷梁上部沿栈桥横纵向架设工字钢作桥面分配梁,与贝雷梁之间联结采用勾头螺栓连接,上部铺设钢板,与工字梁焊接。

贝雷梁横向之间设剪刀撑,确保施工栈桥整体稳定。

钢管桩直径采用Φ60cm,钢板壁厚12mm,长度根据设计荷载及地质状况综合考虑布设要求经计算确定。

(1)钢管桩施工履带吊停放在已施工完成的施工便道,吊装悬臂导向定位支架,悬臂导向定位支架精确就位后,运输钢管桩就位。

履带吊机起吊底节钢管桩吊至设计桩位并插桩,让钢管桩自沉入土,待一组全部钢管桩就位后,用履带吊将振动锤与液压夹钳吊至钢管桩顶口,用液压夹钳将钢管桩顶口夹住检查桩的垂直度满足要求后,开动振动锤振动,每次振动持续时间不宜超过10~15min,过长则振动锤易遭到破坏,太短则难以下沉。

每根桩的的下沉一气呵成,不可中途停顿或较长时间的间隙,以免桩周土恢复造成继续下沉困难。

单根桩节按起吊高度和重量控制最大为15m,单根桩长超过15m分为2节,底节钢管桩入土至导向架施工平台上0.5~1.0m高度时,移去振动锤进行接桩。

用履带吊将顶节钢管桩就位后,逐根就位,钢管桩就位后进行两节桩的焊接,同时履带吊换上桩锤和液压夹钳。

桩与桩之间焊接质量经检查合格后重新进行打桩,直至将桩打到设计深度。

栈桥纵断面布置图A--A断面A说明:图中尺寸除注明以外,均以cm计。

6*1500=9000图5.2.1-1 施工栈桥结构示意图沉桩导向架设计:栈桥设计跨度为等跨15m,定位的思路考虑利用架桥机的原理,采用贝雷桁架与型钢加工形成一整体悬臂导向架,贝雷桁架长13m,导向架末端与已经铺设完成的栈桥前端贝雷梁销接,导向架前端按设计的桩位预留孔位并设置导向系统。

先利用已经形成的栈桥作为待施工钢管桩的粗定位导向,再利用前端导向架上的微调系统完成钢管桩的精确定位。

通过此导向架系统可以将水上定位转变为陆上定位,避免由于水流对定位的影响。

施工中将导向架加工为整体结构。

施工完一跨栈桥后,利用履带吊将导向架整体吊装与栈桥主梁连接,精确放出桩位,调整导向轮位置控制桩位后,履带吊配合振动锤沿测定孔位打桩。

一排钢管桩振打完毕将导向架移开,铺设分配梁、主梁及桥面系,然后转入下一孔便桥施工。

(2)栈桥架设打桩施工完成后,检查桩的偏斜及入土深度与设计无误后,在钢管桩之间安设型钢剪刀撑使其形成整体。

同时在桩顶按设计尺寸气割槽口,并保证底面平整;标准跨先吊放2根Ⅰ32a横向型钢分配梁,与钢管桩焊接固定;每联接头桩位置先吊装纵向分配梁,并与钢管桩焊接固定,在其上再吊放横向分配梁。

钢管桩施工完成以后,施工栈桥采用履带吊机架设贝雷桁架主桁纵梁,贝雷桁架在拼梁场分组拼装,汽车运至铺设位置,吊机起吊安装成主桁整体,并与分配梁连结。

施工栈桥钢梁架设详见图5.2.1-2。

桥面施工:在已架设好的贝雷桁架纵梁上安装桥面系,其中Ⅰ22a横梁与贝雷桁架纵梁的连接采用骑马螺栓连接,Ⅰ12.6a面板纵肋满焊在Ⅰ22a面板横肋上。

标准化模块间设置1cm的缝隙,用于防止因温度变化而引起的桥面板翘曲起伏。

栈桥栏杆立杆及横杆均采用Φ48×3.5mm普通钢管制作。

栏杆采用在岸上加工区统一制作连接成片,运至栈桥吊装焊接。

栈桥两侧均设置栏杆,在每联接头处断开。

栏杆按设计图纸设置立柱,焊接在桥面系横梁上。

栈桥栏杆通过粉刷不同颜色油漆以区分禁吊区和非禁吊区,并在栈桥上设置警示灯和夜间照明设施。

履带吊贝雷桁架图5.2.1-2 施工栈桥钢梁架设图5.2.1.3.2.深水桩基施工钻孔桩施工工艺流程:钻孔施工平台建立→插打钢护筒→安装钻机、钻孔→一次清孔→拆除钻具→检孔→安装钢筋笼、导管→二次清孔→浇筑水下混凝土→桩身混凝土质量检查。

(1)主要施工设备及机具①水上浮吊水上高架浮吊主要由六七式铁路战备舟桥器材的标准舟节、分水节、公路栈桥箱形梁、托架、电动锚机及动臂吊机组成的水上起重设备,岸上到水中及水中的所有起重吊装作业全部由浮吊来完成。

浮吊的性能:最大起重20吨,最大起重高度30米,起重幅度6—18米,起重臂旋转角度220度。

其拼组形式见图5.2.1-3。

顶 视 图侧 视 图12.55m栈桥梁图5.2.1-3 浮吊拼组形式图②运输船运输船由标准舟节、公路栈桥梁、电动锚机等拼组而成,由机动舟顶推,运送成孔钻机、钢护筒、钢筋笼、钢模板、混凝土或其它材料;根据现场施工的实际需要,可调整标准舟节的数量来改善运输能力,其拼组形式见图5.2.1-4。

③浮运龙门船浮运龙门船由中—60浮箱、六五式军用墩和六四式军用梁、天车等拼组而成,在浮运船上设立两组龙门吊。

④钢围堰拼组浮平台钢围堰拼组浮平台由中—60浮箱、箱形栈桥梁、电动锚机等组成,用于双壁钢围堰底节部分拼组时的作业平台。

⑤机动舟机动舟(300马力)是水上运输的主要动力设备,用来顶推浮吊、浮运龙门船、浮平台及运输船到位作业。

⑥钻机钻孔采用ZSD2500型气举反循环旋转钻机(每个主墩上二台),在砂性土及淤泥层采用三翼钻头钻进,在基岩中换成牙轮钻头钻进。

⑦泥浆机每台钻机配置ZX-500型泥浆制备分离系统一套,并将护筒间用泥浆槽(用钢板焊接而成)连接用于泥浆循环,墩旁配备泥浆船,满足钻孔废浆、废渣排放需要,采用膨润土按比例掺入CMC、PHP、Na2CO3配制的优质泥浆。

(2)钻孔平台深水中各墩桩基础均采用固定式水上平台法进行钻孔施工,栈桥施工完毕后,然后将履带吊机移动并固定在栈桥端头,同时用浮箱拼装水上导向架平台,定位。

利用拼装吊机及60T电动振动锤插打平台支撑钢管桩和拼装钻孔平台,配合导向架插打钢护筒。

平台以打入Φ600mm钢管作支撑,平台顶面标高高于施工水位以上1.0m,平台由钢管桩、工字钢梁、牛腿及木板组成。

各桩位置除了考虑工字钢梁的受力外,也要考虑到下护筒、钢套箱时方便导向、定位等因素。

为防止涨退潮对钢管桩的冲击,需加大钢管桩的壁厚及增加钢管桩之间的横向连接系。

经初步计算,钢管桩单根承载力按20t考虑,打入深度视不同位置的地质情况以满足承载力要求经计算确定。

为了保证平台基础钢管桩的垂直度,避免基础钢管桩侵入桥墩桩基后造成后续施工困难,平台钢管桩施工前采用全站仪进行精确定位,施工过程中采用2台经纬仪来控制钢管桩的倾斜度。

位于主航道上的桥墩基础,运输、拼组、布设双壁钢围堰作业,主要由水上施工设备来完成。

(3)钻孔①钢护筒制作桩护筒采用厚度12mm的钢板螺旋形卷制而成,在工厂整体加工焊接好后运至工地,直径误差一般小于1cm,所有焊缝要求采用坡口双面焊,钢护筒进场后有专人检查焊缝以保证不漏水。

②护筒埋设平台搭设时将钢护筒的位置预留出来,护筒埋设前在平台上精确测放出钢护筒的中心十字线,并安装导向框架。

导向框架用工字钢焊接而成,平台顶面以上1.5m,平台以下1.5m,高度3m,平台以下用导链拉结固定于钢管桩基础上,框架与平台工字钢焊接为整体,钢护筒采用浮吊、吊车起吊,靠自重自然下沉至河床面,然后用DZ90振动锤振动下沉,边振打边采用经纬仪纠偏,直至达到要求的护筒底标高。

护筒埋设垂直度要求小于0.5%,平面中心偏差±2cm。

护筒击打到位后,采用角钢与平台钢管焊接成为整体,以防止水流冲击倾斜和增加平台的稳定和抗扭能力。

③泥浆拌制、泥浆循环及排渣主墩钻进时主要利用相邻的3~4个护筒和平台上的滤渣筒作为泥浆循环用。

泥浆拌制是本桥桩基施工的重点之一,钻进速度和成孔质量与泥浆及泥浆循环系统有密切关系。

钻孔时由相邻的几个护筒相通并和泥浆船、泥浆净化器构成循环系统,钻孔前运浆船将岸上拌制的泥浆运到墩位,由输送管将泥浆泵送供应到各钻孔桩护筒内。

钻进过程中泥浆及钻渣的混合物进入泥浆净化器,进行泥浆净化,分离出的钻渣用运渣船运到岸上处理,净化后的泥浆再输送回各钻孔护筒内使用。

泥浆按墩位处地质情况进行反复试配,钻孔泥浆选用优质粘土或膨润土,经试验室配比试验确定,在生产区用拌浆机拌制。

钻孔时泥浆比重选1.05~1.15左右,清孔时选1.10左右,粘度22s,新制泥浆含砂率小于3%,胶体率大于95%,PH值大于8.5。

④钻孔顺序由于承台下桩基数量较多,间距较小,为防止两相邻钻机作业时由于振动或相互间水头作用影响,使下部的地层因扰动而发生塌孔乃至串孔,按隔桩钻进的原则施工,严禁相邻两根桩同时开钻;对已灌混凝土的桩基至少静置 24h后周围桩才可开钻。

⑤成桩施工钢筋笼在岸上集中加工并按要求设声测管,通过栈桥、运输船运送至墩旁,吊机配合安装。

混凝土由两岸混凝土拌合站生产,通过栈桥上输送泵管道输送至桩位漏斗,导管法浇筑水下混凝土。

(4)双壁钢围堰施工钻孔桩完毕后双壁钢围堰下沉封底进行承台及墩身桩施工,承台、墩身施工施工完毕后拆除钢围堰。

双壁钢围堰施工工艺见图5.2.1-5。

图5.2.1-5 双壁钢围堰施工工艺流程图①双壁钢围堰结构设计综合考虑加工制作、运输方式、起重能力、下沉工艺等均应满足施工要求,将钢套箱平面分为10块。

钢围堰高度以高出最高水位1.0m 确定,竖向分为节制作安装。

双壁钢围堰采用无底矩形双钢壳隔仓式结构,壁厚120cm ,钢套箱设刃脚,刃脚高度60cm ,底宽10cm ,刃脚用100#角钢加强,内部结构净空比承台每边尺寸大出100cm 。

围堰结构采用角钢焊接成矩形框架,框架内外焊接钢板作内外壁,形成大断面矩形双壁钢围堰。

相关文档
最新文档