八年级上学期期末数学试卷 (解析版)
2023-2024学年辽宁省大连市沙河口区八年级(上)期末数学试卷(含解析)

2023-2024学年辽宁省大连市沙河口区八年级(上)期末数学试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列亚运会的会徽中,是轴对称图形的是( )A. B. C. D.2.下列长度的三条线段中,能组成三角形的是( )A. 3cm,5cm,8cmB. 8cm,8cm,18cmC. 1cm,1cm,1cmD. 3cm,4cm,8cm3.在△ABC中,若∠A:∠B:∠C=1:2:3,则△ABC三个内角度数分别是( )A. 30°,60°,90°B. 45°,45°,90°C. 20°,40°,60°D. 36°,72°,108°4.点(−4,3)关于x轴对称的点坐标是( )A. (−4,−3)B. (4,3)C. (4,−3)D. (3,−4)5.计算2−3的结果是( )A. 8B. 0.8C. −8D. 186.下列计算正确的是( )A. x3⋅x−3=0B. x2⋅x3=x6C. (x2)3=x5D. x2÷x5=1x37.如图是一个钝角△ABC,利用一个直角三角板作边AC上的高,下列作法正确的是( )A. B.C. D.8.在解一个分式方程时,老师设计了一个接力游戏,规则是:每人只能看见前一个人给的式子,进行一步计算后将结果传递给下一个人,最后完成计算.下面是其中一个组的解答过程,老师给甲,甲一步计算后写出结果给乙,乙一步计算后写出结果给丙,丙一步计算后写出结果给丁,丁最后算出结果.老师:3x−1=1−xx+1.甲:3(x+1)=(x+1)(x−1)−x(x−1).乙:3x+3=x2+1−x2+x.丙:3x−x=1−3.丁:解得,x=−1.在接力中,出现计算错误步骤的同学是( )A. 甲B. 乙C. 丙D. 丁9.如果二次三项式a2+mab+b2是一个完全平方式,那么m的值是( )A. 1B. 2C. ±2D. ±110.在如图的3×3正方形网格中,A,B两点都在小方格的顶点上,如果点C也是图中小方格的顶点,且△ABC是等腰三角形,那么点C的个数是( )A. 2B. 3C. 4D. 5二、填空题:本题共5小题,每小题3分,共15分。
四川省乐山市市中区2023-2024学年八年级上学期期末数学试题(解析版)

2023-2024学年四川省乐山市市中区八年级(上)期末数学试卷一、选择题:本大题共10个小题,每小题3分,共30分.1. 下列各数中,是无理数的是( )A. B. 0 C. D. 【答案】D【解析】【分析】本题考查的是无理数的识别.根据无理数是无限不循环小数解答即可.【详解】解:A 、是整数,属于有理数,故本选项不符合题意;B 、0是整数,属于有理数,故本选项不符合题意;C,3是整数,属于有理数,故本选项不符合题意;D 、是无理数,故本选项符合题意;故选:D .2. 下列计算结果是a 5 的是( )A. a 2+a 3B. a 10÷a 2C. (a 2)3D. a 2·a 3【答案】D【解析】【分析】根据实数的运算依次计算即可选出正确答案.【详解】解:A .a 2与a 3不属于同类项,所以不能相加,故A 不符合题意;B .a 10÷a 2=a 10-2=a 8,故B 不符合题意;C .(a 2)3=a 6,故C 不符合题意;D .a 2•a 3=a 5,故D 符合题意;故选:D .【点睛】本题考查实数的运算,涉及同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方和积的乘方,熟练掌握计算法则,细心运算是解题关键.3. 计算的结果为( )A. 3B. C. D. 【答案】D【解析】3-π3-3=π10099133⎛⎫-⨯- ⎪⎝⎭3-1313-【分析】本题主要考查积的乘方公式,正确进行公式的变形是关键.逆用积的乘方公式即可求解.【详解】解:原式故选D .4. 下列命题是真命题的有( )①等边三角形3个内角都为;②斜边和一条直角边分别相等的两个直角三角形全等;③全等三角形对应边上的高相等;④三边长分别为5,12,13的三角形是直角三角形.A. 4个B. 3个C. 2个D. 1个【答案】A【解析】【分析】本题考查了真假命题的判断.根据全等三角形的性质,等腰三角形的性质以及勾股定理逆定理逐项判断即可作答.【详解】解:①等边三角形3个内角都为,本项是真命题;②斜边和一条直角边分别相等的两个直角三角形全等,本项是真命题;③全等三角形对应边上的高相等,本项是真命题;④∵,∴三边长分别为5,12,13的三角形是直角三角形,本项是真命题.综上,①②③④都是真命题;故选:A .5. 如图,要测量河岸相对的两点A 、B 间的距离,先在的垂线上取两点C 、D ,使,再定出的垂线,使点A 、C 、E 在同一条直线上,测量的长度就是的长,这里,其根据是( )A. B. C. D. 【答案】C 9999113()()33=-⨯-⨯-13=-60︒60︒22251213+=AB BF BC CD =BF DE DE AB ABC EDC △≌△S.A.SA.A.S A.S.A H.L【解析】【分析】本题主要考查全等三角形的应用,熟练掌握全等三角形的判定方法是解题的关键.根据全等三角形的判定方法进行证明即可.【详解】解:在和中,故选C .6. 如图,在数轴上,A 、B ,点A 是线段的中点,则点C 所对应的实数为( )A. B. C. D. 【答案】D【解析】【分析】本题主要考查数轴上表示的数以及中点的定义,熟练掌握数轴上两点之间的距离计算是解题的关键.由点A 是线段的中点,得到,即可得到答案.【详解】解:设点C 所对应的实数为,点A 是线段的中点,,A 、B ,,,解得故选:D .7. 如图,中,,,,分别以它的三边为直径向上作三个半圆,则图中阴影部分的面积为( ),BF AB DE BD⊥⊥ 90ABC CDE \Ð=Ð=°ABC V EDC △90ABC EDC CB CDACB ECD ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩(ASA)ABC EDC ∴≌△△1-BC 11--22-BC AC AB =x BC ∴AC AB = 1-1,(1)1AC x AB ∴=--=--=+11x ∴--=+2x =-Rt ABC △90C ∠=︒6AC =8BC =A. B. C. 24 D. 【答案】C【解析】【分析】本题主要考查勾股定理,熟练掌握勾股定理是解题的关键.先求出直角三角形的斜边,再进行计算即可.【详解】解: 中,,,,,,.故选C .8. 如图,中,,点O 是边垂直平分线的交点,则的度数为( )A. B. C. D. 【答案】B【解析】【分析】本题考查了线段垂直平分线的性质,三角形内角和定理,等边对等角.连接,利用线段垂直平分线的性质结合等边对等角求得,,,再利用三角形内角和定理即可求解.【详解】解:连接,4.5π8π12.5πRt ABC △90C ∠=︒6AC =8BC=10AB ===2221111346852222S πππ=⨯+⨯+⨯⨯-⨯9258242422πππ=++-=ABC V 58A ∠=︒AB AC 、BCO ∠28︒32︒36︒40︒OA OB 、13∠=∠24∠∠=56∠=∠OA OB 、∵点O 是边垂直平分线的交点,∴,,∴,∴,,,∵,∴,,∴,∴,故选:B .9. 对于实数a 、b ,定义的含义为:当时,,当时,,例如:,已知,,,且x 和y 为两个连续正整数,则的算术平方根为( )A. 16B. 8C. 4D. 2【答案】D【解析】【分析】本题主要考查新定义,准确理解题意是解题的关键.根据题意求出的值即可得到答案.,由于x 和y 为两个连续正整数,,,的算术平方根为,故选D .10. 如图,中,,交于E ,C 为上一点,.若,AB AC、OA OB =OA OC =OA OB OC ==13∠=∠24∠∠=56∠=∠58A ∠=︒354618058122∠+∠+∠+∠=︒-︒=︒123458BAC ∠+∠=∠+∠=∠=︒561225864∠+∠=︒-︒=︒1664322BCO ∠=∠=⨯︒=︒{},min a b a b <,{}min a b a =a b >,{}b min a b =2}2{1,min =--}min x x =}min y =x y 、x >y <34<<3,4x y ∴==4==2ABD △45D ∠=︒BE AC ⊥AD BD AB AC =2BC =则的长为( )A. 1B. C. D. 2【答案】B【解析】【分析】本题考查了等腰三角形的性质,全等三角形的判定和性质,三角形的外角性质.作于点,作于点,求得,再求得,,从而求得,根据证明,据此求解即可.【详解】解:设,作于点,作于点,∵,∴,,∵,垂足为,∴,∴,∵,∴,∵是的一个外角,∴,而,∴,∴,∴,DEAF BC ⊥F EH BD ⊥H CAF BAF DBE α∠=∠=∠=45AEB α∠=︒+45BAE α∠=︒+BA BE =AAS BAF EBH ≌△△DBE α∠=AF BC ⊥F EH BD ⊥H AB AC =112BF CF BC ===BAF CAF ∠=∠BE AC ⊥G 90AFC BGC ∠=∠=︒90CAF BAF ACF DBE α∠=∠=︒-∠=∠=45D ∠=︒45DAF ∠=︒AEB ∠BED V 45AEB α∠=︒+45BAE DAF BAF AEB α∠=∠+∠=︒+=∠BA BE =()AAS BAF EBH V V ≌1EH BF ==∵,,∴是等腰直角三角形,∴,∴故选:B .二、填空题:本大题共6个小题,每小题3分,共18分.11. 计算:992+198+1=________.【答案】10000【解析】【分析】将992化为后利用完全平方公式计算,再将结果相加即可.【详解】解:原式===10000.故答案为:10000.【点睛】本题考查用完全平方公式简便运算.熟记完全平方公式并能对原式正确变形是解题关键.12 分解因式:______.【答案】【解析】【分析】首先提取公因式,再根据平方差公式计算,即可得到答案.【详解】故答案为:.【点睛】本题考查了因式分解的知识;解题的关键是熟练掌握平方差公式的性质,从而完成求解.13. 如图,在中,,,D 为上一点,且,则_____..EH BD ⊥45D ∠=︒EHD △1DH EH ==DE ==2(1001)-2(1001)1981-++1000020011981-+++2xy x -=()()11x y y +-2xy x-()21x y =-()()11x y y =+-()()11x y y +-ABC V AB AC =108BAC ∠=︒BC AB BD =CAD ∠=【答案】##36度【解析】【分析】本题考查了等腰三角形的性质,三角形内角和定理.根据等边对等角结合三角形内角和定理求得和的度数,进一步计算即可求解.详解】解:∵,,∴,∵,∴,∴,故答案为:.14. 若,则__________.【答案】81【解析】【分析】根据,得到,再利用整体思想,代入求值即可.【详解】解:∵,∴,∴;故答案为:.【点睛】本题考查代数式求值,幂的乘方的逆用以及同底数幂的乘法,解题的关键是掌握相关运算法则,利用整体思想代入求值.15. 如图,在中,.按以下步骤作图:①以点C 为圆心,适当长为半径画弧,分别交于点M 、N ;②分别以M 、N为圆心,大于的长为半径画弧,两弧交于点F ;③作射线.若,E 为边的中点,D 为射线上一动点.则的最小值为 _____.【36︒B ∠BAD ∠AB AC =108BAC ∠=︒()1180362B C BAC ∠=∠=︒-∠=︒AB BD =()118036722BAD BDA ∠=∠=⨯︒-︒=︒36CAD BAC BAD ∠=∠-∠=︒36︒2340x y +-=927x y ⋅=2340x y +-=234x y +=2340x y +-=234x y +=()23234927333381x y x y x y +⋅=⋅===81Rt ABC △90ACB ∠=︒AC CB 、12MN CF 2BC =BC CF BD DE +【解析】【分析】本题考查了作图-基本作图,全等三角形的判定和性质,角平分线的性质和最短线段问题.利用基本作图得到得平分,作上截取,连接交于D ,根据证明得到,接着利用两点之间线段最短可判断此时的值最小,最小值为的长,然后利用勾股定理计算出即可.【详解】解:由作法得平分,作上截取,连接交于D ,如图,∵平分,∴,∵,,∴,∴,∴,∴此时的值最小,最小值为的长,∵,E 为边的中点,∴,在,,∴CF ACB ∠AC CG CE =BG CF SAS DCE DCG ≌△△DG DE =BD DE +BG BG CF ACB ∠AC CG CE =BG CF CF ACB ∠DCE DCG ∠=∠CD CD =CG CE =()SAS DCE DCG ≌△△DG DE =BD DE BD DG BG +=+=BD DE +BG 2BC =BC 1CG CE ==Rt BCG V BG ==BD DE +16. 南宋数学家杨辉在其著作《详解九章算法》中揭示了(n 为自然数)展开式的各项的次数和系数规律,后人也将此称为“杨辉三角”.如图,请你仔细观察这两个规律,写出展开式中的第二项 _____.【答案】【解析】【分析】本题主要考查杨辉三角,熟练掌握杨辉三角的规律即可得到答案.根据杨辉三角的规律即可解答.【详解】解:根据题意可得:展开式中的第二项为,即为.故答案为:.三、本大题共10个小题,共102分.解答应写出必要的文字说明,证明过程或演算步骤.17. 计算:.【答案】【解析】【分析】本题主要考查立方根以及算术平方根的混合计算,熟练掌握运算法则是解题的关键.根据运算法则进行求解即可.【详解】解:原式.18. 因式分解:.【答案】【解析】()na b+202412x⎛⎫- ⎪⎝⎭20231012x -202412x ⎛⎫- ⎪⎝⎭2024112024(2x --20231012x -20231012x -23--16-934=---16=-322344x y x y xy -+()22xy x y -【分析】先提取公因式,再应用完全平方公式,即可求解,本题考查了因式分解,解题的关键是:熟练应用完全平方公式,进行因式分解.【详解】解:,故答案为:.19. 计算:.【答案】【解析】【分析】本题考查整式的混合运算.先利用完全平方公式、平方差公式以及单项式乘多项式的运算,再合并同类项,最后进行除法运算.【详解】解:.20. 如图,在△ABC 中,D 是边BC 的中点,过点C 画直线CE ∥AB ,交AD 的延长线于点E .求证:AD =ED .【答案】见解析【解析】【分析】由CE ∥AB ,得∠BAD =∠E ,由D 是边BC 的中点,得BD =CD ,证△ABD ≌△ECD (AAS ),即可得出结论.【详解】证明:∵CE ∥AB,xy 322344x y x y xy -+()2244xy x xy y =-+()22xy x y =-()22xy x y -()()()()()2222222x y x y x y x x y x -⎡⎤⎣+⎦-+--÷-g g x y+()()()()()2222222x y x y x y x x y x -⎡⎤⎣+⎦-+--÷-g g ()()22222444422x xy y x y x xy x =-++--+÷-()()2222x xy x =--÷-()()22222x x xy x --÷÷--=x y =+∴∠BAD =∠E ,∵D 是边BC 的中点,∴BD =CD ,在△ABD 和△ECD 中,,∴△ABD ≌△ECD (AAS ),∴AD =ED .【点睛】本题考查了全等三角形的判定与性质、平行线的性质等知识;熟练掌握全等三角形的判定与性质是解题的关键.21. “赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲!如图,“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a ,较短直角边长为b ,斜边为c .(1)请利用“赵爽弦图”证明:;(2)若大正方形的面积为20,小正方形面积为4,求其中一个直角三角形的面积.【答案】(1)见解析(2)【解析】【分析】本题主要考查勾股定理,熟练掌握勾股定理以及完全平方公式是解题的关键.(1)根据小正方形的面积加上四个直角三角形的面积等于大正方形的面积即可证明;(2)根据(1)中得到的计算即可.【小问1详解】解:直角三角形较长直角边长为a ,较短直角边长为b ,斜边为c ,小正方形的面积四个直角三角形的面积大正方形的面积,,,BAD E ADB EDC BD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩222+=a b c 4222+=a b c +=221()42a b ab c ∴-+⨯=22222a ab b ab c ∴-++=;【小问2详解】解:由题意可得:,即,,故一个直角三角形的面积为.22. 如图,在中,,点D 、E 、F 分别在AB 、BC 、AC 边上,且,.(1)求证:是等腰三角形;(2)当时,求的度数.【答案】22. 见解析23. 【解析】【分析】本题考查了全等三角形的判定与性质、等腰三角形的判定与性质、三角形内角和定理.(1)利用证明即可求证;(2)根据,结合全等三角形的性质即可求解.【小问1详解】证明:∵,,,,,,∴是等腰三角形;【小问2详解】∴222+=a b c 221()42a b ab c -+⨯=144202ab +⨯=142ab ∴=4ABC V AB AC =12∠=∠BE CF =DEF V 36A ∠=︒DEF ∠72DEF ∠=︒ASA DBE ECF V V ≌()180DEF FEC BED ∠=︒-∠+∠AB AC =B C ∴∠=∠12∠=∠ BE CF =()ASA DBE ECF ∴V V ≌DE EF ∴=DEF V解:∵,,,,,.23. 嘉州学校坚持“立德树人,五育并举”,为提高学生运动技能,计划利用课后服务时间开设以下五种体育课程:A .足球,B .篮球,C .排球,D .羽毛球,E .乒乓球.每名学生都必须且只能在这五种课程中选择一类自己最喜欢的课程,学校对学生选择的课程进行了一次随机抽样调查,并将调查结果绘制成如下不完整统计图.请你根据图中信息,回答下列问题:(1)求本次抽样调查学生的人数;(2)在扇形统计图中,求“排球”所在扇形的圆心角的度数;(3)补全条形统计图;(4)根据以上统计分析,估计该校七年级440名学生中最喜爱“篮球”的人数.【答案】(1)本次抽样调查学生的人数为200名;(2)“排球”所在扇形的圆心角的度数为;(3)见解析(4)该校七年级440名学生中最喜爱“篮球”的人数约有120名.【解析】【分析】本题考查了条形统计图、扇形统计图的制作方法和统计图中各个数据之间的关系,正确识别统计图是解答问题的前提.(1)从两个统计图中可得喜欢“足球”的人数为40人,占调查人数的,可求出调查人数;(2)用乘以样本中“排球”所占的比即可;(3)计算出喜欢“乒乓球”和“篮球”人数,再补全条形统计图;36A ∠=︒18036722B ︒-︒∴∠==︒1108BDE ∴∠+∠=︒DBE ECF △≌△BDE FEC ∴∠=∠1108FEC ∴∠+∠=︒()180172DEF FEC ∴∠=︒-∠+∠=︒36︒20%360︒(4)根据样本估计总体即可求解.【小问1详解】解:本次抽样调查学生的人数为(名);【小问2详解】解:“排球”所在扇形的圆心角的度数为;【小问3详解】解:喜欢“乒乓球”的人数为(名),喜欢“篮球”人数为(名),补全条形统计图如图所示:;【小问4详解】解:(名).答:该校七年级440名学生中最喜爱“篮球”的人数约有120名.24. 我们把二次三项式恒等变形为(h 、k 为常数)的形式叫做配方.巧妙地运用配方法不仅可以将一个的多项式进行因式分解,也能求一个二次三项式的最值,还能结合非负数的意义来解决一些实际问题.例如,分解因式:.解:.请用配方法解答下列问题:(1)分解因式:①,②;(2)求多项式的最小值;(3)已知a 、b 、c 是的三边长,且满足.判断的形状.【答案】(1)①;②(2) 的4020%200÷=2036036200°´=°20025%50⨯=2004050302060----=60400120200⨯=2ax bx c ++()2a x h k ⋅++245x x +-()()()2222454492351x x x x x x x +-=++-=++-=-g 223x x +-2245a ab b +-2245x x -+ABC V 222a b c ab bc ca ++=++ABC V (3)(1)x x +-(5)()a b a b +-3(3)等边三角形【解析】【分析】本题主要考查因式分解的应用,关键是配方法的灵活运用.(1)根据题意进行分解即可;(2)分解因式再根据平方的非负性即可得到答案;(3)分解因式进行判定.【小问1详解】解:①原式;②原式;【小问2详解】解:原式,,故多项式的最小值为;【小问3详解】解:,,,,,,2214x x =++-2(1)4x =+-(12)(12)x x =+++-(3)(1)x x =+-222449a ab b b =++-22(2)9a b b =+-(23)(23)a b b a b b =+++-(5)()a b a b =+-22(21)25x x =-+-+22(1)3x =-+2(1)0x -≥ 2245x x -+3 222a b c ab bc ca ++=++2220ab bc c a c a b ∴--++=-2222222220a b c ab bc ca ∴++---=2222220222a b ab bc c b a c a c ∴-+--+++=+222()()()0a b b c c a ∴-+-+-=0,0,0a b b c c a ∴-=-=-=,即的形状为等边三角形.25. 【阅读下列材料】:若,,则,,∴.)∵,,∴.“称为“基本不等式”,利用它可求一些代数式的最值及解决一些实际问题.(a 、b 为正数;积定和最小;和定积最大;当时,取等号.)【例】:若,,,求的最小值.解:∵,, ∴,∴.∴时,的最小值为8.【解决问题】(1)用篱笆围成一个面积为的长方形菜园,当这个长方形的边长为多少时,所用篱笆最短?最短篱笆的长是多少;(2)用一段长为篱笆围成一个长方形菜园,当这个长方形的边长是多少时,菜园面积最大?最大面积是多少;(3)如图,四边形的对角线相交于点O ,、的面积分别为2和3,求四边形面积的最小值.【答案】(1)这个长方形的长、宽分别为米,米; (2)菜园的长为50m ,宽为m 时,面积最大为;(3)四边形面积的最小值为.【解析】【分析】本题主要考查完全平方公式的应用,二次根式的应用.的a b c ==∴ABC V 0a >0b >2a =2b =2a b =+-=20≥0a b +-≥a b +≥a b +≥a b =0a >0b >16ab =a b +0a >0b >16ab =0a b +-≥8a b +≥=4a b ==a b +2100m 100m ABCD AC BD 、AOD △BOC V ABCD 2521250m ABCD 5+(1)设这个长方形垂直于墙的一边的长为x 米,则平行于墙的一边为米,则,,所以所用篱笆的长为米,再根据材料提供的信息求出的最小值即可;(2)设垂直于墙的一边为x m ,利用矩形的面积公式得到菜园的面积关于x 的关系式,再利用非负数的性质求解即可;(3)设点B 到的距离为,点D 到的距离为,又、的面积分别是2和3,则,,,从而求得,然后根据材料提供的信息求出最小值即可.【小问1详解】解:设这个长方形垂直于墙的一边的长为x 米,则平行于墙的一边为米,则,∴,∴所用篱笆的长为米,∵当且仅当时,的值最小,最小值为,∴或(舍去).∴这个长方形的长、宽分别为米,米时,所用的篱笆最短,最短的篱笆是【小问2详解】解:设垂直于墙的一边为x m ,则平行于墙的一边长为m ,∴菜园的面积,又∵,∴当时,菜园的面积有最大值为1250,答:菜园的长为50m ,宽为m 时,面积最大为;【小问3详解】y 100xy =100y x =1002x x ⎛⎫+ ⎪⎝⎭1002x x ⎛⎫+ ⎪⎝⎭AC ()110h h >AC ()220h h >AOD △COB △24OA h =16OC h =1264AC OC OA h h =+=+ABCD S 四边形y 100xy =100y x=1002x x ⎛⎫+ ⎪⎝⎭1002x x +≥=1002x x =1002x x+x =x =-()1002x -()()22100221002251250x x x x x -=-+=--+()22250x --≤25x =2521250m解:设点B 到的距离为,点D 到的距离为,又∵、的面积分别是2和3,∴,,∴,∴∵.∴当且仅当时,取等号,即,∴四边形面积的最小值为.26.(1)【课本探究】如图1,小明将两个含全等的三角尺摆放在一起,可以得到为等边三角形,从而发现:,即:.请将小明的这个发现写成命题的形式;(2)【小试牛刀】①如图2,在中,,,平分,若,求的长;②如图3,在等边中,是边上的中线,点P 为上一动点,连结,若,求的最小值;(3)【拓展应用】如图4,在四边形中,,,,点M 从点B 出发,沿线段以每秒2个单位长度的速度向终点A 运动,过点M 作于点E ,作交延长线于点N ,交射线于点F ,点M 运动时间为.求t 为何值时,与全等,并说明理由.的AC ()110h h >AC ()220h h >AOD △COB △24OA h =16OC h =1264AC OC OA h h =+=+121122ABC ADC ABCD S S S AC h AC h =+=⋅+⋅V V 四边形()1212AC h h =+()211212123216452h h h h h h h h ⎛⎫=++=++ ⎪⎝⎭211232h h h h +≥=211232h h h h =211232h h h h +ABCD 5+30︒ABC V 1122BD CD BC AB ===12BD AB =Rt ABC △90ACB ∠=︒30B ∠=︒AD BAC ∠2CD =BC ABC V AD BC AD BP 4BC =12BP AP +ABCD AB CD ∥6AB BC ===60B ∠︒BA ME BC ⊥MN AB ⊥DC BC ()s t BME V CFN V【答案】(1)角所对的直角边等于斜边的一半;(2)①;②的最小值为;(3)秒或3秒时,与全等.【解析】【分析】(1)根据题意可得,角所对的直角边等于斜边的一半;(2)①在中,,推出,再证明,即可得答案;②过点P 作于点E ,过点B 作于点F ,求得,当点B 、P 、E 三点共线且时,的值最小,最小值为的长,据此即可求解;(3)分点在线段上或点在的延长线上,分别根据图形可得,从而解决问题.【详解】解:(1)根据题意可得,角所对的直角边等于斜边的一半;(2)①如图2,在中,, ,,平分,∴,∴,,,∴,,;②如图3,过点P 作于点E ,过点B 作于点F,30︒6BC =12BP AP+1t =BME V CFN V 30︒Rt ABC △30CAD ∠=︒24AD CD ==4AD DB ==PE AC ⊥BF AC ⊥12PE AP =BF AC ⊥BP PE +BF F BC F BC 2BF BM =30︒Rt ABC △90ACB ∠=︒30B ∠=︒60CAB ∴∠=︒AD BAC ∠1302CAD DAB CAB ∠=∠=∠=︒24AD CD ==30B DAB ∠=∠=︒4AD DB ∴==6BC CD DB =+= 2CD =6BC ∴=PE AC ⊥BF AC ⊥是等边三角形,∴,,,,,∴,∴∵,当点B 、P 、E 三点共线且时,的值最小,最小值为的长,∴的最小值为;(3)当点在线段上时,∵,,,,,,,ABC V 60BAC ∠=︒30DAC DAB ∴∠=∠=︒12PE AP ∴=60ABC ∠=︒ 30ABF ∴∠=︒122AF AB ==BF ==12BP AP BP PE +=+∴BF AC ⊥BP PE +BF 12BP AP +F BC AB CD ∥MN AB ⊥90N ∴∠=︒BME CFN ≌△△2CF BM t ∴==60B ∠=︒ 30BME ∠=︒∴,,;当点在的延长线上时,,,同理得,,,;综上:或3时,与全等.【点睛】本题主要考查了全等三角形的性质,等边三角形的性质,平行线的性质,含角所对的直角边等于斜边的一半,勾股定理,垂线段最短等知识,熟练掌握全等三角形的性质进行分类讨论是解题的关键.24BF BM t ∴==246t t ∴+=1t ∴=F BC BME CFN ≌△△BM CF ∴=4BF t =26BC t ∴==3t ∴=1t =BME V CFN V 30︒。
湖北省宜昌市2023-2024学年八年级上学期期末数学试题(含解析)

.....若分式的值为,则( )....11x x -+A .166.已知一个等腰三角形的一边长等于A .13cm A .100厘米xy x y =-≠三、解答题(将解答过程写在答题卡上指定的位置,本大题共有分)19.先化简,再从20.如图,在下列带有坐标系的网格中,,(1)画出关于轴的对称的22121x x x x x -+÷-+-()23A -,(B -ABC x嘉铭同学通过思考发现,可以通过“截长、补短”两种方法解决问题:方法1:如下图,在上截取,使得,连接,可以得到全等三角形,进而解决此问题方法2:如下图,延长到点,使得,连接,可以得到等腰三角形,进而解决此问题(1)根据探究,直接写出,,之间的数量关系;【迁移应用】(2)如下图,在中,是上一点,,于,探究,,之间的数量关系,并证明.【拓展延伸】(3)如下图,为等边三角形,点为延长线上一动点,连接.以为边在上方作等边,点是的中点,连接并延长,交的延长线于点.若,求证:;AC AE AE AB =DE .AB E BE BD =DE .AC AB BD ABC D BC 2B C ∠=∠AD BC ⊥D CD AB BD ABC D AB CD CD CD CDE F DE AF CD G G ACE ∠=∠GF AE AF =+参考答案与解析1.B 【分析】结合轴对称图形的概念进行求解即可.【详解】解:根据轴对称图形的概念可知:A 、不是轴对称图形,故本选项错误;B 、是轴对称图形,故本选项错误;C 、不是轴对称图形,故本选项错误;D 、不是轴对称图形,故本选项正确.故选:B .【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.B【分析】根据分式的值为0的条件,列式求解即可.分式的值为0的条件是:(1)分子等于0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.【详解】解:由题意得: 解得:x=1故答案为B|x|-1=010x ⎧⎨+≠⎩【点睛】此题主要考查了过一点作直线的垂线,熟练掌握基本作图方法是解决问题的关键.5.C在和中,,∴,∴,∵,∴,故④正确;故答案为:①②④.【点睛】本题考查了全等三角形的判定与性质,三角形外角性质,三角形内角和定理,等腰三角形三线合一的性质,垂线段最短等知识,能正确证明两个三角形全等是解此题的关键.16.(1)(2)【分析】(1)先计算积的乘方,再根据多项式除以单项式的计算法则求解即可;(2)先根据完全平方公式和平方差公式去括号,然后合并同类项即可.【详解】(1)解:;(2)解:.【点睛】本题主要考查了整式的混合计算,熟知相关计算法则是解题的关键.17.(1)(2)AFB △CNA V 4522.5BAF C AB ACABF CAN ∠=∠=︒⎧⎪=⎨⎪∠=∠=︒⎩()ASA AFB CAN ≌AF CN =AF AE =AE CN =23y xy+25x +()233xy xy xy ⎡⎤+÷⎣⎦()3223xy x y xy=+÷23y xy =+()()()2122x x x +-+-()22214x x x =++--22214x x x =++-+25x =+()22m n +-()()233x x +-,.21.(1);(2)(3)证明见解析.117678768+=⨯⨯⨯11(1)(2)+1n n n n +=⨯+⨯+,证明,得出,证明出是等腰直角三角形,得出,从而得出,即可得解.【详解】(1)证明:,,,,;(2)解:,而,为等腰直角三角形,过作的垂线交延长线于,,,而,,,在和中,,,,,又,,在中,,为等腰直角三角形,,CH BH 、()SAS BOC CEH ≌OCB EHC BC CH ∠=∠=,B C H V 45CBH ∠=︒45ADB CBH ∠=∠=︒22220a ab b c -+-= ()22a b c ∴-=000a b c >≤> ,,a b c ∴-=AB OC ∴=0b = AB OC =ABC ∴ A BF BF G ABF BCF ∠=∠ 90ABC ∠=︒90FBC FCB ∴∠+∠=︒90BFC ∴∠=︒ABG BCF △90ABF BCF G BFC AB BC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩()AAS ABG BCF ∴ ≌AG BF ∴=BG CF =2CF BF = BF FG AG ∴==AFG 90FG AG G =∠=︒,AFG ∴ 45AFG ∠=︒;(3)①证明:,,,,又,,;②的度数为定值,,过作于,取,连接,,,,,,,即是等腰直角三角形,,,∴,∴可由平移所得,,,.135AFB ∴∠=︒()0E c b - ,()E c OE x c b x b OC CE ∴==-=+-=+OC c = CE b ∴=-()0B b ,OB b ∴=-CE OB \=BDE ∠135BDE ∠=︒E EH OE ^E EH OC =CH BH 、OB CE BOC CEH OC EH =∠=∠= ,,()SAS BOC CEH ∴ ≌OCB EHC BC CH ∴∠=∠=,90OCB ECH CHE ECH ∴∠+∠=∠+∠=︒90BCH ∴∠=︒B C H V 45CBH ∴∠=︒AB OC OC EH == ,AB EH =EH AB AE BH ∴∥45ADB CBH ∴∠=∠=︒135BDE ∴∠=︒24.(1);(2) ,证明见解析;(3)证明见解析.【分析】本题考查了全等三角形的性质与判定,等腰三角形的性质与判定,等边三角形的性质;(1)方法一:证明得到,,根据三角形的外角性质和等腰三角形的判定证得,则,进而可得结论;方法二:先根据等腰三角形的性质和外角性质证得,再证明得到,进而可得结论;(2)在上取,连接,根据等边对等角得出,根据三角形的外角的中得出,进而得出,即可得证;(3)先证明 ,过作,交于点,证明,根据等角对等边得出,即可得出结论.【详解】(1)证明:方法一:∵平分,∴,在和中,,,,∴∴,,∵,∴,∴,∴,∴;方法二:延长到点E ,使得,连接,∴,则,∵,AC AB BD =+CD AB BD =+ABD AED ≌ BD ED =2AED ABC C ∠=∠=∠ED EC =BD EC =E C ∠=∠()AAS EAD CAD ≌AE AC =CD DE DB =AE AEB B ∠=∠CAE C ∠=∠EA EC =ACE BCD ≌()SAS D D H A E ∥AG H AEF HDF ≌△△GH HD =AD BAC ∠BAD CAD ∠=∠BAD EAD AD AD =BAD EAD ∠=∠AB AE =()SAS ABD AED ≌BD ED =2AED ABC C ∠=∠=∠AED C EDC ∠=∠+∠EDC C ∠=∠ED EC =BD EC =AC AB BD =+AB BE BD =DE E BDE ∠=∠2ABD E BDE E ∠=∠+∠=∠2ABC C ∠=∠∴,∵平分,∴,在和中,,,,∴,∴,∵,∴;(2)在上取,连接,∵于∴∴∵,∴,∴∴;(3)如图所示,∵,为等边三角形,∴,,∴∴,∴ ∴∴过作,交于点,E C ∠=∠AD BAC ∠BAD CAD ∠=∠EAD CAD EAD CAD ∠=∠E C ∠=∠AD AD =()AAS EAD CAD ≌AE AC =AE AB BE =+AC AB BD =+CD DE DB =AE AD BC ⊥DAE AB=AEB B∠=∠AEC C CAE ∠=∠+∠2B C∠=∠CAE C ∠=∠EA EC=CD CE ED AE DB AB DB =+=+=+CDE ABC 60ACB ECD ∠=∠=︒,CA CB CE CD ==ACB ECB ECD ECB∠-∠=∠-∠ACE BCD ∠=∠ACE BCD ≌()SAS 120EAC DBC ∠=∠=︒60ACE AEC ∠+∠=︒D D H AE ∥AG H∴,∵是的中点,∴,又∴∴ ,,而,∴,又∵∴∴即 .EAF FHD ∠=∠F ED =EF FD AFE HFD∠=∠()ASA AEF HDF ≌AF HF =AE DH =AEF HDF∠=∠120GDF HDF GDH ∠=∠+∠=︒6060120AEF ACE FEC AEC ACE ∠+∠=∠+∠+∠=︒+︒=︒ACE GDH ∠=∠G ACE∠=∠G GDH∠=∠GH HD AE ==GF AE AF =+。
2023-2024学年广东省揭阳市惠来一中八年级(上)期末数学试卷+答案解析

2023-2024学年广东省揭阳市惠来一中八年级(上)期末数学试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列四个图形中,是轴对称图形的有()A.4个B.3个C.2个D.1个2.下列选项中,计算正确的是()A. B. C. D.3.点P在第三象限内,距离x轴4个单位长度,距离y轴2个单位长度,那么点P的坐标是()A. B. C. D.4.某班抽取6名同学参加体能测试,成绩如下:80,90,75,75,80,下列表述错误的是()A.平均数是80B.极差是15C.中位数是80D.标准差是255.在平面直角坐标系中,点所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限6.若直线:与直线:的交点在第二象限,则k的取值范围是()A. B. C. D.7.已知一个直角三角形的两边长分别为3和5,则第三边长为()A.4B.C.4或D.2或8.已知是二元一次方程组的解,则的平方根为()A. B.2 C. D.9.如图所示,在长方形ABCD中,,,若将长方形ABCD沿DE折叠,使点C落在AB边上的点F处,则线段CE的长为()A. B. C. D.1010.已知一张三角形纸片如图甲,其中将纸片沿过点B的直线折叠,使点C落到AB边上的E点处,折痕为如图乙再将纸片沿过点E的直线折叠,点A恰好与点D重合,折痕为如图丙原三角形纸片ABC中,的大小为()A. B. C. D.二、填空题:本题共6小题,每小题3分,共18分。
11.在平面直角坐标系中,点关于原点对称的点的坐标是_________.12.若的值是8,则的值是______.13.函数中,自变量x的取值范围是______.14.若的小数部分为a,的小数部分为b,则的值为______.15.的三边a、b、c满足试判断的形状是______.16.如图,直线,点坐标为,过点作x轴的垂线交直线于点,以原点O为圆心,长为半径画弧交x轴于点;再过点作x轴的垂线交直线于点,以原点O为圆心,长为半径画弧交x轴于点,…,按照此做法进行下去,点的坐标为______.三、解答题:本题共8小题,共72分。
河南省平顶山市汝州市2023-2024学年八年级上学期期末数学试题(解析版)

2023~2024学年上学期期末质量检测八年级数学注意事项:1.本试卷分试题卷和答题卡两部分,试题卷共4页,三个大题,满分120分,考试时间100分钟.2.试题卷上不要答题,请用0.5毫米黑色签字水笔直接把答案写在答题卡上,答在试题卷上的答案无效。
3.答题前,考生务必将本人姓名、准考证号填写在答题卡第一面的指定位置.一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1. 一个正方体的体积扩大为原来的64倍,则它的棱长变为原来的( )A. 2倍B. 4倍C. 6倍D. 9倍【答案】B【解析】【分析】本题考查了正方体的体积和立方根的应用,熟练应用立方根和正方体的体积计算方法是解答本题的关键.根据正方体的体积公式计算并判断即可.【详解】解:设原正方体的边长为,则体积为,∴将体积扩大为原来的64倍,为,∴,∴它的棱长为原来的4倍,故选:B .2. 如图,将含角的三角板的两个顶点放在直尺的对边上,若,则的度数为( )A. B. C. D. 【答案】C【解析】【分析】首先利用平行线的性质得到,进而求解即可.a 3a 364a 4a =45︒120∠=︒2∠15︒20︒25︒30︒3120∠=∠=︒【详解】如图所示,∵直尺的两边平行,,∴,∴.故选:C .【点睛】本题主要考查了两直线平行,内错角相等的性质,需要注意隐含条件,直尺的对边平行,等腰直角三角板的锐角是的利用.3. 已知是二元一次方程组的解,则的值为( )A. 7B. 3C.D. 11【答案】A【解析】【分析】本题考查二元一次方程组的解及解二元一次方程组.把代入,可得,利用加减消元法解答.【详解】解:∵是二元一次方程组的解,∴,∴由得:.故选:A4. 如图,货船A 与港口B 相距35海里,我们用有序数对(南偏西,35海里)来描述港口B 相对货船A 的位置,那么货船A 相对港口B 的位置可描述为()120∠=︒3120∠=∠=︒2452025∠=︒-︒=︒45︒21x y =⎧⎨=⎩81mx ny nx my +=⎧⎨-=⎩3m n -17-21x y =⎧⎨=⎩81mx ny nx my +=⎧⎨-=⎩2821m n n m +=⎧⎨-=⎩①②21x y =⎧⎨=⎩81mx ny nx my +=⎧⎨-=⎩2821m n n m +=⎧⎨-=⎩①②-①②37m n -=40︒A. (南偏西,35海里)B. (北偏西,35海里)C (北偏东,35海里) D. (北偏东,35海里)【答案】C【解析】【分析】以点B 为中心点,来描述点A 的方向及距离即可.【详解】解:由题意知货船A 相对港口B 的位置可描述为(北偏东,35海里),故选:C .【点睛】本题考查坐标确定位置,用方向角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方向角时,一般先叙述北或南,再叙述偏东或偏西.5. 贵阳贵安2021年第二届初中教师说课评比顺利结束,陈老师根据七位评委所给的分数,将最后一位参赛教师的得分制作了表格.对七位评委所给的分数,去掉一个最高分和一个最低分后.表中数据一定不发生变化的是( )平均数中位数众数方差86.2分85分84分 5.76A. 方差B. 众数C. 中位数D. 平均数【答案】C【解析】【分析】根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数.【详解】解:去掉一个最高分和一个最低分对中位数没有影响,故选C .【点睛】本题考查了统计量的选择,解题的关键是了解中位数的定义,难度不大.6. 中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单.50︒40︒40︒50︒40︒位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为( )A. B. C. D. 【答案】D【解析】【分析】设马每匹x 两,牛每头y 两,根据马四匹、牛六头,共价四十八两与马三匹、牛五头,共价三十八两列方程组即可.【详解】设马每匹x 两,牛每头y 两,由题意得,故选:D .【点睛】本题考查了二元一次方程组的应用,仔细审题,找出题目的已知量和未知量,设两个未知数,并找出两个能代表题目数量关系的等量关系,然后列出方程组求解即可.7. 已知正比例函数(k 为常数且),若y 的值随着x 值的增大而增大,则一次函数在平面直角坐标系中的图象大致是( )A. B. C. D.【答案】C【解析】【分析】根据正比例函数中,y 的值随着x 值的增大而增大,可得,从而可以判断一次函数图象经过第一、三、四象限.【详解】解:∵正比例函数中,y 的值随着x 值的增大而增大,∴,∴一次函数的图像经过第一、三、四象限,故选:C【点睛】本题主要考查了正比例函数的性质,一次函数的性质,解题的关键在于能够求出.8. 在如图的网格中,小正方形的边长均为1,三点均在正方形格点上,则下列结论错误的是46383548x y x y +=⎧⎨+=⎩46483538y x y x +=⎧⎨+=⎩46485338x y x y +=⎧⎨+=⎩46483538x y x y +=⎧⎨+=⎩46483538x y x y +=⎧⎨+=⎩y kx =0k ≠y kx k =-y kx =0k >y kx k =-y kx =0k >y kx k =-0k >、、A B C( )A. B. C. D. 点到直线的距离是2【答案】C【解析】【分析】本题考查了勾股定理及其逆定理,三角形的面积公式,根据勾股定理求得进而根据勾股定理的逆定理,即可求解.【详解】解:∵,∴,∴,故A,B 选项正确;∴,故C 选项错误;设点到直线的距离是,则,∴,故D 选项正确故选:C .9. 下面是投影屏上出示的抢答题,则横线上符号代表的内容正确的是( )如图,.求证:.证明:延长交※与点F则▲(□相等,两直线平行)A. ※代表ABB. 代表C. ▲代表D. □代表同位角【答案】C【解析】【分析】本题主要考查了三角形外角的性质、平行线的判定等知识点,正确作出辅助线、构造三角形外角AB =90BAC ∠=︒10ABC S =△A BC ,,AC AB BC5AC AB BC ======222AB AC BC +=90BAC ∠=︒11522ABC S AC AB =⨯==△A BC d 152ABC S BC d =⨯=V 5225d ⨯==BEC B C ∠=∠+∠AB CD P BE e EFC C =∠+∠BEC B C∠=∠+∠ B ∴∠=AB CD ∴∥e FEC ∠EFC ∠是解答本题的关键.根据图形利用三角形外角的性质、等量代换、平行线的判定将解答补充完整即可解答.【详解】证明:延长交于点F ,则则(内错角相等,相等,两直线平行)则※代表,故A 选项不符合题意;⊙代表,故B 选项不符合题意;▲代表即,故C 选项符合题意;□代表内错角,故D 选项不符合题意.故选C .10. 在平面直角坐标系中,将图1所示的照如图2所示的方式依次进行轴对称变换,若点坐标是,则经过第2023次变换后所得的点的坐标是( )A. B. C. D. 【答案】B【解析】【分析】本题考查了轴对称的性质,点的坐标变换规律,读懂题目信息,观察出每四次对称为一个循环组依次循环是解题的关键,也是本题的难点.观察图形可知每四次对称为一个循环组依次循环,用2023除以4,然后根据商和余数的情况确定出变换后的点A 所在的象限,据此即可解答.【详解】解:∵点A 第一次关于x 轴对称后在第四象限,点A 第二次关于y 轴对称后在第三象限,点A 第三次关于x轴对称后在第二象限,BE DC BEC ∠=EFC C∠+∠BEC B C∠=∠+∠ B EFC∴∠=∠AB CD ∴∥DC BEC ∠EFC ∠EFC ∠ABC V A (),x y 2023A (),x y (),x y -(),x y -(),x y --点A 第四次关于y 轴对称后在第一象限,即点A 回到初始位置,∴每四次对称为一个循环组依次循环,∵,∴经过第2023次变换后所得的A 点与第三次变换的位置相同,在第二象限,坐标为,故选:B .二、填空题(每小题3分,共15分)11. 请写出一个大于1且小于2的无理数:___.(答案不唯一).【解析】【分析】由于所求无理数大于1且小于2,两数平方得大于2小于4,所以可选其中的任意一个数开平方即可.【详解】大于1且小于2等,(答案不唯一).12. 如图,一次函数与的图象相交于点,则方程组的解是____.【答案】【解析】【分析】由交点坐标,先求出,再求出方程组的解即可.【详解】解:∵的图象经过,∴,解得,202345053÷=⋅⋅⋅(),x y -2π-y kx b =+2y x =+(),4P m 2y x y kx b =+⎧⎨=+⎩24x y =⎧⎨=⎩(),4m m 2y x =+(),4P m 42m =+2m =一次函数与的图象相交于点,方程组的解是,故答案为.【点睛】本题考查一次函数图象的交点与方程组的解的关系,解题的关键在于对知识的熟练掌握.13. 某校学生期末评价从德、智、体、美、劳五方面进行,五方面依次按确定成绩,小明同学本学期五方面得分如图所示(说明:由图可知第一方面“德”,得分为10分),则他的期末成绩为______分.【答案】9【解析】【分析】本题考查了求平均数,熟记加权平均数公式是解题的关键.根据加权平均数的计算公式计算即可得解.【详解】解:由题意可得,(分),故答案为:9.14. 如图在中,分别平分,交于O ,为外角的平分线,交的延长线于点E ,记,,则以下结论①;②;③ ;④,正确的是_____.(把所有正确的结论的序号写在横线上)【答案】①④##④①【解析】∴y kx b =+2y x =+()2,4P ∴2y x y kx b =+⎧⎨=+⎩24x y =⎧⎨=⎩24x y =⎧⎨=⎩2:3:2:2:110293829291923221⨯+⨯+⨯+⨯+⨯=++++ABC V BO CO ,ABC ACB ∠∠,CE ACD ∠BO 1BAC ∠=∠2BEC ∠=∠122∠=∠32BOC ∠=∠901BOC ∠=︒+∠902BOC ∠=︒+∠【分析】本题考查了角平分线的定义、三角形外角的性质,解题关键是理解并能灵活运用相关概念得到角之间的关系.先利用角平分线的定义得到,,,再利用三角形的外角的性质转化各角之间的关系即可求解.【详解】解:∵平分, 为外角的平分线,∴,,∴,故①正确;∵平分,∴,∴,∴,故④正确;∵不一定是,故②不正确;由于,∴,故③不正确;故答案为:①④.15. 如图,在四边形中,,于点,动点从点出发,沿的方向运动,到达点停止,设点运动的路程为,的面积为,如果与的函数图象如图2所示,那么边的长度为______.【答案】6【解析】【分析】根据题意,分析P 的运动路线,分3个阶段分别进行讨论,可得BC,CD,DA 的值,过D 作DE ⊥AB 于E ,根据勾股定理求出AE ,即可求解.【详解】根据题意,当P 在BC 上时,三角形的面积增大,结合图2可得BC=4;当P 在CD 上时,三角形的面积不变,结合图2可得CD=3;当P 在AD 上时,三角形的面积变小,结合图2可得AD=5;过D 作DE ⊥AB 于E,2ABC EBC ∠=∠2ACD ECD ∠=∠2ACB ACO ∠=∠BO ABC ∠CE ACD ∠2ABC EBC ∠=∠2ACD ECD ∠=∠()1222ACD ABC ECD EBC =-=-=∠∠∠∠∠∠CO ACB ∠2ACB ACO ∠=∠()111809022OCE ACE ACO ACD ACB =+=+=⨯︒=︒∠∠∠∠∠290BOC ∠=∠+︒2∠45︒122∠=∠11902BOC ∠=∠+︒ABCD AB CD ∥AB BC ⊥B P B B C D A →→→A P x ABP ∆y y x AB∵AB ∥CD ,AB ⊥BC ,∴四边形DEBC 为矩形,∴EB=CD=3,DE=BC=4,∴∴AB=AE+EB=6.【点睛】此题主要考查矩形的动点问题,解题的关键是根据题意作出辅助线进行求解.三、解答题(本大题共8个小题、满分75分)16. 解答下列各题(1)解方程组:;(2.【答案】(1) (2)【解析】【分析】本题主要考查了二元一次方程组的解法,二次根式的混合运算:(1)用加减消元法解方程组即可;(2)先计算乘除,再计算加减,即可求解.【小问1详解】解:,得,解得:,将代入①,得,解得:,3==59253x y x y +=⎧⎨-=⎩①②(21÷-+-41x y =⎧⎨=⎩5-①②+312x =4x =4x =459y +=1y =则原方程组的解是;小问2详解】解:原式17. (图1)是由10个边长均为1的小正方形组成的图形,我们沿图的虚线,将它剪开后,重新拼成一个大正方形.(1)在图(1)中,拼成的大正方形的面积为___________,边的长为___________;(2)现将图(1)水平放置在如图(2)所示的数轴上,使得大正方形的顶点与数轴上表示的点重合,若以点为圆心,边的长为半径画圆,与数轴交于点,求点表示的数.【答案】(1)10(2)或【解析】【分析】本题考查实数与数轴,解题的关键是:(1)根据10个边长均为1的小正方形剪开后,重新拼成一个大正方形可得正方形的面积,由正方形面积公式可得的长度;(2)根据数轴上的点表示的数的特点可得E 表示的数.【小问1详解】解:∵由10个边长均为1的小正方形剪开后,重新拼成一个大正方形,∴大正方形的面积为;∴,【41x y =⎧⎨=⎩12=-+-+212=+-5=AB BC ABCD ABCD AD B 1-B BC E E 1-1-ABCD ABCD AD ABCD ABCD 210110⨯=210AD =∴,故答案为:10;【小问2详解】∵,∴以点B 为圆心,边的长为半径画圆,与数轴交于点E ,点E 表示的数为或.18. 命题:直角三角形的两锐角互余.(1)将此命题写成“如果…,那么…”:______;(2)请判断此命题的真假.若为假命题,请说明理由;若为真命题,请根据所给图形写出已知、求证和证明过程.【答案】(1)如果一个三角形是直角三角形,那么它的两个锐角互余(2)该命题是真命题,详见解析【解析】【分析】本题考查的是直角三角形的性质,逆命题的概念:(1)根据逆命题的概念写出原命题的逆命题;(2)根据三角形内角和定理计算,即可证明.【小问1详解】解:如果一个三角形是直角三角形,那么它的两个锐角互余;故答案为:如果一个三角形是直角三角形,那么它的两个锐角互余【小问2详解】解:该命题真命题已知:如图,在中,求证:证明:.是AD =BC AD ==BC 1-+1-ABC V 90B Ð=°90A C ∠+∠=︒180A B C ∠+∠+∠=︒180A C B∴∠+∠=︒-∠90B ∠=︒1809090A C ∴∠+∠=︒-︒=︒19. 近年来,网约车给人们的出行带来了便利,为了解网约车司机的收入情况,小飞和数学兴趣小组同学从甲、乙两家网约车公司分别随机抽取10名司机的月收入(单位:千元)进行统计,情况如下:根据以上信息,整理分析数据如表:平均数中位数众数方差甲公司66b 1.2乙公司6a 4c(1)填空:______,______,______;(2)小飞的叔叔决定从两家公司中选择一家做网约车司机,如果你是小飞,你建议他选哪家公司?简述理由.【答案】(1),6,(2)选甲公司,详见解析【解析】【分析】本题考查中位数、众数的定义、方差的计算以及利用方差等统计量作决策:(1)根据众数的定义可得到众数b ,观察乙网约车司机月收入人数情况统计图,可得中位数是4和5的平均数a ,根据方差的计算公式进行计算方差c 即可;(2)平均数相同时,比较中位数、众数、方差,从收入稳定性考虑,建议选甲网约车公司.【小问1详解】解:解:甲公司“6千元”对应的百分比为,∴“6千元”出现的次数最多,∴;根据题意得:乙公司月收入位于正中间的是4和5,∴;=a b =c =4.57.6110%20%10%20%40%----=6b =45 4.52a +==;故答案为:,6,;小问2详解】选甲公司,理由如下:因为平均数一样,中位数、众数甲公司大于乙公司,且甲公司方差小,更稳定所以选择甲公司.20. 某芒果种植基地,去年结余500万元,估计今年可结余980万元,并且今年收入比去年高,支出比去年低,去年的收入、支出各是多少万元?【答案】收入2120万元,支出1620万元【解析】【分析】本题主要考查了二元一次方程组的实际应用,设去年收入x 万元,支出y 万元,本题的等量关系是:去年的收入去年的支出万元.今年的收入今年的支出万元.然后根据这两个等量关系来列方程组,求出未知数的值即可得到答案.【详解】解:设去年收入x 万元,支出y 万元,根据题意,得解得,答:去年收入2120万元,支出1620万元.21. 在河道A ,B 两个码头之间有客轮和货轮通行.一天,客轮从A 码头匀速行驶到B 码头,同时货轮从B 码头出发,运送一批物资匀速行驶到A 码头,两船距B 码头的距离与行驶时间之间的函数关系如图所示,请根据图象解决下列问题:(1)A ,B 两个码头之间的距离是_________;(2)已知货轮距B 码头的距离与行驶时间的图象表达式为,求客轮距B 码头的距离与时【()()()()222214655629621267.610d ⎡⎤=⨯-⨯+-⨯+-⨯+-=⎣⎦4.57.615%10%-500=-960=()()500115%110%980x y x y -=⎧⎨+--=⎩21201620x y =⎧⎨=⎩(km)y (min)x km 112y x =2(km)y间之间的函数表达式:(3)求出点P 的坐标,并指出点P 的横坐标与纵坐标所表示的实际意思.【答案】(1)80 (2)(3),点P 的横坐标表示两船在第32分钟相遇,点P 的纵坐标表示两船相遇时距离B 码头【解析】【分析】(1)根据函数图象可得;(2)根据图象过点,可设函数表达式为,把(40,0)代入求出k 即可;(3)联立方程组,求解即可.【小问1详解】根据图象得可知:A 、B 两个码头之间的距离是80千米,故答案为:80;【小问2详解】根据图象过点,可设函数表达式为,将点代入得,,解得.∴.【小问3详解】由题意得解得∴,点P 的横坐标表示两船在第32分钟相遇,点P 的纵坐标表示两船相遇时距离B 码头.【点睛】本题考查一次函数的应用,解题的关键是熟练掌握待定系数法.22. 在一次函数的学习中,我们经历了“画出函数的图象——根据图象研究函数的性质——运用函数的性质解决问题”的学习过程,结合上面的学习过程,解决下面的问题:对于函数.(min)x 2280=-+y x (32,16)P 16km(0,80)D 280=+y kx (0,80)D 280=+y kx (40,0)E 40800+=k 2k =-2280=-+y x 1,2280.y x y x ⎧=⎪⎨⎪=-+⎩32,16.x y =⎧⎨=⎩(32,16)P 16km 2y x =-(1)请在给出的平面直角坐标系中,直接画出函数的图象;(2)小明同学通过图像得到了以下性质,其中正确的有______(填序号);①当时,随的增大而增大,当时,随的增大而减小;②此函数的图象关于轴对称.③若方程有解,则;(3)已知点,那么在函数的图象上是否存在一点,使得的面积为12.若存在,求出点坐标;若不存在,请说明理由.【答案】(1)详见解析(2)②③ (3)或【解析】【分析】本题考查了一次函数的图象和性质,三角形面积,熟练掌握一次函数的图象和性质是解题的关键.(1)列表,描点,连线画出函数图象即可;(2)根据图象可判断;(3)先求出,利用三角形面积求得点的纵坐标,进而即可求得点的坐标.【小问1详解】解:列表:01231001函数的图象如图所示:2y x =-0x <y x 0x >y x y 2x n -=2n ≥-()()2,54,5A B ---、2y x =-P ABP V P ()1,1-()1,1--6AB =P P x ⋯3-2-1-⋯y ⋯1-2-1-⋯2y x =-【小问2详解】解:①由函数图象可知,当时,随的增大而减小,当时,随的增大而增大,原说法错误;②由函数图象可知此函数的图象关于轴对称,原说法正确;③由函数图象可知,当,直线与函数有交点,即方程有解,原说法正确;故答案为:②③;【小问3详解】,,的面积为12,,即或(舍去)点的纵坐标为,点的坐标为或.23. 在图a 中,应用三角形外角的性质不难得到下列结论:∠BDC =∠A +∠ABD +∠ACD .我们可以应用这个结论解决同类图形的角度问题.0x <y x 0x >y x y 2n ≥y n =2y x =-2x n -=()()2,54,5A B --- 、6AB ∴=ABP V ()15122P AB y ∴⋅--=3512P y +=1P y ∴=-9P y =-P ∴1-P ∴()1,1-()1,1--(1)在图a 中,若∠1=20°,∠2=30°,∠BEC =100°,则∠BDC = ;(2)在图a 中,若BE 平分∠ABD ,CE 平分∠ACD ,BE 与CE 交于E 点,请写出∠BDC ,∠BEC 和∠BAC 之间的关系;并说明理由.(3)如图b ,若,试探索∠BDC ,∠BEC 和∠BAC 之间的关系.(直接写出)【答案】(1)150°(2)∠BDC +∠BAC =2∠BEC(3)2∠BDC +∠BAC =3∠BEC【解析】【分析】(1)根据题目给出的条件可得:;(2)根据题意得出∠BDC =∠BEC +∠1+∠2,∠BEC =∠BAC +∠ABE +∠ACE ,再根据BE 平分∠ABD ,CE 平分∠ACD ,得出∠ABE =∠1,∠ACE =∠2,然后进行化简即可得出结论;(3)先根据题意得出∠BDC =∠BEC +∠1+∠2,∠BEC =∠BAC +∠ABE +∠ACE ,再根据,,得出∠BEC =∠BAC +2∠1+2∠2,整理化简即可得出结论.小问1详解】解:∵∠1=20°,∠2=30°,∠BEC =100°,∴.故答案为:150°.【小问2详解】由题意可知,∠BDC =∠BEC +∠1+∠2,①∠BEC =∠BAC +∠ABE +∠ACE ,②∵BE 平分∠ABD ,CE 平分∠ACD ,∴∠ABE =∠1,∠ACE =∠2,①-②得∠BDC -∠BEC =∠BEC -∠BAC,【113ABD ∠=∠123ACD ∠=∠12150BDC BEC ∠=∠+∠+∠=︒113ABD ∠=∠123ACD ∠=∠12150BDC BEC ∠=∠+∠+∠=︒即∠BDC +∠BAC =2∠BEC .【小问3详解】由题意可知,∠BDC =∠BEC +∠1+∠2,③∠BEC =∠BAC +∠ABE +∠ACE ,④∵∠1=∠ABD ,∠2=∠ACD ,∴∠ABE =2∠1,∠ACE =2∠2.由④得∠BEC =∠BAC +2∠1+2∠2,⑤③×2-⑤得2∠BDC -∠BEC =2∠BEC -∠BAC ,即2∠BDC +∠BAC =3∠BEC .【点睛】本题主要考查了角平分线的定义,三角形外角的性质,理解题意,充分利用数形结合的思想,是解题的关键.1313。
八年级上学期期末考试数学试卷(附答案解析)

八年级上学期期末考试数学试卷(附答案解析)一、选择题1.下列各式中,无论x取何值,分式都有意义的是()A. xx2+2x+4B. 2x22x+1C. x+1x2D. x2x2.已知△ABC(如图1),按图2图3所示的尺规作图痕迹,(不需借助三角形全等)就能推出四边形ABCD是平行四边形的依据是()A. 两组对边分别平行的四边形是平行四边形B. 对角线互相平分的四边形是平行四边形C. 一组对边平行且相等的四边形是平行四边形D. 两组对边分别相等的四边形是平行四边形3.某中学篮球队12名队员的年龄情况如下:年龄(单位:岁)1415161718人数15321则这个队队员年龄的众数和中位数分别是()A. 15,16B. 15,15C. 15,15.5D. 16,154.若关于x的方程x−1x−2=mx−2+2产生增根,则m的值是()A. 2B. 0C. 1D. −15.如图,在正方形ABCD内,以BC为边作等边三角形BCM,连接AM并延长交CD于N,则下列结论不正确的是()A. ∠DAN =15°B. ∠CMN =45°C. AM =MND. MN =NC6. 如图,在△ABC 中,点M 为BC 的中点,AD 为∠BAN 的平分线,且AD ⊥BD ,若AB =6,AC =9,则MD 的长为( )A. 3B. 92C. 5D. 152 7. 如图,△ABC 中,AD 垂直BC 于点D ,且AD =BC ,BC 上方有一动点P 满足S △PBC =12S △ABC ,则点P 到B 、C 两点距离之和最小时,∠PBC 的度数为( )A. 30°B. 45°C. 60°D. 90°8. 如图,AD ⊥BC ,BD =DC ,点C 在AE 的垂直平分线上,则AB ,AC ,CE 的长度关系为( )A. AB >AC =CEB. AB =AC >CEC. AB >AC >CED. AB =AC =CE 9. 若x 2=y 7=z 5,则x+y−z x 的值是( ) A. 1 B. 2C. 3D. 4 10. 如图,在△ABC 中,∠A =40°,D 点是∠ABC 和∠ACB 角平分线的交点,则∠BDC =( )A. 110°B. 100°C. 90°D. 80°11. 如果把分式2xy x+y 中的x 和y 都扩大3倍,那么分式的值( )A. 扩大3倍B. 缩小3倍C. 缩小6倍D. 不变 12. 已知x 为整数,且分式2x−2x 2−1的值为整数,满足条件的整数x 的个数有( )A. 1个B. 2个C. 3个D. 4个13. 如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,BC =16,F 是线段DE 上一点,连接AF 、CF ,DE =4DF ,若∠AFC =90°,则AC 的长度是( )A. 6B. 8C. 10D. 12二、填空题14.数学老师计算同学们一学期的平均成绩时,将平时、期中和期末的成绩按3:3:4计算,若小红平时、期中和期末的成绩分别是90分、100分、90分,则小红一学期的数学平均成绩是______分.15.如图(1)是长方形纸带,∠DEF=20°,将纸带沿EF折叠图(2)形状,则∠FGD等于______度.16.若a:b=1:3,b:c=2:5,则a:c=______.17.已知点A(a,1)与点B(5,b)关于y轴对称,则ba +ab=______.18.如图,在梯形ABCD中,AD//BC,若AB=AD=DC=3,∠A=120°,则梯形ABCD的周长为______.19.如图,依据尺规作图的痕迹,计算∠α=______°.三、解答题(20.(1)计算:1−x−2yx+y ÷x2−4xy+4y2x2−y2(2)先化简,再求值:(9x+3+x−3)÷(xx2−9),其中x=−2.21.过矩形ABCD的对角线AC的中点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE,CF.(1)求证:四边形AECF是菱形;(2)若AB=6,AC=10,EC=254,求EF的长.参考答案和解析1.【答案】A【解析】解:A、xx2+2x+4=x(x+1)2+3,(x+1)2≥0,则(x+1)2+3≥3,无论x取何值,分式都有意义,故此选项正确;B、当x=−12时,分式分母=0,分式无意义,故此选项错误;C、x=0时,分式分母=0,分式无意义,故此选项错误;D、x=0时,分式分母=0,分式无意义,故此选项错误;故选:A.2.【答案】B【解析】解:由图可知先作AC的垂直平分线,再连接AC的中点O与B点,并延长使BO=OD,可得:AO=OC,BO=OD,进而得出四边形ABCD是平行四边形,故选:B.3.【答案】C【解析】解:∵这组数据中15出现5次,次数最多,∴众数为15岁,中位数是第6、7个数据的平均数,=15.5岁,∴中位数为15+162故选:C.4.【答案】C【解析】解:分式方程去分母得:x−1=m+2x−4,根据题意得:x−2=0,即x=2,代入整式方程得:2−1=m+4−4,解得:m=1.故选C5.【答案】D【解析】解:作MG⊥BC于G.∵四边形ABCD是正方形,∴BA=BC,∠ABC=∠DAB=°∠DCB=90°∵△MBC是等边三角形,∴MB=MC=BC,∠MBC=∠BMC=60°,∵MG⊥BC,∴BG=GC,∵AB//MG//CD,∴AM=MN,∴∠ABM=30°,∵BA=BM,∴∠MAB=∠BMA=75°,∴∠DAN=90°−75°=15°,∠CMN=180°−75°−60°=45°,故A,B,C正确,故选:D.6.【答案】D【解答】解:延长BD交CA的延长线于E,∵AD为∠BAE的平分线,BD⊥AD,∴BD=DE,AB=AE=6,∴CE=AC+AE=9+6=15,又∵M为△ABC的边BC的中点,∴DM是△BCE的中位线,∴MD=12CE=12×15=7.5.故选:D.7.【答案】B【解析】解:∵S△PBC=12S△ABC,∴P在与BC平行,且到BC的距离为12AD的直线l上,∴l//BC,作点B关于直线l的对称点B′,连接B′C交l于P,如图所示:则BB′⊥l,PB=PB′,此时点P到B、C两点距离之和最小,作PM⊥BC于M,则BB′=2PM=AD,∵AD⊥BC,AD=BC,∴BB′=BC,BB′⊥BC,∴△BB′C是等腰直角三角形,∴∠B′=45°,∵PB=PB′,∴∠PBB′=∠B′=45°,∴∠PBC=90°−45°=45°;故选:B.8.【答案】D【解答】解:∵AD⊥BC,BD=DC,∴AD垂直平分BC,∴AB=AC,又∵点C在AE的垂直平分线上,∴AC=EC,∴AB=AC=CE.故选D.9.【答案】B【解答】解:设x2=y7=z5=k,则x=2k,y=7k,z=5k,把x=2k,y=7k,z=5k代入x+y−zx =2k+7k−5k2k=2,故选B.10.【答案】A【解析】解:∵D点是∠ABC和∠ACB角平分线的交点,∴∠CBD=∠ABD=12∠ABC,∠BCD=∠ACD=12∠ACB,∴∠ABC+∠ACB=180°−40°=140°,∴∠DBC+∠DCB=70°,∴∠BDC=180°−70°=110°,故选:A.11.【答案】A【解析】解:把原分式中的x换成3x,把y换成3y,那么2⋅3x⋅3y 3x+3y =6xyx+y=3×2xyx+y.故选:A.12.【答案】C【解析】解:∵原式=2(x−1)(x+1)(x−1)=2x+1,∴x+1为±1,±2时,2x+1的值为整数,∵x2−1≠0,∴x≠±1,∴x为−2,0,−3,个数有3个.故选:C.13.【答案】D【解析】解:∵D、E分别是AB、AC的中点,BC=8,∴DE=12∵DE=4DF,DE=2,∴DF=14∴EF=DE−DF=6,∵∠AFC=90°,点E是AC的中点,∴AC=2EF=12,故选:D.14.【答案】93【解析】解:根据题意得:90×3+100×3+90×4=93(分),3+3+4答:小红一学期的数学平均成绩是93分;故答案为:93.15.【答案】40【解析】解:根据折叠可知:∠AEG=180°−20°×2=140°,∵AE//BF,∴∠EGB=180°−∠AEG=40°,∴∠FGD=40°.故答案为:40.16.【答案】2:15【解析】解:∵a:b=1:3=2:6,b:c=2:5=6:15,∴a:c=2:15,故答案为:2:1517.【答案】−265【解析】解:∵点A(a,1)与点A′(5,b)关于y轴对称,∴a=−5,b=1,∴ba +ab=−15+(−5)=−265,故答案为:−265.18.【答案】15【解析】解:过点A作AE//CD,交BC于点E,∵AD//BC,∴四边形AECD是平行四边形,∠B=180°−∠BAD=180°−120°=60°,∴AE=CD,CE=AD=3,∵AB=DC,∴△ABE是等边三角形,∴BE=AB=3,∴BC=BE+CE=6,∴梯形ABCD的周长为:AB+BC+CD+AD=15.故答案为:15.首先过点A作AE//CD,交BC于点E,由AB=AD=DC=2,∠A=120°,易证得四边形AECD 是平行四边形,△ABE是等边三角形,继而求得答案.19.【答案】56【分析】本题考查的是作图−基本作图,熟知角平分线及线段垂直平分线的作法是解答此题的关键.先根据矩形的性质得出AD//BC,故可得出∠DAC的度数,由角平分线的定义求出∠EAF的度数,再由EF是线段AC的垂直平分线得出∠AEF的度数,根据三角形内角和定理得出∠AFE的度数,进而可得出结论.【解答】解:∵四边形ABCD是矩形,∴AD//BC,∴∠DAC=∠ACB=68°.∵由作法可知,AF是∠DAC的平分线,∴∠EAF=12∠DAC=34°.∵由作法可知,EF是线段AC的垂直平分线,∴∠AEF=90°,∴∠AFE=90°−34°=56°,∴∠α=56°.故答案为:56.20.【答案】解:(1)原式=1−x−2yx+y ⋅(x+y)(x−y)(x−2y)2=1−x−yx−2y=x−2yx−2y−x−yx−2y=−y2x−y;(2)原式=(9x+3+x2−9x+3)÷x(x+3)(x−3)=x2x+3⋅(x+3)(x−3)x=x(x−3),当x=−2时,原式=(−2)×(−2−3)=10.【解析】(1)根据分式的混合运算顺序和运算法则计算可得;(2)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.21.【答案】解:(1)∵四边形ABCD是矩形,∴AD//BC,∴∠ACB=∠DAC,∵O是AC的中点,∴AO =CO ,在△AOF 和△COE 中,{∠ACB =∠DACAO =CO ∠AOF =∠COE,∴△AOF ≌△COE(ASA),∴OE =OF ,且AO =CO ,∴四边形AECF 是平行四边形,又∵EF ⊥AC ,∴四边形AECF 是菱形;(2)∵菱形AECF 的面积=EC ×AB =12AC ×EF ,又∵AB =6,AC =10,EC =254, ∴254×6=12×10×EF ,解得EF =152.【解析】(1)由矩形的性质可得∠ACB =∠DAC ,然后利用“ASA ”证明△AOF 和△COE 全等,根据全等三角形对应边相等可得OE =OF ,即可证四边形AECF 是菱形;(2)由菱形的性质可得:菱形AECF 的面积=EC ×AB =12AC ×EF ,进而得到EF 的长.。
辽宁省沈阳市铁西区2023-2024学年八年级上学期期末数学试题(含解析)

A .正数B .负数C .有理数2.如图,直线,则的度数为(A .B 3.若直线(是常数,A .B 4.下列计算正确的是(,45,20AB CD ABE D ∠=∠=︒︒∥E ∠20︒y kx =k 2-35︒45︒A.B.7.《九章算术》是中国古代重要的数学著作,其中盈十一;人出六,不足十六.问人数鸡价各几何?译文:今有人合伙买鸡,每人出九钱,会A .该函数的最大值为7C .当时,对应的函数值第二部分二、填空题(本题共5小题,每小题14.同一地点从高空中自由下落的物体,物体的高度有关. 若物体从离地面为间为(单位:),且1x =t s t三、解答题(本题共过程)16.(1)计算:(2)解二元一次方程组:18.用二元一次方程组解应用题:根据经营情况,公司对某商品在甲、乙两地的销售单价进行了如下调整:甲地上涨乙地降价5元. 已知销售单价调整前甲地比乙地少整前甲、乙两地该商品的销售单价.19.如图,在四边形中,(1)试说明:(2)若,平分252+ABCD AD E ECD ∠=∠60E ∠=︒CE(1)在“摄影”测试中,七位评委给小涵打出的分数如下:(2)求的值;(3)学校决定根据总评成绩择优选拔12名小记者,试分析小涵能否入选,并说明理由.21.如图1,已知向以的速度匀速运动到点. 图2是点化的关系图象.n ,,ABD CBD AB AD CB =V V ≌1cm/s B(1)__________;(2)求的值.22.要制作200个两种规格的顶部无盖木盒,体无盖木盒,种规格是长、宽、高各为有200张规格为的木板材,对该种木板材有甲、割、拼接等板材损耗忽略不计.(1)设制作种木盒个,则制作种木盒__________个;若使用甲种方式切割的木板材则使用乙种方式切割的木板材__________张;(2)若200张木板材恰好能做成200个两种规格的无盖木盒,请分别求出数和使用甲、乙两种方式切割的木板材张数;(3)包括材质等成本在内,用甲种切割方式的木板材每张成本5元,用乙种切割方式的木板材每张成本8元. 根据市场调研,种木盒的销售单价定为元,种木盒的销售单价定为元,在(2)的条件下,请直接写出这批木盒的销售利润(用含的式子表BD =a ,A B B 20cm,20cm,10cm 40cm 40cm ⨯A x B ,A B ,A B A a B 120a ⎛⎫- ⎪w a(2)如图2,在等腰直角三角形点在直线下方,把【问题应用】若,求【问题迁移】D BC 42,32BC BD ==7.D【分析】直接利用每人出九钱,会多出答案.,四边形是正方形,,,∴90DGH ∠=︒ ABCD 6AD AB ∴==90A ∠=45ADB ABD ∴∠=∠=︒45GHD GDN ∴∠=∠=︒17.【分析】本题主要考查了平行线的性质,三角形的内角和,解题的关键是掌握两直线平行,内错角相等,三角形的内角和为180度;根据三角形的内角和,得出,,再根据平行线的性质得出,最后根据即可求解.【详解】解:∵,∴,∵,∴,∵,∴,∴.18.调整前甲地该商品的销售单价40元,乙地该商品的销售单价为50元【分析】本题主要考查了二元一次方程组的实际应用,设调整前甲地该商品的销售单价x 元,乙地该商品的销售单价为y 元,根据“甲地上涨,乙地降价5元. 已知销售单价调整前甲地比乙地少10元,调整后甲地比乙地少1元”列出方程组求解即可.【详解】解:设调整前甲地该商品的销售单价x 元,乙地该商品的销售单价为y 元,,解得:,答:调整前甲地该商品的销售单价40元,乙地该商品的销售单价为50元.19.(1)见解析(2)【分析】本题考查了平行线的判定与性质,角平分线,三角形内角和定理.熟练掌握平行线的判定与性质,角平分线,三角形内角和定理是解题的关键.(1)由,可得,则,,进而结论得证;(2)由平分,可得,则,根据,计算求解即可.15CED ∠=︒60ACB ∠=︒45DEF ∠=︒60CEF ACB ∠=∠=︒CED CEF DEF ∠=∠-∠30,90∠=︒∠=︒A B 60ACB ∠=︒EF BC ∥60CEF ACB ∠=∠=︒90,45EDF F ∠=︒∠=︒45DEF ∠=︒15CED CEF DEF ∠=∠-∠=︒10%()10110%15x y x y +=⎧⎨++=-⎩4050x y =⎧⎨=⎩=60B ∠︒AD BC ∥B EAD ∠=∠EAD D ∠=∠AE CD ∥CE BCD ∠BCE ECD ∠=∠60ECD BCE E ∠=∠=︒∠=180B BCE E ∠=︒∠-∠-22.(1),(2)故制作种木盒乙种方式切割的木板材(3)()200x -A 50850w a =+【点睛】本题主要考查了等边三角形的性质,全等三角形的判定和性质,勾股定理,折叠的性质,熟练掌握相关性质定理,正确画出辅助线,构造直角三角形是解题的关键.。
2023-2024学年河南省郑州市经开外国语中学八年级(上)期末数学试卷+答案解析

2023-2024学年河南省郑州市经开外国语中学八年级(上)期末数学试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.在数:,…,,中,无理数的个数有()A.1个B.2个C.3个D.4个2.下列说法错误的是()A.的平方根是B.是81的平方根C.16的算术平方根是D.3.如图,从电线杆离地面8m处向地面拉一条钢索,如果这条钢索在地面的固定点距离电线杆底部6m,需要钢索的长度为A.9B.10C.11D.124.小明同学进行坐标关于对称轴对称的探索,先在平面直角坐标系中任取一点,点M关于x轴的对称点为N,点N关于y轴的对称点为G,则G点坐标为()A. B. C. D.5.滨河国际新城潮河公园改造,该公园有三角形草坪,如图,现准备在该三角形草坪内种一棵树,使得该树到三个顶点的距离相等,则该树应种在的()A.三条边的垂直平分线的交点B.三个角的角平分线的交点C.三条高的交点D.三条中线的交点6.函数与的大致图象是()A. B.C. D.7.如图,在中,,AC的垂直平分线交AB于点E,交AC于点D,的周长等于12,则BC的长度为()A.5B.6C.7D.88.甲、乙两名战士在相同条件下各射击10次,每次命中的环数如下:甲:8,6,7,7,9,10,7,5,4,7;乙:7,9,8,5,6,7,7,6,7,8;以下选项正确的是()A.甲的平均数大于乙的平均数B.甲的方差大于乙的方差C.甲的中位数大于乙的中位数D.甲的众数大于乙的众数9.如图,现给出下列条件:①,②,③,④,⑤其中能够得到的条件的个数()A.2个B.3个C.4个D.5个10.如图,点P为定角平分线上的一个定点,且与互补.若在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:①的值不变;②;③MN的长不变;④四边形PMON的面积不变,其中,正确结论的是()A.①②③B.①②④C.①③④D.②③④二、填空题:本题共5小题,每小题3分,共15分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级上学期期末数学试卷 (解析版) 一、选择题1.下列各组数中互为相反数的是( )A .2-与2B .2-与38-C .2-与12-D .2-与()22-2.如图所示的两个三角形全等,图中的字母表示三角形的边长,则1∠的度数为( )A .82°B .78°C .68°D .62° 3.人的眼睛可以看见的红光的波长约为5810cm -⨯,近似数5810-⨯精确到( )A .0.001cmB .0.0001cmC .0.00001cmD .0.000001cm 4.如图,已知ABC DCB ∠=∠,添加以下条件,不能判定ABC DCB ∆≅∆的是( )A .AB DC = B .BE CE = C .AC DB =D .A D ∠=∠5.已知直角三角形纸片的两条直角边长分别为m 和()n m n <,过锐角顶点把该纸片剪成两个三角形.若这两个三角形都是等腰三角形,则( )A .22320m mn n -++=B .2220m mn n +-=C .22220m mn n -+=D .2230m mn n --=6.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD 7.已知点(,21)P a a -在一、三象限的角平分线上,则a 的值为( ) A .1-B .0C .1D .2 8.在-227,-π,0,3.14, 0.1010010001,-313中,无理数的个数有 ( ) A .1个 B .2个 C .3个 D .4个9.一辆货车早晨7∶00出发,从甲地驶往乙地送货.如图是货车行驶路程y (km )与行驶时间x (h )的完整的函数图像(其中点B 、C 、D 在同一条直线上),小明研究图像得到了以下结论:①甲乙两地之间的路程是100km;②前半个小时,货车的平均速度是40km/h;③8∶00时,货车已行驶的路程是60km;④最后40 km货车行驶的平均速度是100km/h;⑤货车到达乙地的时间是8∶24,其中,正确的结论是()A.①②③④B.①③⑤C.①③④D.①③④⑤10.如图,在平面直角坐标系xOy中,直线y=﹣43x+4与x轴、y轴分别交于点A、B,M是y轴上的点(不与点B重合),若将△ABM沿直线AM翻折,点B恰好落在x轴正半轴上,则点M的坐标为()A.(0,﹣4 )B.(0,﹣5 )C.(0,﹣6 )D.(0,﹣7 )二、填空题11.将一次函数y=2x的图象向上平移1个单位,所得图象对应的函数表达式为__________.12.49的平方根为_______13.在一个不透明的袋子中装有2个黄球和3个红球,每个除颜色外完全相同,将球摇匀从中任取一球:①恰好取出白球;②恰好取出红球;③恰好取出黄球,根据你的判断,将这些事件按发生的可能性从小到大顺序排列___________(只需填写序号).14.如图,一艘轮船由海平面上的A地出发向南偏西45º的方向行驶50海里到达B地,再由B地向北偏西15º的方向行驶50海里到达C地,则A、C两地相距____海里.15.对于分式23x a b a b x++-+,当1x =时,分式的值为零,则a b +=__________. 16.若3a 的整数部分为2,则满足条件的奇数a 有_______个.17.如图,长方形OABC 中,8OA =,6AB =,点D 在边BC 上,且3CD DB =,点E 是边OA 上一点,连接DE ,将四边形ABDE 沿DE 折叠,若点A 的对称点'A 恰好落在边OC 上,则OE 的长为____.18.若分式293x x --的值为0,则x 的值为_______. 19.36的算术平方根是 .20.如图,已知点M (-1,0),点N (5m ,3m +2)是直线AB :4y x =-+右侧一点,且满足∠OBM=∠ABN ,则点N 的坐标是_____.三、解答题21.如图,在Rt ABC ∆中,90ACB ︒∠=,60B ︒∠=,CD 是AB 边上的中线,那么BC 与AB 有怎样的数量关系?试证明你的结论.22.如图,ABC ∆为等边三角形,D 为ABC ∆内一点,且ABD DAC ∠=∠,过点C 作AD 的平行线,交BD 的延长线于点E ,BD EC =,连接AE .(1)求证:ABD ACE ∆∆≌;(2)求证:ADE ∆为等边三角形.23.(1)计算:()238116-+--;(2)求()3121x -+=中x 的值.24.已知一次函数y =kx +3的图象经过点(1,4).(1)求这个一次函数的解析式;(2)求关于x 的不等式kx +3≤6的解集.25.已知一次函数y=2x+b.(1)它的图象与两坐标轴所围成的图形的面积等于4,求b 的值;(2)它的图象经过一次函数y=-2x+1、y=x+4图象的交点,求b 的值. 四、压轴题26.如图,直线2y x m =-+交x 轴于点A ,直线122y x =+交x 轴于点B ,并且这两条直线相交于y 轴上一点C ,CD 平分ACB ∠交x 轴于点D .(1)求ABC 的面积.(2)判断ABC 的形状,并说明理由.(3)点E 是直线BC 上一点,CDE △是直角三角形,求点E 的坐标.27.某校七年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究.(1)如图1,在△ABC 中,∠ABC 与∠ACB 的平分线交于点P ,∠A =64°,则∠BPC = ;(2)如图2,△ABC 的内角∠ACB 的平分线与△ABC 的外角∠ABD 的平分线交于点E .其中∠A =α,求∠BEC .(用α表示∠BEC );(3)如图3,∠CBM 、∠BCN 为△ABC 的外角,∠CBM 、∠BCN 的平分线交于点Q ,请你写出∠BQC 与∠A 的数量关系,并说明理由;(4)如图4,△ABC 外角∠CBM 、∠BCN 的平分线交于点Q ,∠A=64°,∠CBQ ,∠BCQ 的平分线交于点P ,则∠BPC= ゜,延长BC 至点E ,∠ECQ 的平分线与BP 的延长线相交于点R ,则∠R= ゜.28.如图1中的三种情况所示,对于平面内的点M ,点N ,点P ,如果将线段PM 绕点P 顺时针旋转90°能得到线段PN ,就称点N 是点M 关于点P 的“正矩点”.(1)在如图2所示的平面直角坐标系xOy 中,已知(3,1),(1,3),(1,3)S P Q ---,(2,4)M -.①在点P ,点Q 中,___________是点S 关于原点O 的“正矩点”;②在S ,P ,Q ,M 这四点中选择合适的三点,使得这三点满足:点_________是点___________关于点___________的“正矩点”,写出一种情况即可; (2)在平面直角坐标系xOy 中,直线3(0)y kx k =+<与x 轴交于点A ,与y 轴交于点B ,点A 关于点B 的“正矩点”记为点C ,坐标为(,)C C C x y .①当点A 在x 轴的正半轴上且OA 小于3时,求点C 的横坐标C x 的值;②若点C 的纵坐标C y 满足12C y -<≤,直接写出相应的k 的取值范围.29.如图,已知直线l 1:y 1=2x +1与坐标轴交于A 、C 两点,直线l 2:y 2=﹣x ﹣2与坐标轴交于B 、D 两点,两直线的交点为P 点.(1)求P 点的坐标;(2)求△APB 的面积;(3)x 轴上存在点T ,使得S △ATP =S △APB ,求出此时点T 的坐标.30.在ABC 中,AB AC =,D 是直线AB 上一点,E 在直线BC 上,且DE DC =. (1)如图1,当D 在AB 上,E 在CB 延长线上时,求证:EDB ACD ∠=∠;(2)如图2,当ABC 为等边三角形时,D 是BA 的延长线上一点,E 在BC 上时,作//EF AC ,求证:BE AD =;(3)在(2)的条件下,ABC ∠的平分线BF 交CD 于点F ,连AF ,过A 点作AH CD ⊥于点H ,当30EDC ∠=︒,6CF =时,求DH 的长度.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据相反数的性质判断即可;【详解】A中-2=2,不是互为相反数;B中382-=-,不是相反数;C中两数互为倒数;D中两数互为相反数;故选:D.【点睛】本题主要考查了相反数的性质应用,准确分析是解题的关键.2.B解析:B【解析】【分析】直接利用全等三角形的性质得出∠1=∠2进而得出答案.【详解】∵如图是两个全等三角形,∴∠1=∠2=180°−40°−62°=78°.故选:B.【点睛】此题主要考查了全等三角形的性质,正确得出对应角是解题关键.3.C解析:C【解析】【分析】把数还原后,再看首数8的最后一位数字8所在的位数是十万分位,即精确到十万分位.【详解】∵5⨯=0.00008,810-∴近似数5⨯是精确到十万分位,即0.00001.810-故选:C.【点睛】此题主要考查了科学记数法与有效数字,正确还原数据是解题关键.4.C解析:C【解析】【分析】全等三角形的判定方法有SAS,ASA,AAS,SSS,根据定理逐个判断即可.【详解】A.AB=DC,∠ABC=∠DCB,BC=BC,符合SAS,即能推出△ABC≌△DCB,故本选项错误;B.∵BE=CE,∴∠DBC=∠ACB.∵∠ABC=∠DCB,BC=CB,∠ACB=∠DBC,符合ASA,即能推出△ABC≌△DCB,故本选项错误;C.∠ABC=∠DCB,AC=BD,BC=BC,不符合全等三角形的判定定理,即不能推出△ABC≌△DCB,故本选项正确;D.∠A=∠D,∠ABC=∠DCB,BC=BC,符合AAS,即能推出△ABC≌△DCB,故本选项错误.故选:C.【点睛】本题考查了全等三角形的性质和判定,等腰三角形的性质的应用,能正确根据全等三角形的判定定理进行推理是解答此题的关键,注意:全等三角形的判定方法有SAS,ASA,AAS,SSS.5.B解析:B【解析】【分析】作图,根据等腰三角形的性质和勾股定理可得22+-=,整理即可求解m mn n20【详解】解:如图,222m m n m,222m n mn m,2222+-=.m mn n20【点睛】考查了等腰直角三角形,等腰三角形的性质,勾股定理,关键是熟练掌握等腰三角形的性质,根据勾股定理得到等量关系.6.D解析:D【解析】A.添加∠A=∠D可利用AAS判定△ABC≌△DCB,故此选项不合题意;B.添加AB=DC可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;C.添加∠ACB=∠DBC可利用ASA定理判定△ABC≌△DCB,故此选项不合题意;D.添加AC=BD不能判定△ABC≌△DCB,故此选项符合题意.故选D.7.C解析:C【解析】【分析】根据第一、三象限的角平分线上的点的横坐标与纵坐标相等列出方程求解即可.【详解】∵点P(a,2a-1)在一、三象限的角平分线上,∴a=2a-1,解得a=1.故选:C.【点睛】本题考查了坐标与图形性质,熟记第一、三象限的角平分线上的点的横坐标与纵坐标相等是解题的关键.8.A解析:A【解析】【分析】根据无理数的定义进行求解.【详解】解:无理数有:−π,共1个.故选:A.【点睛】本题考查了无理数,解答本题的关键是掌握无理数常见的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.9.D解析:D【解析】根据折线图,把货车从甲地驶往乙地分为三段,再根据图象的时间和路程进行计算判断.【详解】①甲乙两地之间的路程是100 km ,①正确;②前半个小时,货车的平均速度是:400.580?km/h ÷=,②错误;③8∶00时,货车已行驶了一个小时,路程是60 km ,③正确;④最后40 km 货车行驶的平均速度就是求BC 段的速度,时间为1.3-1=0.3小时,路程为90-60=30km ,平均速度是300.3100?km /h ÷=,④正确;⑤货车走完BD 段所用时间为:401000.4÷=小时,即0.46024⨯=分钟∴货车走完全程所花时间为:1小时24分钟,∴货车到达乙地的时间是8∶24,⑤正确;综上:①③④⑤正确;故选:D【点睛】本题考查了一次函数的应用,能够正确理解函数图象的横、纵坐标表示的意义,理解问题的过程,并能通过图象得到自变量和函数值之间的数量关系是解题的关键.10.C解析:C【解析】【分析】设沿直线AM 将△ABM 折叠,点B 正好落在x 轴上的C 点,则有AB =AC ,而AB 的长度根据已知可以求出,所以C 点的坐标由此求出;又由于折叠得到CM =BM ,在直角△CMO 中根据勾股定理可以求出OM ,也就求出M 的坐标.【详解】设沿直线AM 将△ABM 折叠,点B 正好落在x 轴上的C 点,∵直线y =﹣43x +4与x 轴、y 轴分别交于点A 、B , ∴A (3,0),B (0,4),∴AB 5,设OM =m ,由折叠知,AC =AB =5,CM =BM =OB +OM =4+m ,∴OC =8,CM =4+m ,根据勾股定理得,64+m 2=(4+m )2,解得:m =6,∴M (0,﹣6),故选:C .【点睛】本题主要考查一次函数的图象,图形折叠的性质以及勾股定理,通过勾股定理,列方程,是解题的关键.二、填空题11.y=2x+1.【解析】由“上加下减”的原则可知,将函数y=2x的图象向上平移1个单位所得函数的解析式为y=2x+1,故答案为y=2x+1.解析:y=2x+1.【解析】由“上加下减”的原则可知,将函数y=2x的图象向上平移1个单位所得函数的解析式为y=2x+1,故答案为y=2x+1.12.【解析】【分析】利用平方根立方根定义计算即可.【详解】∵,∴的平方根是±,故答案为±.【点睛】本题考查了方根的定义,熟练掌握平方根的定义是解本题的关键.注意:区别平方根和算术平方根解析:2 3【解析】【分析】利用平方根立方根定义计算即可.【详解】∵224=39⎛⎫±⎪⎝⎭,∴49的平方根是±23,故答案为±2 3 .【点睛】本题考查了方根的定义,熟练掌握平方根的定义是解本题的关键.注意:区别平方根和算术平方根.一个非负数的平方根有两个,互为相反数,正值为算术平方根.13.①③②【解析】【分析】根据可能性大小的求法,求出各个事件发生的可能性的大小,再按照大小顺序从小到大排列起来即可.【详解】解:根据题意,袋子中共5个球, 2个黄球和3个红球,故将球摇匀,从中解析:①③②【解析】【分析】根据可能性大小的求法,求出各个事件发生的可能性的大小,再按照大小顺序从小到大排列起来即可.【详解】解:根据题意,袋子中共5个球, 2个黄球和3个红球,故将球摇匀,从中任取1球,则①恰好取出白球的可能性为0,②恰好取出红球的可能性为35,③恰好取出黄球的可能性为25,故这些事件按发生的可能性从小到大的顺序排列是①③②.故答案为:①③②.【点睛】本题主要考查了可能性大小计算,即概率的计算方法,用到的知识点为:可能性等于所求情况数与总情况数之比,难度适中.14.50【解析】【分析】由已知可得△ABC 是等边三角形,从而不难求得AC 的距离.【详解】解:∵点B 在点A 的南偏西45°方向上,点C 在点B 的北偏西15°方向上, ∴∠ABC=45°+15°=60解析:50【解析】【分析】由已知可得△ABC 是等边三角形,从而不难求得AC 的距离.【详解】解:∵点B 在点A 的南偏西45°方向上,点C 在点B 的北偏西15°方向上,∴∠ABC=45°+15°=60°∵AB=BC=50,∴△ABC 是等边三角形,∴AC=50;故答案为:50.【点睛】本题主要考查了解直角三角形中的方向角问题,能够证明△ABC 是等边三角形是解题的关键.15.-1且.【解析】【分析】根据分式的值为零的条件为0的条件可得且,则可求出的值.【详解】解:∵分式,当时,分式的值为零,∴且,∴,且故答案为:-1且.【点睛】此题主要考查了分式值为解析:-1且5233ab ,. 【解析】【分析】 根据分式的值为零的条件为0的条件可得10a b且230a b ,则可求出 a b 的值.【详解】解:∵分式23x a b a b x++-+,当1x =时,分式的值为零, ∴10a b 且230a b , ∴1a b +=-,且5233ab , 故答案为:-1且5233ab ,. 【点睛】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零,注意:“分母不为零”这个条件不能少. 16.9【解析】【分析】的整数部分为,则可求出a 的取值范围,即可得到答案.【详解】解:的整数部分为,则a 的取值范围 8<a <27所以得到奇数有:9、11、13、15、17、19、21、23、2解析:9【解析】【分析】的整数部分为2,则可求出a 的取值范围,即可得到答案. 【详解】2,则a 的取值范围 8<a <27所以得到奇数a 有:9、11、13、15、17、19、21、23、25 共9个故答案为:9【点睛】此题主要考查了估算无理数的大小,估算是我们具备的数学能力,“夹逼法”是估算的一般方法.17.【解析】【分析】根据矩形的性质得到BC=OA=8,OC=AB=6,∠C=∠B=∠O=90°,求得CD=6,BD=2,根据折叠可知A′D=AD ,A′E=AE ,可证明Rt △A′CD ≌Rt △DBA ,解析:【解析】【分析】根据矩形的性质得到BC=OA=8,OC=AB=6,∠C=∠B=∠O=90°,求得CD=6,BD=2,根据折叠可知A′D=AD ,A′E=AE ,可证明Rt △A′CD ≌Rt △DBA ,根据全等三角形的性质得到A′C=BD=2,A′O=4,然后在Rt △A′OE 中根据勾股定理列出方程求解即可.【详解】解:如图,∵四边形OABC 是矩形,∴BC=OA=8,OC=AB=6,∠C=∠B=∠O=90°,∵CD=3DB ,∴CD=6,BD=2,∴CD=AB ,∵将四边形ABDE 沿DE 折叠,若点A 的对称点A′恰好落在边OC 上,∴A′D=AD ,A′E=AE ,在Rt △A′CD 与Rt △DBA 中,CD AB A D AD '=⎧⎨=⎩, ∴Rt △A′CD ≌Rt △DBA (HL ),∴A′C=BD=2,∴A′O=4,∵A′O 2+OE 2=A′E 2,∴42+OE 2=(8-OE )2,∴OE=3,故答案是:3.【点睛】本题考查了轴对称变换(折叠问题),矩形的性质,全等三角形的判定和性质,掌握相关性质是解题的关键.18.-3【解析】【分析】根据分式的值为零的条件可以求出x 的值.【详解】解:根据题意得:,解得:x=-3.故答案为:-3.【点睛】若分式的值为零,需同时具备两个条件:(1)分子为0;(2解析:-3【解析】【分析】根据分式的值为零的条件可以求出x的值.【详解】解:根据题意得:29=030 xx⎧-⎨-≠⎩,解得:x=-3.故答案为:-3.【点睛】若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.19.【解析】试题分析:根据算术平方根的定义,36的算术平方根是6.故答案为6.考点:算术平方根.解析:【解析】试题分析:根据算术平方根的定义,36的算术平方根是6.故答案为6.考点:算术平方根.20.【解析】【分析】在x轴上取一点P(1,0),连接BP,作PQ⊥PB交直线BN于Q,作QR⊥x轴于R,构造全等三角形△OBP≌△RPQ(AAS);然后根据全等三角形的性质、坐标与图形性质求得Q(解析:5,3 3⎛⎫ ⎪⎝⎭【解析】【分析】在x轴上取一点P(1,0),连接BP,作PQ⊥PB交直线BN于Q,作QR⊥x轴于R,构造全等三角形△OBP≌△RPQ(AAS);然后根据全等三角形的性质、坐标与图形性质求得Q (5,1),易得直线BQ的解析式,所以将点N代入该解析式来求m的值即可.【详解】解:在x轴上取一点P(1,0),连接BP,作PQ⊥PB交直线BN于Q,作QR⊥x轴于R,∴∠BOP=∠BPQ=∠PRQ=90°,∴∠BPO=∠PQR,∵OA=OB=4,∴∠OBA=∠OAB=45°,∵M(-1,0),∴OP=OM=1, ∴BP=BM ,∴∠OBP=∠OBM=∠ABN ,∴∠PBQ=∠OBA=45°,∴PB=PQ ,∴△OBP ≌△RPQ (AAS ),∴RQ=OP=1,PR=OB=4,∴OR=5,∴Q (5,1),∴直线BN 的解析式为y =−35x+4, 将N (5m ,3m+2)代入y =−35x+4,得3m+2=﹣35×5m+4 解得 m =13, ∴N 5,33⎛⎫⎪⎝⎭.故答案为:5,33⎛⎫ ⎪⎝⎭【点睛】本题考查了一次函数综合题,需要熟练掌握待定系数法确定函数关系式,一次函数图象上点的坐标特征,全等三角形的判定与性质,坐标与图形性质,两点间的距离公式等知识点,难度较大.三、解答题21.2AB BC =,证明见解析.【解析】【分析】根据直角三角形斜边上的中线得到CD BD AD ==,再根据60B ∠=︒得到DBC ∆为等边三角形,故可求解.【详解】因为90ACB ∠=,CD 是AB 边上的中线,所以CD BD AD ==.因为60B ∠=︒,所以DBC ∆为等边三角形,所以BC BD =.所以CB BD AD ==,即2AB BC =.【点睛】此题主要考查直角三角形的性质,解题的关键是熟知直角三角形斜边上的中线等于斜边的一半.22.(1)见解析(2)见解析【解析】【分析】(1)先证明∠ACE=∠CAD=∠ABD ,再根据SAS 证明ABD ACE ∆∆≌即可;(2)由ADB AEC ∆∆≌可得AD AE =,BAD CAE ∠=∠再证明60DAE ︒∠=即可.【详解】(1)ABC ∆为等边三角形,,60AB AC BAC ︒∴=∠=//AD ECDAC ACE ∴∠=∠又ABD DAC ∠=∠ABD ACE ∴∠=∠在BAD ∆与CAE ∆中,AB AC ABD ACE BD EC =⎧⎪∠=∠⎨⎪=⎩()ADB AEC SAS ∴∆∆≌(2)()ADB AEC SAS ∆∆≌,AD AE BAD CAE ∴=∠=∠CAE DAC BAD DAC ∴∠+∠=∠+∠60DAE BAC ︒∴∠=∠=ADE ∴∆为等边三角形.【点睛】此题主要考查了全等三角形的判定与性质以及等边三角形的判定,熟练掌握定理与性质是解此题的关键.23.(1)-5;(2)x=0【解析】(1)先化简立方根,乘方,二次根式,然后进行有理数的加减运算;(2)利用立方根的概念解方程.【详解】解:(1)原式214=-+-5=-.(2)()3112x -=- ()311x -=- 11x -=-0x = 【点睛】本题考查立方根及算术平方根的求法,掌握概念正确计算是本题的解题关键.24.(1)y =x +3;(2)x ≤3.【解析】试题分析:()1把14x y ==,代入3y kx =+, 求出k 的值是多少,即可求出这个一次函数的解析式.()2首先把()1中求出的k 的值代入36kx +≤,然后根据一元一次不等式的解法,求出关于x 的不等式36kx +≤,的解集即可.试题解析:(1)∵一次函数y =kx +3的图象经过点(1,4),∴ 4=k +3,∴ k =1,∴ 这个一次函数的解析式是:y =x +3.(2)∵ k =1,∴ x +3≤6,∴ x ≤3,即关于x 的不等式kx +3≤6的解集是:x ≤3.25.(1)±4;(2)5【解析】【分析】(1)分别求出一次函数y=2x+b 与坐标轴的交点,然后根据它的图象与坐标轴所围成的图象的面积等于4列出方程即可求出b 的值;(2)由题意可知:三条直线交于一点,所以可先求出一次函数y=-2x+1与y=x+4的交点坐标,然后代入y=2x+b 求出b 的值.【详解】解:(1)令x=0代入y=2x+b ,∴y=b ,令y=0代入y=2x+b ,∴x=-2b , ∵y=2x+b 的图象与坐标轴所围成的图象的面积等于4, ∴12×|b|×|-2b |=4, ∴b 2=16,∴b=±4;(2)联立214y x y x =-+⎧⎨=+⎩, 解得:13x y =-⎧⎨=⎩, 把(-1,3)代入y=2x+b ,∴3=-2+b ,∴b=5,【点睛】本题考查了一次函数与坐标轴的交点,图形与坐标的性质,待定系数求一次函数的解析式,解题的关键是根据条件求出b 的值,本题属于基础题型.四、压轴题26.(1)5;(2)直角三角形,理由见解析;(3)44,33E ⎛⎫-⎪⎝⎭或82,33E ⎛⎫- ⎪⎝⎭ 【解析】【分析】(1)先求出直线122y x =+与x 轴的交点B 的坐标和与y 轴的交点C 的坐标,把点C 代入直线2y x m =-+,求出m 的值,再求它与x 轴的交点A 的坐标,ABC 的面积用AB 乘OC 除以2得到;(2)用勾股定理求出BC 的平方,AC 的平方,再根据AB 的平方,用勾股定理的逆定理证明ABC 是直角三角形;(3)先根据角平分线求出D 的坐标,再去分两种情况构造全等三角形,利用全等三角形的性质求出对应的边长,从而得到点E 的坐标.【详解】解:(1)令0x =,则10222y =⨯+=, ∴()0,2C ,令0y =,则1202x +=,解得4x =-,∴()4,0B -,将()0,2C 代入2y x m =-+,得2m =,∴22y x =-+,令0y =,则220x -+=,解得1x =,∴1,0A ,∴5AB =,2OC =, ∴152ABC S AB OC =⋅=△; (2)根据勾股定理,222224220BC BO OC =+=+=,22222125AC AO OC =+=+=,且22525AB ==,∴222AB BC AC =+,则ABC 是直角三角形;(3)∵CD 平分ACB ∠, ∴12AD AC BD BC ==, ∴1533AD AB ==, ∴23OD AD OA =-=, ∴2,03D ⎛⎫- ⎪⎝⎭①如图,CED ∠是直角,过点E 作EN x ⊥轴于点N ,过点C 作CM EN ⊥于点M , 由(2)知,90ACB ∠=︒,∵CD 平分ACB ∠,∴45ECD ∠=︒,∴CDE △是等腰直角三角形,∴CE DE =,∵90NED MEC ∠+∠=︒,90NED NDE ∠+∠=︒,∴MEC NDE ∠=∠,在DNE △和EMC △中,NDE MEC DNE EMC DE EC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()DNE EMC AAS ≅,设DN EM x ==,EN CM y ==,根据图象列式:DO DN CMEN EM CO+=⎧⎨+=⎩,即232x yx y⎧+=⎪⎨⎪+=⎩,解得2343xy⎧=⎪⎪⎨⎪=⎪⎩,∴43EN CM==,∴44,33E⎛⎫-⎪⎝⎭;②如图,CDE∠是直角,过点E作EG x⊥轴于点G,同理CDE△是等腰直角三角形,且可以证得()CDO DEG AAS≅,∴2DG CO==,23EG DO==,∴28233GO GD DO=+=+=,∴82,33E⎛⎫-⎪⎝⎭,综上:44,33E⎛⎫-⎪⎝⎭,82,33E⎛⎫-⎪⎝⎭.【点睛】本题考查一次函数综合,解题的关键是掌握一次函数解析式的求解,与坐标轴交点的求解,图象围成的三角形面积的求解,还涉及勾股定理、角平分线的性质、全等三角形等几何知识,需要运用数形结合的思想去求解. 27.(1) 122°;(2)12BEC α∠=;(3)01902BQC A ;(4)119,29 ; 【解析】【分析】(1)根据三角形的内角和角平分线的定义;(2)根据三角形的一个外角等于与它不相邻的两个内角的和,用A ∠与1∠表示出2∠,再利用E ∠与1∠表示出2∠,于是得到结论;(3)根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义表示出EBC ∠与ECB ∠,然后再根据三角形的内角和定理列式整理即可得解;(4)根据(1),(3)的结论可以得出∠BPC 的度数;根据(2)的结论可以得到∠R 的度数.【详解】解:(1)BP 、CP 分别平分ABC ∠和ACB ∠,12PBC ABC ∴∠=∠,12PCB ACB ∠=∠, 180()BPC PBC PCB ∴∠=︒-∠+∠11180()22ABC ACB =︒-∠+∠, 1180()2ABC ACB =︒-∠+∠, 1(180180)2A =︒-︒-∠, 1180902A =-︒+︒∠, 9032122,故答案为:122︒;(2)如图2示,CE 和BE 分别是ACB ∠和ABD ∠的角平分线,112ACB ∴∠=∠,122ABD ∠=∠, 又ABD ∠是ABC ∆的一外角,ABD A ACB ∴∠=∠+∠,112()122A ABC A ∴∠=∠+∠=∠+∠, 2∠是BEC ∆的一外角,112111222BEC A A α∴∠=∠-∠=∠+∠-∠=∠=; (3)1()2QBC A ACB ∠=∠+∠,1()2QCB A ABC ∠=∠+∠, 180BQC QBC QCB ∠=︒-∠-∠,11180()()22A ACB A ABC =︒-∠+∠-∠+∠, 11180()22A A ABC ACB =︒-∠-∠+∠+∠, 结论1902BQC A ∠=︒-∠. (4)由(3)可知,119090645822BQCA , 再根据(1),可得180()BPCPBC PCB 1118022QBC QCB 1180902Q 118090582119;由(2)可得:11582922R Q ;故答案为:119,29.【点睛】本题考查了三角形的外角性质与内角和定理,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.28.(1)①点P ;②见解析;(2)①点C 的横坐标C x 的值为-3;②334k -≤<-【解析】【分析】(1)①在点P ,点Q 中,点OS 绕点O 顺时针旋转90°能得到线段OP ,故S 关于点O 的“正矩点”为点P ;②利用新定义得点S 是点P 关于点M 的“正矩点”(答案不唯一);(2)①利用新定义结合题意画出符合题意的图形,利用新定义的性质证明△BCF ≌△AOB ,则FC=OB 求得点C 的横坐标;②用含k 的代数式表示点C 纵坐标,代入不等式求解即可.【详解】解:(1)①在点P ,点Q 中,点OS 绕点O 顺时针旋转90°能得到线段OP ,故S 关于点O 的“正矩点”为点P ,故答案为点P ;②因为MP 绕M 点顺时针旋转90︒得MS ,所以点S 是点P 关于点M 的“正矩点”,同理还可以得点Q 是点P 关于点S 的“正矩点”.(任写一种情况就可以)(2)①符合题意的图形如图1所示,作CE ⊥x 轴于点E ,CF ⊥y 轴于点F ,可得∠BFC=∠AOB=90°.∵直线3(0)y kx k =+<与x 轴交于点A ,与y 轴交于点B ,∴点B 的坐标为3(0,3),(,0)B A k-在x 轴的正半轴上, ∵点A 关于点B 的“正矩点”为点(,)C C C x y ,∴∠ABC=90°,BC=BA ,∴∠1+∠2=90°,∵∠AOB=90°,∴∠2+∠3=90°,∴∠1=∠3.∴△BFC ≌△AOB ,∴3FC OB ==,可得OE =3.∵点A 在x 轴的正半轴上且3OA <,0C x ∴<,∴点C 的横坐标C x 的值为-3.②因为△BFC ≌△AOB ,3(,0)A k-,A 在x 轴正半轴上, 所以BF =OA ,所以OF =OB-OF =33k +点3(3,3)C k -+,如图2, -1<C y ≤2,即:-1<33k+ ≤2,则334k-≤<-.【点睛】本题考查的是一次函数综合运用,涉及到三角形全等、解不等式,新定义等,此类新定义题目,通常按照题设的顺序,逐次求解.29.(1)P(﹣1,﹣1);(2)32;(3)T(1,0)或(﹣2,0).【解析】【分析】(1)解析式联立构成方程组,该方程组的解就是交点坐标;(2)利用三角形的面积公式解答;(3)求得C的坐标,因为S△ATP=S△APB,S△ATP=S△ATC+S△PTC=|x+12|,所以|x+12|=32,解得即可.【详解】解:(1)由212y xy x=+⎧⎨=--⎩,解得11xy=-⎧⎨=-⎩,所以P(﹣1,﹣1);(2)令x=0,得y1=1,y2=﹣2∴A(0,1),B(0,﹣2),则S△APB=12×(1+2)×1=32;(3)在直线l1:y1=2x+1中,令y=0,解得x=﹣12,∴C(﹣12,0),设T(x,0),∴CT=|x+12 |,∵S△ATP=S△APB,S△ATP=S△ATC+S△PTC=12•|x+12|•(1+1)=|x+12|,∴|x +12|=32, 解得x =1或﹣2,∴T (1,0)或(﹣2,0).【点睛】本题考查一次函数与二元一次方程组,解题的关键是准确将条件转化为二元一次方程组,并求出各点的坐标.30.(1)见解析;(2)见解析;(3)3【解析】【分析】(1)根据等腰三角形的性质和外角的性质即可得到结论;(2)过E 作EF ∥AC 交AB 于F ,根据已知条件得到△ABC 是等边三角形,推出△BEF 是等边三角形,得到BE=EF ,∠BFE=60°,根据全等三角形的性质即可得到结论; (3)连接AF ,证明△ABF ≌△CBF ,得AF=CF ,再证明DH=AH=12CF=3. 【详解】解:(1)∵AB=AC ,∴∠ABC=∠ACB ,∵DE=DC ,∴∠E=∠DCE ,∴∠ABC-∠E=∠ACB-∠DCB ,即∠EDB=∠ACD ;(2)∵△ABC 是等边三角形,∴∠B=60°,∴△BEF 是等边三角形,∴BE=EF ,∠BFE=60°,∴∠DFE=120°,∴∠DFE=∠CAD ,在△DEF 与△CAD 中, EDF DCA DFE CAD DE CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DEF ≌△CAD (AAS ),∴EF=AD ,∴AD=BE ;(3)连接AF,如图3所示:∵DE=DC,∠EDC=30°,∴∠DEC=∠DCE=75°,∴∠ACF=75°-60°=15°,∵BF平分∠ABC,∴∠ABF=∠CBF,在△ABF和△CBF中,AB BCABF CBFBF BF=⎧⎪∠=∠⎨⎪=⎩,△ABF≌△CBF(SAS),∴AF=CF,∴∠FAC=∠ACF=15°,∴∠AFH=15°+15°=30°,∵AH⊥CD,∴AH=12AF=12CF=3,∵∠DEC=∠ABC+∠BDE,∴∠BDE=75°-60°=15°,∴∠ADH=15°+30°=45°,∴∠DAH=∠ADH=45°,∴DH=AH=3.【点睛】本题考查了全等三角形的判定与性质,等腰三角形和直角三角形的性质,三角形的外角的性质,等边三角形的判定和性质,证明三角形全等是解决问题的关键.。