反渗透膜在海水淡化中的应用

合集下载

RO膜NF膜应用指南

RO膜NF膜应用指南

RO膜NF膜应用指南RO膜和NF膜是水处理领域中常用的膜分离技术。

RO膜(反渗透膜)能够有效除去水中的溶解质、悬浮物和有机物质,应用于海水淡化、饮用水生产、工业废水处理等领域。

NF膜(纳滤膜)具有介于RO膜和超滤膜之间的分离范围,可以有效除去有机物、胶体、溶解盐等,应用于饮用水处理、废水处理、食品饮料等领域。

本文将介绍RO膜和NF膜的应用指南。

一、RO膜的应用指南1.海水淡化:RO膜广泛应用于海水淡化工艺中,将海水中的盐分、溶解物和有机物质去除,得到高纯度的淡水。

在海水淡化工程中,应选择具有较高的盐分阻抗和水通量的RO膜,并根据实际水质进行反应器的设计和操作参数的调节。

2.饮用水生产:RO膜可以有效去除水中的微生物、溶解物、悬浮物和有机物质,用于饮用水的制备。

在饮用水生产中,应根据原水水质选择适合的RO膜,并采用适当的预处理工艺,如活性炭吸附、混凝沉淀等,以提高RO膜的运行效果和寿命。

3.工业废水处理:RO膜可以应用于工业废水处理中,去除废水中的重金属离子、有机物质和溶解盐等,净化废水。

在工业废水处理中,应根据废水的水质和处理要求选择适合的RO膜,并结合其他物理化学处理技术,如气浮法、沉淀法等,以提高废水的处理效果。

4.农田灌溉:RO膜可以用于农田灌溉水源的处理,去除灌溉水中的溶解盐和有机物质,减少对土壤的污染和盐碱化的影响。

在农田灌溉中,应选择适合的RO膜,根据灌溉的水质和水量确定系统的设计和操作参数。

二、NF膜的应用指南1.饮用水处理:NF膜可以去除饮用水中的有机物、溶解盐和微生物等,提供纯净、安全的饮用水。

在饮用水处理中,应根据原水水质选择适合的NF膜,同时结合其他物理化学处理技术,如混凝沉淀、活性炭吸附等,以提高水质的净化效果。

2.废水处理:NF膜可以应用于废水处理中,去除废水中的胶体、有机物和溶解盐等,净化废水。

在废水处理中,应选择适合的NF膜,结合其他物理化学处理技术,如气浮法、氧化法等,以提高废水的处理效果和COD(化学需氧量)的去除率。

反渗透在海水淡化中应用最终版讲解

反渗透在海水淡化中应用最终版讲解

反渗透膜材料
醋酸纤维素 聚酰胺
反渗透膜的特点
在高流速下应具有高效脱盐率; 具有较高机械强度和使用寿命; 能在较低操作压力下发挥功能; 能耐受化学或生化作用的影响; 受pH值、温度等因素影响较小; 制膜原料来源容易,加工简便,成本低廉。
脱盐率 产水量 回收率
反渗透膜的性能指标
中国海水淡化膜发展
改革开放,吸引了大量外来企业建厂、投资
2009年,包括膜制品、装置和相关工程的中 国市场约有250亿人民币(全世界大概有450 亿美元左右);其中水处理占整个分离膜市 场的85% 从事其研究的科研人员从数量上来讲也是世 界首位
水过滤膜发展状况
纳滤:国内纳滤膜市场的规模大约是反渗透 市场规模的1/10,内资企业只有2~3家能够生 产纳滤膜,生产和产品性能都显不足,尚未 批量生产,有待拓展。
“膜法”海水淡化对预处理的要求及对策
简而言之,“膜法”海水淡化 对预处理的要求首先是低残留 ,无论有机物、微生物还是胶 体;再就是稳定,这主要是指 胶体的稳定。这两点已经在淡 水反渗透工程中大量使用多介 质和细砂过滤器的成功效果所 证明,在过滤器中亚稳态的颗 粒在充分碰撞长大而被截留,
从而保证了产水的稳定。
反渗透:2005世界反渗透膜产量4000万平方 米,销售额达5亿美元,2010年世界产量约为 5500万~6000万平方米
超滤与微滤膜
超滤和微滤:超滤和微滤膜是我国分离膜 的第一大产业,制造厂商多达100多家, 是我国膜产业中企业数、产品种类、型号 最多,产量最大,是能与国外产品抗衡的 领域。8家规模化企业的微孔滤膜合计产能 已超过3000万平方米/年,5家代表性企业已 售出的超滤、微滤膜的合计处理水量约为 510万平方米/日。
反渗透技术在海水中淡Βιβλιοθήκη 的应用组长:海水淡化膜

膜技术在海水淡化中的应用

膜技术在海水淡化中的应用

膜技术在海水淡化中的应用海水淡化是指将海水中的盐分去掉,使其成为可以直接饮用或用于农业灌溉等用途的淡水。

由于全球淡水资源的日益枯竭和人口增长的不断加快,海水淡化技术已经成为一种重要的解决方案之一。

其中,膜技术作为一种新兴的海水淡化技术,正得到越来越广泛的应用。

膜技术是指利用半透膜的分离原理,通过对溶液进行过渡过膜分离,完成对物质的分离和净化的一种技术。

它通过选择性地限制某些物质的通过来实现分离和净化的效果。

在海水淡化领域,膜技术主要包括反渗透膜(RO)、电渗析膜(ED)、纳滤膜(NF)和超滤膜(UF)等。

反渗透膜,也叫逆渗透膜,是一种常见的膜技术。

它是利用高压在半透膜两侧形成化学势势差,驱动水由高浓度方向向低浓度方向移动,从而实现对海水中的盐分的分离和净化的。

RO的应用因其高效、无污染和能耗低等优点而受到广泛关注。

目前,RO技术已经成为了海水淡化领域中最为重要的技术之一。

电渗析膜是利用电场在离子交换膜中引起的电动势差和离子浓度梯度的作用,从而完成离子的分离。

在海水淡化领域,ED技术往往结合其他膜技术使用,能够实现高效的海水淡化效果。

ED技术通过电场驱动,能够将高浓度、高电荷的离子去除,降低了RO 的进水浓度和运行成本。

纳滤膜和超滤膜是利用不同孔径的半透膜来分离分子量、分子构型不同的物质。

纳滤膜能够去除颗粒物和有机物,优势在于对于较大的分子、胶体和乳液等具有很好的分离效果。

而超滤膜则更为适用于去除水中的悬浮物、细菌、病毒、蛋白类等物质,因此在预处理海水中的颗粒物、胶体物的过程中,这两类膜技术常常应用。

除了以上膜技术外,气泡空化膜技术也在海水淡化中得到了广泛应用。

其原理是将水从底部注入,同时加压送入空气,形成密集的气泡流,使得水体产生剧烈的流动和混合,加强了水体与膜间的接触,从而提高了海水淡化的水分离效果。

总之,膜技术作为高效、环保、低能耗的海水淡化技术,已经成为了海水淡化领域中最为重要的技术之一。

渗透法在海水淡化方面应用

渗透法在海水淡化方面应用

渗透法在海水淡化方面应用1、反渗透法1960年美国加利福尼亚大学的Loeb和Sourirajan研制出第一张可实用的反渗透膜,标志着现代膜科学技术的诞生。

其工作原理如图1所示。

半透膜的两个槽内,分别为淡水和盐水,在自然状态下,淡水由于渗透压力逐渐通过半透膜向盐水移动,盐水变稀,这就是渗透现象。

当渗透进行到盐水一侧的液面达到某一高度而产生一个压头,从而抑制淡水进一步向盐水渗透,渗透的自然趋势被压头所抵消达到平衡,这种平衡压力叫渗透压。

与渗透现象相反,在盐水侧加以压力P,且该压力大于渗透压时,盐水中的水分子克服渗透压而透过半透膜进入水,盐水浓缩,淡水增加。

这就是反渗透现象。

为使反渗透装置正常运行,盐水侧的压力必须高于渗透压H,一般情况P在4-7MPa范围内。

将反渗透排放的高压浓海水输送到脉冲涡轮机或回程离心泵中,由此获的能量提供给海水高压泵的电动机使用,可以使反渗透淡化海水的单位电耗从9千瓦时/立方米降到4千瓦时/立方米。

图1:反渗透法原理2、海水淡化装置简介威海电厂海水淡化系统采用如下流程:原海水、加NaOCl系统、加PAC、系统、多介质过滤器、活性碳过滤器、加NaHSO3、阻垢剂系统、5μ保安过滤器、高压泵、—级反渗透装置、—级淡水池、高压泵、二级反渗透装置、二级淡化水池、淡化水泵、化学车间水处理混床、锅炉补水,见图2。

威海电厂一级反渗透为2列布置的RO,每列反渗透支架上都装有1套出力各为52m3/h的RO膜元件,每套都配置保安过滤器一台,高压泵及能量回收装置各两台,每列R/O装置设有两台出力65m3/h、110kw的丹麦格兰富BMET46—9/8型不锈钢增压及能量回收一体泵;每列配置102根SWHRF—380膜组件,安装在17个FRP的压力容器内,每个压力容器内6只膜,设计R/O系统回收率在40%以上,运行压力6.3MPa,一级产水含盐量低于350mg/l(25℃),并满足生活用水标准。

因一级反渗透产水PH偏低,所以在一级产水进入生活水箱时应加NaHCO3调PH值,加NaClO消毒杀菌。

反渗透膜技术在海水淡化中的应用

反渗透膜技术在海水淡化中的应用

反渗透膜技术在海水淡化中的应用海水淡化是一种将海水转化为淡水的工艺,对于解决水资源短缺问题具有重要意义。

近年来,反渗透膜技术作为一种高效可靠的水处理技术,在海水淡化领域得到了广泛应用。

本文将介绍反渗透膜技术的原理和在海水淡化中的应用。

反渗透膜技术是利用半透膜将水中的溶质与溶剂分离的一种分离技术。

半透膜是一种具有特殊表面结构的薄膜,能够选择性地通过溶剂分子而阻隔溶质分子。

在海水淡化中,反渗透膜技术通过施加高压将海水推向反渗透膜,从而使得水分子能够通过膜的微孔,而溶质,包括盐分、微生物、重金属等,则被拦截在膜的表面。

这样,就能够将海水中的盐分和杂质有效地去除,得到符合饮用水标准的淡水。

反渗透膜技术在海水淡化中的应用主要有以下几个方面:首先,反渗透膜技术在海水淡化中具有高效性。

由于反渗透膜的微孔非常细小,通常小于0.0001微米,可以有效地拦截盐分和微生物,因此能够得到非常高纯度的淡水。

根据实验数据显示,反渗透膜技术可以将海水中的盐分去除率提高至90%以上,而且还可以同时去除海水中的重金属离子等其他有害物质。

这意味着反渗透膜技术可以生产出与自然淡水质量相当的高品质淡水。

其次,反渗透膜技术具有能源效益高的特点。

相较于传统的蒸馏技术和离子交换技术,反渗透膜技术使用的能源要少得多。

传统的蒸馏技术需要大量的热能来蒸发海水中的水分,而离子交换技术则需要大量的电能来驱动离子交换过程。

而反渗透膜技术只需一个相对较低的压力来驱动水分子通过膜,因此能够大大减少能源消耗,降低生产成本。

再次,反渗透膜技术具有灵活性和可持续性。

反渗透膜技术的设备相对较小,比较灵活。

可以根据实际需求进行模块组合,以满足不同规模和不同水质要求的海水淡化工程。

另外,与传统技术相比,反渗透膜技术的维护成本较低,并且可以通过更换部分膜元件来延长其使用寿命。

这些特点使得反渗透膜技术在海水淡化领域具有较高的可持续性。

此外,反渗透膜技术也存在挑战和局限性。

海水淡化反渗透膜法工艺的应用

海水淡化反渗透膜法工艺的应用

关键词:电厂海水淡化;反渗透膜法工艺;技术应用1概述2017年初,国家发改委和国家海洋局共同印发了《全国海水利用十三五规划》,提出的目标是:十三五末,全国海水淡化总规模达到220万吨/日以上,新增海水淡化规模119万吨/日以上。

目前全球海水淡化技术超过20余种,包括反渗透法、低温多效、多级闪蒸、电渗析法、压气蒸馏、露点蒸发法、水电联产以及利用核能、太阳能、风能、潮汐能海水淡化技术等等。

从大的分类来看,主要分为蒸馏法(热法)和膜法两大类。

反渗透为国际海水淡化主流技术,《中国海水淡化设备市场调研与投资前景预测报告(2018版)》显示:到2018年全球海水淡化技术中反渗透占总产能的65%,多级闪蒸占21%,电去离子占7%,电渗析占3%,纳滤占2%,其他占2%。

2海水淡化反渗透膜法介绍反渗透法诞生于1953年,又称为膜法。

它使用的薄膜叫“半透膜”,其作用是让淡水通过,不让盐分通过。

反渗透膜是一种用特殊材料制成的、具有半透性能的薄膜。

最常用的是中空纤维和螺旋卷式两种。

根据膜材料或成膜工艺又可分为非对称反渗透膜、复合反渗透膜。

目前反渗透膜组件的使用寿命为3~5年。

反渗透膜组件质量的优劣和水平的高低关键在于膜性能的好坏,反渗透膜法海水淡化过程中节能和高脱盐是两个需要满足的问题[1]。

经过多年来技术研究,反渗透海水淡化设备对膜、泵、能量回收装置等不断研究更新,装置的平均耗能已经减少至原来的五分之一[2]。

反渗透本体部分主要由反渗透组件和高压泵两大部分组成。

反渗透所需能耗主要用于提供反渗透过程所需压力上,为了降低淡化水的操作费用,通常在浓盐水排放管线上安装能量回收装置。

3应用实例山东莱州电厂规划容量6×1000MW超超临界燃煤机组,一期工程现已正式运行2×1000MW国产超超临界燃煤发电机组,本期正在扩建2×1000MW超超临界二次再热燃煤机组。

海水淡化系统是莱州电厂配套项目,利用发电厂的电力以及海水取排水设施生产淡水,以作为电厂锅炉补给水和其它工业用水。

膜分离技术在海水淡化中的应用

膜分离技术在海水淡化中的应用

膜分离技术在海水淡化中的应用随着人口的增加和工业的发展,水资源越来越紧张。

海洋作为覆盖地球表面70%的水域,其海水资源是我们解决水问题的无限宝藏。

然而,海水含有大量的盐分和杂质,不能直接作为我们需要的清洁用水。

为了解决这一问题,人们将目光投向了膜分离技术。

一、膜分离技术概述膜分离技术是一种以膜作为隔离层,利用膜对溶质和溶剂进行分离的技术。

目前,主要应用于海水淡化、废水处理和气体分离等领域。

膜的主要分类有微滤膜、超滤膜、纳滤膜和反渗透膜。

其中,反渗透膜在海水淡化中应用最广泛。

二、膜分离技术在海水淡化中的应用1. 反渗透膜海水淡化技术反渗透膜海水淡化技术是目前海水淡化技术中应用最广泛的一种。

其工作原理是将海水加压通过反渗透膜,使得水分子穿过膜孔径而盐离子无法通过,从而达到除盐的目的。

该技术具有除盐效率高、处理量大、设备投资低等优点。

同时,该技术对环境造成的影响也较小,不会产生大量的废水和废弃物,适用于岛屿、沙漠和偏远地区等无法获得淡水资源的地区。

2. 膜结晶技术膜结晶技术是将海水通过特制的膜,将海水中的溶解物在膜上结晶形成固体颗粒,然后通过加热蒸发的方法获得淡水的技术。

该技术具有能源消耗低、便于控制、对环境影响小等特点。

但是,该技术的设备成本较高,在实际应用中存在一定的困难。

三、膜分离技术在海水淡化中的优势和挑战1. 优势(1)除盐效率高:反渗透膜海水淡化技术的除盐效率高达99%,可以满足我们对纯净淡水的需求。

(2)资源利用高效:利用海水淡化技术可以将海水转化为淡水,为我们节约淡水资源,提高水资源利用效率。

(3)环境友好:海水淡化技术不会产生大量的废水和废弃物,对环境影响较小。

2. 挑战(1)成本高:目前海水淡化技术的设备成本较高,需要大量的资金投入,难以普及。

(2)水处理难度大:海水中含有大量的盐分和杂质,对反渗透膜等膜材料的稳定性和寿命提出了高要求。

(3)能源耗费大:海水淡化需要投入大量的能源,如电力、热能等,需要寻找更加节能的途径。

逆渗透技术在海水淡化中的应用

逆渗透技术在海水淡化中的应用

逆渗透技术在海水淡化中的应用第一章:介绍海水淡化技术是指从海水中移除盐分,以获得淡化水源的过程。

随着人口和水需求的增长,世界各地的海水淡化项目数量正在迅速增加。

其中,逆渗透技术是一种被广泛采用的技术,因其高效、低成本和环保而备受推崇。

本文将深入探讨逆渗透技术在海水淡化中的应用。

第二章:什么是逆渗透技术逆渗透技术是一种过滤方法,它逆向通过一个半透膜,使水从高盐浓度的水中流出,形成低盐浓度的水和高盐浓度的浓水。

半透膜是由薄膜构成的,这种膜可以选择性地允许水分子通过,而阻止离子和其他物质的通过。

逆渗透是一种高效、低能耗的过程,可在海洋淡化和其他应用中产生干净、可用的淡化水。

第三章:逆渗透技术在海水淡化中的应用1. 海水淡化厂逆渗透技术可用于制造海水淡化厂,这种厂通过反渗透过程将海水转化为淡水。

反渗透过程还可通过额外的膜过滤和消毒来净化淡水。

2. 饮用水和炼油逆渗透技术可用于净化饮用水,并且对于炼油业,这种技术还可用于去除盐和其他杂质,使炼油或石油生产过程更加高效和可持续。

3. 民用和商业用途逆渗透技术可应用于公共和商业水源,例如游泳池、酒店和医院,以提供干净的淡化水。

第四章:逆渗透技术的优势和挑战1. 优势逆渗透技术具有高效、节能、低成本、低排放和易于操作等优点。

同时,它还可以自适应不同的水源质量,使之解决各种水源的淡化需求。

2. 挑战逆渗透技术的挑战包括高能耗、膜污染、维护成本高、使用寿命短、处理后废液处理难度大等。

这些挑战需要经验丰富的工程师和技术人员来克服。

第五章:技术改进和未来发展随着科技的不断发展,逆渗透技术的改进和发展将越来越成为研究的重点和方向。

这些改进包括更高效的膜技术、更智能的控制系统和更可持续的能源方案等。

未来,逆渗透技术将继续在淡化海水、净化饮用水、强化工业应用等方面作出贡献。

与此同时,我们也需要继续努力,寻求更好的技术和方法来解决全球水资源问题。

第六章:结论逆渗透技术已成为海水淡化的主要工具之一,并且在各种应用场景中均具有广泛的应用前景。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反渗透膜在海水淡化中的应用
发表时间:2017-03-17T11:28:33.787Z 来源:《科技中国》2017年1期作者:郑祎晴
[导读] 本文介绍了目前几种反渗透膜作用机理,反渗透膜在海水淡化中的工程应用与其发展趋势。

(北京市海淀实验中学,北京100160)
摘要
全球淡水资源短缺是一个普遍问题,海水淡化可以有效解决目前淡水资源短缺的困境。

在海水淡化处理中,利用反渗透膜进行海水淡化是高效的具有光明前景的一种处理方法。

本文介绍了目前几种反渗透膜作用机理,反渗透膜在海水淡化中的工程应用与其发展趋势,并对未来的发展方向做了展望。

关键词:海水淡化反渗透膜作用机理
一、引言
目前,水资源危机已经成为各个国家面临的全球性问题,干净的适用于生活与生产的淡水资源不断被消耗,在许多地方,水资源的需求量已经远远超过了自然能够提供的量。

淡水资源是新世纪重要的稀缺资源,其也成为了各国经济与社会可持续发展的多方面的战略热点。

地球上有97%的水资源蕴藏在海洋中,解决目前淡水资源短缺的最有效的方法为海水淡化。

而利用反渗透膜进行海水淡化是高效的具有光明前景的一种处理方法。

20世纪70年代后,反渗透海水淡化技术逐渐走进人们的视野,相应技术与工程应用发展十分迅速。

如今,反渗透技术已经取得了令人瞩目的成果。

目前反渗透膜与组件的生产已经相当成熟,膜的脱盐率能够达到99.8%,脱硼率达到95%,水通量大大增加,抗污染和抗氧化能力也不断提高[1]。

二.反渗透膜作用机理
反渗透又称逆渗透,是一种膜分离操作,其推动力为压力差,将溶剂从溶液中分离出。

膜一侧的溶液被施加压力后,其压力大于本身的渗透压,溶液就会与自然渗透的方向相反,做反向渗透,这样在膜的低压一侧得到所谓“渗透液”;而在高压的一侧得到浓缩液。

用反渗透技术淡化海水,就可以在膜的低压侧得到淡水,在高压侧得到浓水。

海水盐度越高,所需压力越大,所耗能量也越高[2]。

作为反渗透膜海水淡化技术的核心,研究反渗透膜的作用机理对于改进反渗透膜的功能,提高反渗透效率具有指导作用。

随着反渗透膜的发展,迄今为止,提出过的反渗透膜脱盐理论包括氢键模型、优先吸附毛细管流动模型、溶解扩散模型等。

其中溶解扩散模型、优先吸附毛细管流动模型是目前工程中被广泛应用的模型。

2.1反渗透膜脱盐机理
2.1.1氢键
氢键模型最早由Reid等最早提出[3],该模型针对的是第一代醋酸纤维酯膜。

此模型认为在氢键作用下,水分子和膜材料上的活性基团可以结合为类似“冰”形状结构的结合水。

在压力下,结合水从一个氢键位置迁移到另一个相邻的氢键位置并与之形成新的氢键。

易形成这种结合水的材料适于反渗透要求。

2.1.2 优先吸附毛细管流动模型
优先吸附—孔流膜型是由Sourirajan等构建[5],他们认为反渗透膜表层是非均匀有孔的,在盐水溶液和聚合物多孔膜接触的情况下,如果在此界面上有择优吸附水而排斥盐的性质,则会形成一负吸附层。

纯水的输送可通过膜中的小孔来进行。

膜表面具有合适的化学性质及合适尺寸的孔径和孔数是反渗透成功的两个必不可少的条件。

反渗透膜的表层应尽可能的薄以减小液体流动的阻力,膜的整个孔结构必须是非对称的。

2.1.3 溶解扩散理论
溶解扩散理论的基本出发点是假设膜是理想无缺陷的膜,水和溶质的透过可基于一个简单的均匀扩散模型用分子扩散来描述。

水和溶质的透过分两个阶段完成。

首先水和溶质溶解进入到膜材料中,之后水和溶质在膜中进行扩散作用。

实际上膜一般都具有某些缺陷,它们对水的透过没有什么影响,但对盐的透过则有显著影响,使盐的流速不仅和浓度有关,而且与压力有关。

此外,如果膜有高的水吸收作用,则会有高的水渗透性和盐渗透性,反之亦然[3]。

水在膜中的分布状态也是相当重要的,它还可能影响溶质在膜中的状态。

在溶解扩散模型的经典理论基础之上,许多人提出了改进的理论模型。

Sherwood等提出了不完全的溶解-扩散模型(SDIM),这是由于膜的固有缺陷。

Burghoff等则考虑压力与溶质化学势的关系,提出了扩展的溶解-扩散模型(ESDM)。

王一鸣等考虑了溶质体积压力驱动项对反渗透膜中溶质迁移的影响,提出了一个半经验的改进的反渗透膜溶解-扩散模型(MSDM)[4]。

2.1.5.其他学说
另外一些解释反渗透膜作用机理的学说包括吸附扩散模型、膜内孔隙开闭学说、Donnan平衡理论、基团贡献模式、水离子通道蛋白模式等。

2.2反渗透膜脱除有机小分子机理
最初普遍认为,有机溶质的脱除只是由于筛网效应,其脱除率主要与分子量大小和形状有关。

由于有机物的分子不能被膜的表面排斥,又由于有机物倾向于降低溶液与膜之间的表面张力,一些分子量小于100的有机物容易通过膜的孔隙。

分子量在100-200之间的有机物可以通过膜小半,分子量在200以上的有机物则基本上可以100%去除。

三.反渗透膜工业发展与工程实例
3.1反渗透膜工业发展
反渗透膜的发展已经经历了三个阶段,第一代反渗透膜是均质膜,已在实际应用中被淘汰;第二代反渗透膜是用 L-S制膜工艺制造的非对称膜,目前仍在一定范围内应用;第三代是复合型反渗透膜,目前广泛应用在各个领域。

3.2国内外反渗透膜海水淡化应用工程
二十世纪七十年代反渗透技术应用到海水淡化以来,反渗透法海水淡化的发展十分迅速。

目前全球海水淡化设备年均市场容量约40亿
美元,中国海水淡化设备未来十年投资规模将高达120-140亿元,海水淡化发展进入黄金十年。

相比南水北调,对于北方沿海地区,海水淡化在中国更具有现实价值。

因反渗透膜法淡化海水投资省、能耗低、污染少、操作管理方便等特点,已成为全球先进的脱盐技术。

但反渗透膜淡化水也存在一定局限性,淡化水具有高纯度、低硬度、低含盐量、极差的化学稳定性、低碱度、弱酸性等显著特征。

根据国际海水淡化协会(IDA)的统计,截至2013年8月,全世界现役17277家海水淡化工厂日产量已超过8000万吨,168个国家和地区应用了海水淡化技术,3亿多人部分或全部依靠淡化水满足日常所需。

海水淡化产业每年增长15%,远高于经济增长速度。

我国海水淡化技术基本成熟,已建成多个具有自主知识产权的千吨级和万吨级示范工程,是完全独立掌握海水淡化技术的少数国家之一。

3.2.1杭州六横海水淡化项目
我国首个具有独立知识产权的反渗透海水淡化工程目前已经由杭州水处理技术研究开发中心研发并建成投运。

工程中大部分的关键设备实现国产化应用。

项目规模为单机1万m3/d,工艺流程分为海水取水、海水一级预处理、海水二级预处理、反渗透海水淡化、产品水后处理和系统控制5个部分[7]。

运行成本为3.266元/m3,运行吨水电耗为2.56kWh,吨水电耗对比相同级别项目较低,同时工程投资成本有所下降。

3.2.2 以色列Sorek反渗透海水淡化项目
全球规模最大最先进的反渗透海水淡化厂为以色列Sorek反渗透海水淡化厂[6],于2013年10月投入全面运营。

Sorek反渗透海水淡化厂产水规模达62.4万立方米/天,其中约54万立方米的水直接供应给以色列的供水系统。

采用IDE先进的反渗透膜淡化技术,减少了大量部件、膜壳和联管箱的数量,便于快速安装使得技术更易实现。

采用了压力中心设计,降低能耗,增加工厂产量。

为提升运行效率,降低能源消耗,装备了超高压泵和能源回收装置。

4.结论
海水淡化为一项近年来发展迅速的新兴技术,目前虽然大型反渗透装置的处理效率不断提高,但是由于较高电能的消耗,控制成本为中心问题。

目前可能的发展趋势为利用再生能源解决电能的高消耗问题。

经过几十年的研究和发展,并应用于工程实例,反渗透海水淡化厂的能耗已经降至1/5左右,取得了相当的突破,具有巨大的发展潜力。

参考文献:
[1]冯厚军,谢春刚. 中国海水淡化技术研究现状与展望[J]. 化学工业与工程,2010,02:103-109.
[2]S.索里拉金,刘廷惠. 反渗透科学第一章反渗透分离的物理化学本质[J]. 膜科学与技术,1984,01:3+1-37.
[3]刘懋涛,鲁学仁. 反渗透法脱盐机理的研究现状[J]. 水处理技术,1981,04:33-43.
[4]王一鸣,许振良,张永锋,姬朝青. 改进的反渗透膜溶解-扩散模型及其验证[J]. 高校化学工程学报,2010,04:574-578.
[5]冯厚军,谢春刚. 中国海水淡化技术研究现状与展望[J]. 化学工业与工程,2010,02:103-109.
[6]徐子丹. 全球规模最大的反渗透海水淡化厂[J]. 水处理技术,2014,06:17.
[7]余涛,杨波,薛立波,谭永文,郑宏林,俞海英. 国产化单机日产水1万吨的反渗透海水淡化工程[J]. 水处理技术,2012,09:114-116.。

相关文档
最新文档