常微分方程教程(丁同仁、李承治第二版)习题解答——第3章

合集下载

常微分方程教程_丁同仁(第二版)_习题解答_2

常微分方程教程_丁同仁(第二版)_习题解答_2
常微分方程教程丁同仁第二版习题解答2常微分方程第二版答案常微分方程第二版常微分方程教程第二版常微分方程丁同仁常微分方程习题集微分方程习题常微分方程习题常微分方程习题解偏微分方程习题集
常微分方程教程(第二版)-丁同仁等编-高等教育出版社-参考答案
习题 4-1 1.求解下列微分方程 1) 2 y = p + 4 px + 2 x
y = xp + f ( p )
(p =
dy ) (1) dx
dp =0 dx
dp =0 dx
即 p = c时 (2)
代入(1)得(1)的通解
y = cx + f (c)
它的 C—判别式为
y = cx + f (c) x + f ' (c ) = 0
由此得
Λ:x = − f '(c)) = ϕ (c ) , y = −cf '(c) + f (c) = ψ (c )
1 = dy 2 cos t 5
5 1 ( 2 sin t ) = d 2 cos t
5 dt 从而得 2
x=
5 2
t+c 5 t + c , y = 2 sin t 2
x 因此方程的通解为 =
消去参数 t,得通解
= y
2 sin
2 (x − C) 5 dy = 0 ,显然 dx
对于方程除了上述通解,还有 y = ± 2 ,
检验知
y = 2x +
Fy' ( x, y, p) = 1 ,
" Fpp ( x, y , p ) = 2 p ,
Fp' ( x, y, p) =−1 + p 2

常微分方程教程-丁同仁

常微分方程教程-丁同仁

常微分方程2.11.xy dxdy2=,并求满足初始条件:x=0,y=1的特解. 解:对原式进行变量分离得。

故它的特解为代入得把即两边同时积分得:e e xx y c y x x c y c y xdx dy y22,11,0,ln ,212=====+==并求满足初始条件:x=0,y=1的特解.解:对原式进行变量分离得:3解:原式可化为:,0)1(.22=++dy x dx y 。

故特解是时,代入式子得。

当时显然也是原方程的解当即时,两边同时积分得;当xy c y x y x c y c y x y dy dx x y++=====++=+=+≠=+-1ln 11,11,001ln 1,11ln 0,1112yxy dx dyxy 321++=x x y x x y x yx y y x y c c c c x dx x dy y y x y dx dy 2222222232232)1(1)1)(1(),0(ln 1ln 21ln 1ln 2111,0111=++=++≠++-=++=+≠+∙+=+)故原方程的解为(即两边积分得故分离变量得显然.0;0;ln ,ln ,ln ln 0110000)1()1(4===-==-+=-++=-=+≠===-++x y c y x xy c y x xy c y y x x dy yydx x x xy x y xdy y ydx x 故原方程的解为即两边积分时,变量分离是方程的解,当或解:由:10ln 1ln ln 1ln 1,0ln 0)ln (ln :931:8.cos ln sin ln 07ln sgn arcsin ln sgn arcsin 1sgn 11,)1(,,,6ln )1ln(21111,11,,,0)()(:53322222222222c dx dy dxdy xycy ud uu dx x x y u dx xydy x y ydx dy y x x c dy yy yydx dy c x y tgxdx ctgydy ctgxdy tgydx cx x xycx x u dx xx du xdxdu dxdux u dx dy ux y u x y y dx dy xc x arctgu dxx du u u u dx du x u dxdu xu dx dy ux y u x y x y x y dx dy dx x y dy x y ee e ee e ee x y uu xy x u u xyxy y x xx+===+=+-===-∙-=--+-=-=+-===-=+∙=+∙=∙=--=+===-+=+-=++=++-++=++===+-==-++-+--两边积分解:变量分离:。

常微分2课后习题答案

常微分2课后习题答案

常微分2课后习题答案常微分2课后习题答案在学习常微分2这门课程中,我们不可避免地会遇到一些挑战性的习题。

这些习题旨在帮助我们巩固所学的知识,并提供实践应用的机会。

然而,有时候我们可能会遇到一些难以理解或解答的问题。

在本文中,我将分享一些常微分2课后习题的答案,希望能够帮助大家更好地理解和应用这门课程的内容。

1. 题目:求解方程 dy/dx = 2x + 3解答:这是一个一阶线性常微分方程。

我们可以将它转化为标准形式 dy/dx + P(x)y = Q(x),其中 P(x) = 0,Q(x) = 2x + 3。

根据一阶线性常微分方程的解法,我们可以通过求解齐次方程 dy/dx + P(x)y = 0 的通解和特解来得到原方程的解。

首先,我们求解齐次方程 dy/dx = 0。

显然,它的通解为 y = C,其中 C 是常数。

接下来,我们寻找特解。

由于 P(x) = 0,我们可以猜测特解为 y = Ax + B,其中 A 和 B 是待定常数。

将这个猜测代入原方程,得到 A = 2,B = 3。

因此,原方程的通解为 y = C + 2x + 3,其中 C 是任意常数。

2. 题目:求解方程 d^2y/dx^2 + 4dy/dx + 4y = e^(-2x)解答:这是一个二阶常系数齐次线性常微分方程。

我们可以使用特征方程的方法来求解。

首先,我们假设 y = e^(rx) 是方程的解。

将这个解代入方程,得到特征方程r^2 + 4r + 4 = 0。

解这个二次方程,得到 r = -2。

因此,方程的通解为 y = (C1 + C2x)e^(-2x),其中 C1 和 C2 是任意常数。

接下来,我们寻找特解。

由于右侧是指数函数,我们猜测特解为 y = Ae^(-2x),其中 A 是待定常数。

将这个猜测代入方程,得到 A = 1/9。

因此,原方程的通解为 y = (C1 + C2x)e^(-2x) + 1/9e^(-2x),其中 C1 和 C2是任意常数。

常微分方程教程(丁同仁、李承治第二版)习题解答——第3章

常微分方程教程(丁同仁、李承治第二版)习题解答——第3章

第三章习题习题3—11. 判断下列方程在什么区域上保证初值解存在且唯一.1)y x y sin '+=; 2)31'-=xy ; 3)y y ='. 解 1)因为y x y x f sin ),(+=及y y x f y cos ),('=在整个xOy 平面上连续,所以在整个xOy 平面上满足存在唯一性定理的条件,因此在整个xOy 平面上初值解存在且唯一.2)因为31),(-=x y x f 除y 轴外,在整个xOy 平面上连续,0),('=y x f y 在在整个xOy 平面上有界,所以除y 轴外,在整个xOy 平面上初值解存在且唯一.3)设y y x f =),(,则⎪⎪⎩⎪⎪⎨⎧<-->=∂∂,0,21,0,21),(y yy y y y x f 故在0≠y 的任何有界闭区域上,),(y x f 及yy x f ∂∂),(都连续,所以除x 轴外,在整个xOy 平面上初值解存在且唯一. 2. 求初值问题⎪⎩⎪⎨⎧=--=,0)1(,22y y x dx dy R :1,11≤≤+y x . 的解的存在区间.并求第二次近似解,给出在解的存在区间的误差估计.解 设22),(y x y x f -=,则4),(m ax ),(==∈y x f M R y x ,1,1==b a ,所以41)41,1min(),min(===M b a h . 显然,方程在R 上满足解的存在唯一性定理,故过点)0,1(-的解的存在区间为:411≤+x . 设)(x ϕ是方程的解,)(2x ϕ是第二次近似解,则0)1()(0=-=y x ϕ,3131)0(0)(3121-=-+=⎰-x dx x x x ϕ,4211931863])3131([0)(34712322+-+--=--+=⎰-x x x x dx x x x x ϕ. 在区间411≤+x 上,)(2x ϕ与)(x ϕ的误差为 322)!12()()(h ML x x +≤-ϕϕ. 取22),(max max ),(),(=-=∂∂=∈∈y y y x f L R y x R y x ,故241)41()!12(24)()(322=+⨯≤-x x ϕϕ.3. 讨论方程3123y dx dy =在怎样的区域中满足解的存在唯一性定理的条件.并求通过点)0,0(O 的一切解.解 设3123),(y y x f =,则3221-=∂∂y y f )0(≠y .故在0≠y 的任何有界闭区域上),(y x f 及y y x f ∂∂),(都是连续的,因而方程在这种区域中满足解的存在唯一性定理的条件.显然,0=y 是过)0,0(O 的一个解.又由3123y dx dy =解得23)(C x y -±=.其中0≥-C x . 所以通过点)0,0(O 的一切解为0=y 及,,,)(,023C x C x C x y >≤⎪⎩⎪⎨⎧-=.,,)(,023C x C x C x y >≤⎪⎩⎪⎨⎧--=如图. 4. 试求初值问题 1++=y x dxdy ,0)0(=y , 的毕卡序列,并由此取极限求解.解 按初值问题取零次近似为0)(0=x y ,一次近似为 20121)10()(x x ds s x y x +=++=⎰, 二次近似为 3220261]1)21([)(x x x ds s s s x y x ++=+++=⎰, 三次近似为 432320324131]1)61([)(x x x x ds s s s s x y x +++=++++=⎰, 四次近似为 !5)!5!4!3!2(2!5134131)(5543254324x x x x x x x x x x x x x y --++++=+⨯+++=, 五次近似为 !6)!6!5!4!3!2(2)(6654325x x x x x x x x x y --+++++=,一般地,利用数学归纳法可得n 次近似为)!1()!1(!4!3!22)(11432+--⎥⎦⎤⎢⎣⎡++++++=++n x x n x x x x x x y n n n 2)!1()!1(!4!3!21211432-+--⎥⎦⎤⎢⎣⎡+++++++=++n x x n x x x x x n n , 所以取极限得原方程的解为22)()(lim --==+∞→x e x y x y x n n .5. 设连续函数),(y x f 对y 是递减的,则初值问题),(y x f dxdy =,00)(y x y =的右侧解是唯一的. 证 设)(1x y ϕ=,)(2x y ϕ=是初值问题的两个解,令)()()(21x x x ϕϕϕ-=,则有0)(000=-=y y x ϕ.下面要证明的是当0x x ≥时,有0)(≡x ϕ.用反证法.假设当0x x ≥时,)(x ϕ不恒等于0,即存在01x x ≥,使得0)(1≠x ϕ,不妨设0)(1>x ϕ,由)(x ϕ的连续性及0)(0=x ϕ,必有100x x x <≤,使得0)(0=x ϕ,0)(>x ϕ,10x x x ≤<.又对于],[10x x x ∈,有00201)()(y x x ==ϕϕ,⎰+=x x dx x x f y x 0)](,[)(101ϕϕ,⎰+=x x dx x x f y x 0)](,[)(202ϕϕ,则有 )()()(21x x x ϕϕϕ-=⎰-=xx dx x x f x x f 0)]}(,[)](,[{21ϕϕ,10x x x ≤<.由0)()()(21>-=x x x ϕϕϕ(10x x x ≤<)以及),(y x f 对y 是递减的,可以知道:上式左端大于零,而右端小于零.这一矛盾结果,说明假设不成立,即当0x x ≥时,有0)(≡x ϕ.从而证明方程的右侧解是唯一的.习题3—31. 利用定理5证明:线性微分方程 )()(x b y x a dxdy += (I x ∈) )1( 的每一个解)(x y y =的(最大)存在区间为I ,这里假设)(),(x b x a 在区间I 上是连续的.证 )()(),(x b y x a y x f +=在任何条形区域{}∞<<-∞≤≤y x y x ,),(βα(其中I ∈βα,)中连续,取[])(max ,x a M x βα∈=,[])(max ,x b N x βα∈=,则有 N y M x b y x a y x f +≤+≤)()(),(.故由定理5知道,方程)1(的每一个解)(x y y =在区间],[βα中存在,由于βα,是任意选取的,不难看出)(x y 可被延拓到整个区间I 上.2. 讨论下列微分方程解的存在区间:1))1(-=y y dx dy ; 2))sin(xy y dx dy =; 3)21y dxdy +=. 解 1)因)1(),(-=y y y x f 在整个xOy 平面上连续可微,所以对任意初始点),(00y x ,方程满足初始条件00)(y x y =的解存在唯一.这个方程的通解为x Cey -=11.显然0=y ,1=y 均是该方程在),(∞-∞上的解.现以0=y ,1=y 为界将整个xOy 平面分为三个区域来讨论.ⅰ)在区域1R {}10,),(<<+∞<=y x y x 内任一点),(00y x ,方程满足00)(y x y =的解存在唯一.由延伸定理知,它可以向左、右延伸,但不能与0=y ,1=y 两直线相交,因而解的存在区间为),(∞-∞.又在1R 内,0),(<y x f ,则方程满足00)(y x y =的解)(x y ϕ=递减,当-∞→x 时,以1=y 为渐近线,当+∞→x 时,以0=y 为渐近线.ⅱ)在区域2R {}1,),(>+∞<=y x y x 中,对任意常数0>C ,由通解可推知,解的最大存在区间是)ln ,(C --∞,又由于0),(>y x f ,则对任意200),(R y x ∈,方程满足00)(y x y =的解)(x y ϕ=递增.当-∞→x 时,以1=y 为渐近线,且每个最大解都有竖渐近线,每一条与x 轴垂直的直线皆为某解的竖渐近线.ⅲ)在区域3R {}0,),(<+∞<=y x y x 中,类似2R ,对任意常数0>C ,解的最大存在区间是),ln (+∞-C ,又由于0),(>y x f ,则对任意300),(R y x ∈,方程满足00)(y x y =的解)(x y ϕ=递增.当+∞→x 时,以0=y 为渐近线,且每个最大解都有竖渐近线.其积分曲线分布如图( ).2)因)sin(),(xy y y x f =在整个xOy 平面上连续,且满足不等式y xy y y x f ≤=)sin(),(,从而满足定理5的条件,故由定理5知,该方程的每一个解都以+∞<<∞-x 为最大存在区间.3)变量分离求得通解)tan(C x y -=,故解的存在区间为)2,2(ππ+-C C . 3.设初值问题)(E :2)(2)32(y x e y y dx dy +--=,00)(y x y = 的解的最大存在区间为b x a <<,其中),(00y x 是平面上的任一点,则-∞=a 和+∞=b 中至少有一个成立.证明 因2)(2)32(),(y x e y y y x f +--=在整个xOy 平面上连续可微,所以对任意初始点),(00y x ,方程满足初始条件00)(y x y =的解存在唯一.很显然3=y ,1-=y 均是该方程在),(∞-∞上的解.现以3=y ,1-=y 为界将整个xOy 平面分为三个区域来进行讨论.ⅰ)在区域1R {}31,),(<<-+∞<<∞-=y x y x 内任一点),(00y x ,方程满足00)(y x y =的解存在唯一.由延伸定理知,它可以向左、右延伸,但不能与3=y ,1-=y 两直线相交,因而解的存在区间为),(∞-∞.这里有-∞=a ,+∞=b .ⅱ)在区域2R {}1,),(-<+∞<<∞-=y x y x 中,由于0)1)(3(),(2)(>+-=+y x e y y y x f ,积分曲线单调上升.现设),(000y x P 位于直线1-=y 的下方,即10-<y ,则利用)(E 的右行解的延伸定理,得出)(E 的解Γ可以延伸到2R 的边界.另一方面,直线1-=y 的下方,积分曲线Γ是单调上升的,并且它在向右延伸时不可能从直线1-=y 穿越到上方.因此它必可向右延伸到区间+∞<<x a .故至少+∞=b 成立.类似可证,对3R {}3,),(>+∞<<∞-=y x y x ,至少有-∞=a 成立.4. 设二元函数),(y x f 在全平面连续.求证:对任何0x ,只要0y 适当小,方程),()(22y x f e y dxdy x -= )1( 的满足初值条件00)(y x y =的解必可延拓到+∞<≤x x 0.证明 因为),(y x f 在全平面上连续,令),()(),(22y x f e y y x F x -=,则),(y x F 在全平面上连续,且满足0),(),(≡-≡x x e x F e x F .对任何0x ,选取0y ,使之满足00xe y <.设方程)1(经过点),(00y x 的解为)(x y ϕ=,在平面内延伸)(x y ϕ=为方程的最大存在解时,它的最大存在区间为),[0βx ,由延伸定理可推知,或+∞=β或为有限数且+∞=-→)(lim 0x x ϕβ.下证后一种情形不可能出现. 事实上,若不然,则必存在β<x ,使βϕe x >)(.不妨设βϕe x >)(.于是必存在),(00βx x ∈,使00()x x e ϕ=,x e x <)(ϕ(00x x x <≤).此时必有0)(000'>=≥x x x x e dx de x ϕ, 但0),())(,()(00000'===x x e x F x x F x ϕϕ,从而矛盾.因此,+∞=β,即方程)1(的解)(x y ϕ=(00)(y x y =)必可延拓到+∞<≤x x 0.。

第3章习题答案 常微分方程教程+第二版+丁同仁+李承志+答案和练习

第3章习题答案 常微分方程教程+第二版+丁同仁+李承志+答案和练习

习 题 3-11. (1) 解: ,||),(αy y x f = 有α|||)0,(),(|y x f y x f =-,令 ,||)(αr r F =有⎰⎰--==1110010||11||)(r r r r r dr r F dr ααα, 当 01<-α, 即 1>α 时, ∞=--→αα10||11limr r , 所以 0)0(=y 的解唯一。

当 01=-α 时,1100|||ln )(r r r r F dr =⎰,而 ∞=→||ln lim 0r r ,所以 0)0(=y 的解唯一。

当 10<<α 时, 可解方程知其解不唯一。

所以当10<<α, 其解不唯一; 1≥α, 其解唯一。

(2). 解: 因为0|l n |l i m 0=→y y y ,所以dxdy在 ),(+∞-∞ 连续. 设 |||ln |)(r r r F =, 有∞=⎰1)(r r F dr(01>r 为常数),所以方程的解唯一.2. 解: 构造毕卡序列, 令 1),(++=y x y x f , dx x y x f x y xn n ⎰=+01))(,()(,因为 0)0(=y ,所以 x x dx x f x y x +==⎰20121)0,()(,x x x dx x x x f x y x ++=+=⎰2302261)21,()(, x x x x dx y x f x y x +++==⎰23402331!41),()(,…………………………………………… x x x n x n dx y x f x y n n xn n +++++==+-⎰!22!2)!1(1),()(211 ,22)!22!2)!1(1(lim )(lim 21--=+++++=+∞→∞→x e x x x n x n x y x n n n n n , 所以 22--=x e y x为方程的解. 3. 证明: 反证法设初始问题(E)有两个解, )(x y 和)(1x y , 且 0010)()(y x y x y ==,01x x >∃, 使 )()(111x y x y >, 令 )()(,sup{110x y x y x x x =<≤=μ根据μ 的定义与y 的连续性可知,对),(1x x μ∈∀,)()(1x y x y >, 令 )()()(1x y x y x r -=, 令 )()()(1x y x y x r -=, 有 0)(=μr , 有))(,())(,(1x y x f x y x f dxdr-=, 因为 ),(y x f 对 y 是递减的, 所以0<dxdr, 对 ),(1x x μ∈∀, 所以 0)()(=<μr x r , 对 ),(1x x μ∈∀, 又由y 的连续性, 可得 )()(111x y x y <,矛盾!习 题 3-31.证明:令)()(),(x b y x a y x f +=, 显然),(y x f+∞<<∞-∈y I x S ,:内连续, 且满足不等式|)(||||)(||),(|x b y x a y x f +≤,其中令 0|)(|)(≥=x a x A , 0|)(|)(≥=x b x B , 由已知有 )(x A ,)(x B 在I x ∈上是连续的, 则由定理5, 知 )(x y y = 的最大存在区间为I2. (1) 解:令 221),(yx y x f +=,则 ),(y x f 在区域 }0,{1≠+∞<<-∞=y x G 上连续,或 },00{2+∞<<-∞+∞<<<<-∞=y x x G 上连续。

常微分方程教程_丁同仁(第二版)_习题解答_4

常微分方程教程_丁同仁(第二版)_习题解答_4

对 应 于 λ1 = 7 所 有 的 特 征 向 量
1 7 x v1 = 1 ,则 v 2 = 1 那么对应的实值解为 y1 = 1 e ;
对应 λ 2 = −2 的特征向量
v1 v1 5 4 v1 = ( 2 ) 0 满足 即 + A E 5 4 = 0 ,取 v1 = 4 ,则 v v v 2 2 2
λ1 = −4 , λ1 = λ 2 = −1 。
,特征向量应满足
3 1 0 v1` 0 3 0 v 2 = 0 1 0 0 v 3
3 1 0 1 0 0 又 0 3 0 → 0 1 0 (只能进行行变换) 1 0 0 0 0 0
cos t s int 因 此 Φ (t ) 中方程组的一个基 又 det = [Φ (t )] = 1 ≠ 0 , − s int cos t
解矩阵。故方程组的通解为
y1 cos t s int = + c2 c1 − s int cos t y2
-1-
常微分方程教程(第二版)-丁同仁等编-高等教育出版社-参考答案
′ = y3 y1 ′ = y2 (3)程组的分量形式为: y 2 y′ = y 1 3
解 ①+③得 解 ①-③得 解之得
① ② ③
d ( y1 + y 3 ) = y1 + y 3 dt d ( y1 − y3 ) =y1 − y3 dt = y1 − y3 k2 e − t
dy dx
(1)任意一个特解,则 y1 ( x) + ϕ ( x), y 2 ( x) + ϕ ( x), , y n ( x) + ϕ ( x) 是(1)的 n+1 个线性无关解.这是因为,若存在常数 k1 , k 2 , k n , k n +1 使得

常微分方程课后答案

常微分方程课后答案

习题1.21.dxdy=2xy,并满足初始条件:x=0,y=1的特解。

解:ydy=2xdx 两边积分有:ln|y|=x 2+c y=e2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2x .2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。

解:y 2dx=-(x+1)dy2y dy dy=-11+x dx两边积分: -y1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y=|)1(|ln 1+x c3.dx dy =yx xy y 321++解:原方程为:dxdy =y y 21+31x x + y y 21+dy=31x x +dx 两边积分:x(1+x 2)(1+y 2)=cx 24. (1+x)ydx+(1-y)xdy=0 解:原方程为:y y -1dy=-xx 1+dx两边积分:ln|xy|+x-y=c另外 x=0,y=0也是原方程的解。

5.(y+x )dy+(x-y)dx=0解:原方程为:dx dy =-yx y x +-令xy=u 则dx dy =u+x dx du 代入有:-112++u u du=x 1dxln(u 2+1)x 2=c-2arctgu 即 ln(y 2+x 2)=c-2arctg 2xy. 6. xdxdy-y+22y x -=0 解:原方程为:dx dy =x y +xx ||-2)(1x y -则令xy=u dx dy =u+ x dx du211u - du=sgnxx1dx arcsinxy=sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为:tgy dy =ctgxdx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=xccos 另外y=0也是原方程的解,而c=0时,y=0.所以原方程的通解为sinycosx=c.8 dx dy +ye x y 32+=0 解:原方程为:dx dy =ye y 2e x 32 ex3-3e2y -=c.9.x(lnx-lny)dy-ydx=0 解:原方程为:dx dy =x y ln xy令x y=u ,则dx dy =u+ x dx duu+ xdxdu=ulnu ln(lnu-1)=-ln|cx| 1+lnxy=cy. 10.dxdy =e yx - 解:原方程为:dxdy =e x e y- e y=ce x11dxdy =(x+y)2解:令x+y=u,则dx dy =dxdu -1 dx du -1=u 2211u +du=dx arctgu=x+c arctg(x+y)=x+c12.dx dy =2)(1y x + 解:令x+y=u,则dx dy =dxdu -1dx du -1=21uu-arctgu=x+c y-arctg(x+y)=c. 13.dx dy =1212+-+-y x y x 解: 原方程为:(x-2y+1)dy=(2x-y+1)dx xdy+ydx-(2y-1)dy-(2x+1)dx=0 dxy-d(y 2-y)-dx 2+x=cxy-y 2+y-x 2-x=c14:dx dy =25--+-y x y x 解:原方程为:(x-y-2)dy=(x-y+5)dx xdy+ydx-(y+2)dy-(x+5)dx=0dxy-d(21y 2+2y)-d(21x 2+5x)=0 y 2+4y+x 2+10x-2xy=c.15: dxdy=(x+1) 2+(4y+1) 2+8xy 1+ 解:原方程为:dxdy=(x+4y )2+3令x+4y=u 则dx dy =41dx du -4141dx du -41=u 2+3 dx du=4 u 2+13 u=23tg(6x+c)-1 tg(6x+c)=32(x+4y+1).16:证明方程y x dxdy=f(xy),经变换xy=u 可化为变量分离方程,并由此求下列方程: 1) y(1+x 2y 2)dx=xdy2) y x dx dy =2222x -2 y x 2y+ 证明: 令xy=u,则x dx dy +y=dxdu 则dx dy =x 1dx du -2x u,有:u x dxdu=f(u)+1)1)((1+u f u du=x1dx所以原方程可化为变量分离方程。

常微分方程教程丁同仁第二版答案完整版

常微分方程教程丁同仁第二版答案完整版

∂Q ∂P = e x + 2 y, = e x + 2 y, ∂x ∂y
所以
∂P ∂Q ,即 原方程为恰当方程 = ∂y ∂x
则 2e x dx + [( ye x + y 2 ) dx + (e x + 2 xy ) dy ] = 0, 两边积分得: (2 + y )e x + xy 2 = C.
积分得:
1 ln y = x + c , a

y = ce ax
② y = 0 也是方程的解. 积分曲线的简图如下:
y
-7­
常微分方程教程(第二版)-丁同仁等编-高等教育出版社-参考答案
(3).
dy = 1− y2 ; dx
解:①当 y ≠ ±1 时,
原方程即为:
dy = dx (1 − y 2 )
习题 2-2 1. 求解下列微分方程,并指出这些方程在平面上的有意义的区域:: (1)
dy x 2 = dx y
解:原方程即为: ydy = x 2 dx 两边积分得: 3 y 2 − 2 x 3 = C ,
y ≠ 0.
(2)
dy x2 = dx y (1 + x 3 )
解:原方程即为: ydy =
x2 dx 1 + x3
y ≠ 0, x ≠ −1 .
两边积分得: 3 y 2 − 2 ln1 + x 3 = C ,
(3)
dy + y 2 sin x = 0 dx
解: 当 y ≠ 0 时 原方程为:
dy + sin xdx = 0 y2
两边积分得: 1 + (c + cos x) y = 0 . 又 y=0 也是方程的解,包含在通解中,则方程的通解为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档