导电聚合物的结构,导电机理及聚合方法
常见导电聚合物

常见导电聚合物导论导电聚合物是一类具有导电性能的高分子材料,具有优异的导电性、机械性能和化学稳定性。
常见导电聚合物广泛应用于电子、能源、传感器等领域。
本文将介绍几种常见的导电聚合物及其应用。
聚苯胺(Polyaniline)聚苯胺是一种有机导电聚合物,具有优异的导电性能和化学稳定性。
它可以通过化学氧化或电化学氧化反应合成。
聚苯胺的导电性主要来自于其共轭结构,其中苯环通过π电子共享形成导电通道。
聚苯胺在导电性能、电化学活性、光学性能等方面具有独特的优势,因此被广泛应用于电池、超级电容器、传感器等领域。
聚苯胺的合成方法1.化学氧化法:将苯胺单体与氧化剂反应,如过氧化氢、过硫酸铵等,生成聚苯胺。
2.电化学氧化法:将苯胺单体溶解在电解质溶液中,通过电化学氧化反应生成聚苯胺。
聚苯胺的应用1.电池:聚苯胺可以用作电池的电极材料,提高电池的导电性和储能性能。
2.传感器:聚苯胺可以用作气体传感器、湿度传感器等的敏感材料,具有高灵敏度和快速响应的特点。
3.超级电容器:聚苯胺可以用作超级电容器的电极材料,具有高能量密度和快速充放电的特点。
聚噻吩(Polythiophene)聚噻吩是一种常见的有机导电聚合物,具有良好的导电性和光电性能。
聚噻吩的导电性来源于其共轭结构,其中噻吩环通过π电子共享形成导电通道。
聚噻吩具有较高的载流子迁移率和较低的能带间隙,因此被广泛应用于有机光电器件、场效应晶体管等领域。
聚噻吩的合成方法1.化学氧化法:将噻吩单体与氧化剂反应,如过氧化氢、过硫酸铵等,生成聚噻吩。
2.电化学氧化法:将噻吩单体溶解在电解质溶液中,通过电化学氧化反应生成聚噻吩。
聚噻吩的应用1.有机光电器件:聚噻吩可以用作有机太阳能电池、有机发光二极管等器件的光电活性层,提高器件的光电转换效率。
2.场效应晶体管:聚噻吩可以用作场效应晶体管的有机半导体层,实现电荷输运和场效应调控。
聚乙炔(Polyacetylene)聚乙炔是一种具有高导电性的聚合物,是导电聚合物研究的先驱。
高分子导电聚合物

高分子导电聚合物高分子导电聚合物是一类具有导电性能的高分子材料,具有广泛的应用前景。
本文将从导电机理、制备方法、应用领域等方面介绍高分子导电聚合物。
一、导电机理高分子导电聚合物的导电性能是由于其中存在导电基团或导电填料的存在。
导电基团通常指的是具有π共轭结构的有机分子,如聚噻吩、聚苯胺等。
这些导电基团能够通过共轭结构形成电子传导路径,使得材料具有一定的导电性。
另外,导电填料是将导电性较好的无机材料添加到高分子基体中,如碳纳米管、金属纳米粒子等。
导电填料能够提供电子传导通道,增强材料的导电性能。
二、制备方法制备高分子导电聚合物的方法多种多样,常见的有化学合成法、电化学合成法、物理混合法等。
化学合成法是通过化学反应将具有导电基团的单体聚合成高分子导电聚合物。
电化学合成法是通过电解聚合的方式制备高分子导电聚合物,其中电解液中含有导电基团的单体。
物理混合法是将导电填料与高分子基体物理混合,形成导电复合材料。
三、应用领域高分子导电聚合物在许多领域具有广泛的应用。
在电子器件方面,高分子导电聚合物可以用于制备柔性显示器、柔性太阳能电池等柔性电子器件。
由于其柔性性能和导电性能的协同作用,使得这些器件具有较好的可塑性和可靠性。
此外,高分子导电聚合物还可以用于制备传感器,如压力传感器、湿度传感器等。
由于其导电性能对外界环境变化敏感,使得传感器的灵敏度和响应速度得到提高。
另外,高分子导电聚合物还可以用于制备导电纤维、导电涂料等材料。
高分子导电聚合物作为一类具有导电性能的材料,具有广泛的应用前景。
通过了解其导电机理、制备方法和应用领域,可以更好地认识和利用这一类材料,推动其在各个领域的应用和发展。
未来随着科技的不断进步,高分子导电聚合物有望在更多领域展现其独特的优势和潜力。
导电聚合物的合成及应用

导电聚合物的合成及应用随着科技的不断发展,导电聚合物作为一种新型材料,被广泛应用在各种领域。
导电聚合物具有低成本、易加工、可调性强、柔性好等特点,因此备受关注。
一、导电聚合物的基本概念导电聚合物是一种具有导电性能的高分子材料,通过聚合物分子内部共轭体系的构建,使得它们具有较好的电子传输性质。
导电聚合物可分类为三类:聚噻吩系列、聚苯和聚吡咯系列。
其中聚噻吩系列导电聚合物具有电子亲和性强、电化学稳定性好、可溶于多种溶剂等优点,因此被广泛应用。
二、导电聚合物的合成方法导电聚合物的合成方法主要分为两类:化学合成和物理合成。
1. 化学合成化学合成是指通过有机合成方法合成导电聚合物。
目前较为常用的有两种,一种是电聚合法,另一种则是化学氧化聚合法。
电聚合法是利用电化学反应原理,将单体溶液在电极上施加电场,使单体离子发生电子转移,形成共轭体系聚合物。
这种方法具有操作简单、反应快速等优点。
化学氧化聚合法是在单体中加入化学氧化剂,通过氧化反应进行聚合。
这种方法具有化学反应速度快、产物质量好等优点。
2. 物理合成物理合成是指在导电聚合物体系中添加导电填充剂,如碳黑、金属纳米粒子等,使其具有导电性。
这种合成方法操作简便,可以用于大规模制备。
三、导电聚合物的应用导电聚合物具有众多的应用,以下列举几个例子:1. 电子器件导电聚合物具有导电性能,可以用于制作电子器件。
例如,OLED显示屏、柔性可穿戴设备等都广泛应用了导电聚合物。
2. 锂电池导电聚合物在锂电池领域得到广泛应用。
其中最具代表性的是聚噻吩系列的导电聚合物,可以用于制作锂电池正极材料。
3. 活性废水的处理导电聚合物可以通过电解反应对活性废水进行处理,其处理效率较高。
4. 传感器导电聚合物的导电性能可以用于制作电化学传感器、气敏传感器等。
总之,导电聚合物具有广泛的应用前景,其合成方法也在不断完善,未来有望得到更广泛的应用。
有机导电聚合物的制备及其在电池和传感器中的应用

有机导电聚合物的制备及其在电池和传感器中的应用随着科技的飞速发展,有机导电聚合物成为了一种备受关注的新型材料。
有机导电聚合物是指化学结构中含有共轭体系的高分子材料,其中电荷与电子通过共轭体系的π-π*跃迁实现,从而表现出与金属导体相当的导电性能。
目前,有机导电聚合物在电池、传感器等领域有着广泛的应用,本文将就有机导电聚合物的制备及其在电池和传感器中的应用分别进行阐述。
一、有机导电聚合物的制备有机导电聚合物的制备方法多种多样,这里仅选取目前较常见的三种制备方法进行介绍。
1. 化学氧化法化学氧化法是一种将物质氧化成有机导电聚合物的方法,它的基本原理是在光敏原料、还原剂和氧化剂的作用下,让有机化合物发生氧化反应,将焦炭或聚苯胺作为原料,经过多次氯氧化或者在硫酸介质中进行氧化,得到有机导电聚合物。
2. 电聚合法电聚合法是利用一定电压将单体分子转变成高分子链的方法,其过程中通常采用电解电容器,将电解质浓溶液中的单体分子置于两个电极板之间,在施加电压的同时对单体进行电解形成高分子。
这种方法可以得到高电导率的聚合物,适合于制备薄膜电极。
3. 溶液法溶液法是将需要制备的材料在适宜的有机溶剂中溶解,加入引发剂,经过加热、搅拌、过滤、洗涤等一系列步骤,制备出具有导电性的聚合物。
二、有机导电聚合物在电池中的应用有机导电聚合物在电池中的应用可以说是目前的研究热点,其主要应用在锂离子电池、超级电容器以及太阳能电池等领域。
1. 锂离子电池锂离子电池是目前应用最广的电池类型,有机导电聚合物可以作为锂离子电极的材料。
一些有机导电聚合物具有较高的锂离子嵌入/脱嵌比,获得了在锂离子电池中应用的机会。
例如,聚苯胺、聚咔唑、聚吡咯等有机导电聚合物可以通过氧化还原反应实现锂离子的嵌入/脱嵌,从而实现电池的充放电。
2. 超级电容器超级电容器具有高功率密度、快速充放电特点,是与传统蓄电池相比可选择的能量存储器。
有机导电聚合物因具有很高的表面积和半导体电性,可以作为电容器金属电极材料,获得了在超级电容器领域的应用。
导电聚合物及其复合材料的制备与性能研究

导电聚合物及其复合材料的制备与性能研究导电聚合物是一种具有导电性能的材料,其制备过程涉及到聚合物的合成和导电添加剂的掺杂。
导电聚合物在电子和光电器件中具有广泛的应用前景,如有机太阳能电池、柔性显示器、传感器等。
本文将从导电聚合物的制备方法和性能研究两方面来进行论述。
一、导电聚合物的制备方法1.1 化学氧化聚合法化学氧化聚合法是目前制备导电聚合物最常用的方法之一。
以聚苯胺(PANI)为例,其合成过程如下:首先将苯胺单体与氧化剂溶液混合,通过化学反应使其发生氧化聚合,形成导电聚合物。
该方法具有简单、成本低等优点,但聚合物的导电性能差,且溶液中的有毒气体排放对环境造成污染。
1.2 共沉淀聚合法共沉淀聚合法是一种通过电解或化学氧化还原反应制备导电聚合物的方法。
以聚咔唑(PZ)为例,其合成过程如下:通过电解反应或化学反应使反应物中的单体共沉淀生成导电聚合物。
该方法具有制备高纯度导电聚合物的优势,但其过程较为复杂,需要控制反应条件和反应物的浓度。
二、导电聚合物的性能研究2.1 导电性能研究导电聚合物的导电性能是评价其应用价值的重要指标之一。
研究人员通过测量导电聚合物的电阻率、电导率等物理指标来评估其导电性能。
同时,还需要研究导电聚合物的导电机理,探索其导电行为受控制的方式。
例如,研究温度、压力、光辐射等外界条件对导电聚合物的导电性能的影响,为其在不同应力环境下的应用提供理论依据。
2.2 机械性能研究导电聚合物在应用中需要具备一定的机械性能,如柔韧性、拉伸强度等。
研究人员通过拉伸实验、压缩实验等测试手段,探究导电聚合物在不同应力条件下的机械行为。
同时,还需要研究导电聚合物的断裂机理,提出相应的改进方案,使其在机械性能方面能够满足实际应用需求。
2.3 稳定性研究由于导电聚合物具有高分子结构,其在长期使用或者极端环境下可能会产生降解、老化等问题。
因此,研究导电聚合物的稳定性是十分必要的。
研究人员通过模拟实验和长期使用等手段,评估导电聚合物在不同条件下的稳定性,并提出相应的改进方案,使其具备较好的耐久性。
导电聚合物

导电聚合物摘要:本文简单介绍了导电聚合物的发现,从而进一步综述了导电聚合物的分类及导电机理。
共轭聚合物作为导电聚合物的最主要基体,介绍了其制备和掺杂方法。
并对导电聚合物的应用和发展前景做出了展望。
关键词:导电聚合物、共轭聚合物、掺杂引言2000年10月诺贝尔化学奖颁给了三位在导电聚合物的研究中获得杰出成就的化学家,即美国的黑格、马克迪尔米德和日本的白川英树。
1977年他们发现,聚乙炔薄膜经电子受体(I,AsF5等)掺杂后电导率增加了9个数量级,从10-6S/cm 增加到103S/cm[1,2],从而终于将高分子不能导电的传统观念打破。
20世纪60年代,白川英树利用改性的齐格勒-纳塔型催化剂制成了不同比例的聚乙炔薄膜,通过实验发现这些材料都属于半导体,并且发现室温下反式聚乙炔的导电性能优于顺式聚乙炔。
但如何提高聚乙炔的导电性成为难题。
后来白川英树又进行了氯和溴的掺杂研究,发现了卤素掺杂聚乙炔有可能具有异乎寻常的电学特性的征兆。
于此同时,马克迪尔米德教授从事着导电无机聚合物(SN X)的研究。
1976年,白川英树应马克迪尔米德的邀请赴美国宾夕法尼亚大学与黑格、马克迪尔米德合作研究半导性聚乙炔膜电导性的改进问题。
通过碘掺杂聚乙炔,将其导电性提高了7个数量级最终实现了第一个全有机导电聚合物[1]。
导电聚合物准确来讲应为可以导电的有机聚合物。
所谓导电聚合物是由一些具有共轭π键的聚合物经化学或电化学掺杂后形成的、导电率可从绝缘体延伸到导体范围的一类高分子材料。
导电聚合物大多都有一个较长的π共轭主链,因此又称为共轭聚合物,如图1所示。
共轭分子中,σ键是定域键,构成分子骨架;而垂直于分子平面的p轨道组合成离域π键,所有π电子在整个分子骨架内运动。
离域π键的形成增大了π电子活动范围,使体系能级降低、能级间隔变小,增加物质的导电性能。
交替的单键、双键共轭结构是导电高分子材料的共同特征,若进行掺杂可使其电导率增加若干数量级,接近于金属电导率。
导电聚合物的结构,导电机理及聚合方法
导电聚合物的结构,导电机理及聚合方法摘要导电聚合物具有长程π电子主链结构。
在外电场作用下,其内部的载流子(孤子、极化子和双极化子)沿共轭π键移动,从而实现了电子的定向传递,表现为导电性。
化学聚合法和电化学聚合法是合成导电聚合物常用的方法,同时还介绍了生物聚合法以及其它聚合方法。
关键词导电聚合物;结构特点;导电机理;合成方法;应用自1971年,Shirakawa等,先后制得高质量顺式聚乙炔(PA)铜色薄膜和反式聚乙炔银色薄膜。
1977年,Heeger等,发现用I2、AsF5进行P型掺杂的反式聚乙炔,电导率接近金属铋。
这引起世界范围内对导电聚合物研究的热潮,并相继出现了聚吡咯(PPy)、聚对苯(PPP)、聚对苯撑乙烯(PPV)、聚苯胺(PAn)、聚噻吩(PTh)等(表1)。
1结构及其特征导电聚合物都具有长程π电子主链结构。
π键的成键与反键之间能隙差小,接近无机半导体,因此共轭聚合物大都表现出半导体的性质;共轭聚合物还易被氧化还原,被其它物质掺杂其中,电导率提高,接近金属,从而表现出金属的特征。
2分类及其导电机理导电聚合物的导电机理有别于金属和半导体。
金属导体的载流子是电子,半导体的是电子或空穴,而导电聚合物的是由孤子、极化子和双极化子构成的。
在外电场作用下,载流子沿着共轭主链定向移动,宏观上表现为导电性。
当聚合物共轭程度越大,载流子的电迁移率提高,因此加强了聚合物的电导性。
3聚合方法及其举例通常,制备导电聚合物的方法分为化学法和电化学法。
本文还介绍生物催化法和其它方法。
1)化学聚合法。
化学聚合是指应用强氧化剂催化单体的聚合。
其操作简单,成本较低,适合大批量生产,但其产物的性能不佳。
Travers以过硫酸铵作氧化剂,在酸性水溶液中使苯胺氧化聚合。
Corradi以三氯化铁和对甲苯磺酸铁作氧化剂,合成并得到聚-3-乙烯二氧噻吩(PEDOT)。
2)电化学聚合法。
电化学聚合是指用电化学原理,在阴极上或阳极上进行的聚合。
导电聚合物的结构式
导电聚合物的结构式一、导电聚合物的定义导电聚合物是一类具有导电性能的高分子材料,能够在一定的条件下传导电荷和电流。
这类材料通常具有共轭π电子体系,使得电子可以在聚合物链上自由移动,从而具有导电性。
导电聚合物在电子器件、传感器、电池、电容器等领域具有广泛的应用前景。
二、导电聚合物的结构特点导电聚合物的结构特点主要包括共轭π电子体系、高分子链的规整性和结晶度、掺杂效应等。
1.共轭π电子体系:导电聚合物通常具有共轭的π电子体系,这是实现电子自由移动的关键因素。
在共轭体系中,π电子可以在聚合物链上自由移动,从而形成电流和电压。
常见的共轭π电子体系包括苯环、萘环、蒽环等。
2.高分子链的规整性和结晶度:导电聚合物的分子链通常具有一定的规整性和结晶度,这有助于提高聚合物的导电性能。
规整性和结晶度可以影响聚合物链上π电子的流动性和相互作用,从而提高聚合物的导电性。
3.掺杂效应:掺杂是提高导电聚合物导电性能的一种有效方法。
通过向聚合物中添加少量其他物质,可以改变聚合物的能级结构,从而改变其导电性能。
掺杂剂可以是电子受体、电子给体或中性物质,其作用是调控聚合物链上的电荷分布和迁移率。
三、导电聚合物的种类根据结构和制备方法的不同,导电聚合物可以分为多种类型,以下列举几种常见的导电聚合物。
1.聚乙炔(PA):聚乙炔是最早发现的导电聚合物之一,也是研究最广泛的导电聚合物之一。
它是一种线性共轭聚合物,具有优异的电导率和热稳定性。
通过化学掺杂,聚乙炔的电导率可以从绝缘体转变为导体。
2.聚苯胺(PANI):聚苯胺是一种广泛研究的导电聚合物,具有优异的化学稳定性和环境稳定性。
它可以通过氧化还原反应实现掺杂和脱掺杂,从而调控其导电性能。
聚苯胺在传感器、电池、超级电容器等领域有广泛应用。
3.聚吡咯(PPY):聚吡咯是一种具有高导电性能的线性共轭聚合物,广泛用于传感器、电池、电子器件等领域。
它可以通过电化学合成法制备,具有较高的电导率和良好的热稳定性。
《导电聚合物》PPT课件
YBa2Cu3O7(125K)
(BEDT-TTF)2Cu(SCN)2 1024 (10.4K)C60K(38K)
金属 半导体 绝缘体
金,银,铜 (SN)x石墨
锗
硅 AgBr 水
106 103 100 10-3 10-6 10-9 10-12 10-15
掺 掺杂 杂聚 聚对 乙苯 炔撑
乙 烯
掺掺 杂杂 聚聚 吡噻 咯吩
整理ppt
8
导电高分子的定义
导电率为σ= 10-12~106 S.cm-1 ,其本征态可能不导电,或 者是半导体,但掺杂后成为 半导体或导体。
整理ppt
9
导电高分子的应用
半导体 半导体器件:场 效应晶体管、(发 光)光电二极管、 太阳能电池等.
导体 电极、电磁 波屏蔽、抗 静电材料等。
可逆掺杂 聚合物电池、电 致变色显示器、 传感器、人工肌 肉等。
整理ppt
32
载流子
➢ 材料的导电性是由于物质内部存在的带电粒子 的移动引起的。这些带电粒子可以是正、负离 子,也可以是电子或空穴,统称为载流子。载 流子在外加电场作用下沿电场方向运动,就形 成电流。可见,材料导电性的好坏,与物质所 含的载流子数目及其运动速度有关。
整理ppt
33
高分子和导电剂的种类—导电剂
室温导电率(欧 姆厘米)-1
1.2×103、 5×102 80 10-2
10-5
10-4
AsF5
2.9×10-4
整理ppt
18
CH C H = C H 0 .9 4 B r0 .0 6
CH=CH N=N
I2 I2 AsF5 AsF5 AsF5 AsF5 ClO4 BF4
0.5 0.16 0.4 1.0 0.75
导电聚合物导电机理及掺杂简介
导电高分子导电机理及掺杂简介导电高分子(导电聚合物)是由具有共轭π键的长链高分子经过化学或电化学“掺杂”使其由绝缘体转变为导体的一类高分子材料。
一、导电机理对于导电高分子的导电机理有多种解释方法,常见的能带理论及孤子理论,二者是相互联系的:1、能带理论导电高分子的导电机理是在聚合物空轨道中加入电子(n掺杂)或从满轨道中拉出电子(p掺杂),改变了π电子能带的能级:出现了能量居中的半能带,减少了能带间的能量差。
使自由电子和空穴可以在高分子长链中发生运动,从而达到导电效果,如图1所示:图1 导电高分子掺杂能带变化2、孤子理论孤子理论是关于导电高分子导电机理的另一种解释:在对高分子掺杂的基础上,由于掺杂使得导电高分子长链结构中存在单个不能配对成键的p离子(一种类似自由基的电子,又称为偶极子或孤子),p离子的存在与跃迁使其具有了导电性。
p离子的p离子的形成是相当于在导带中注入一个电子或从价带中拉出一个电子。
二、掺杂掺杂方式有物质掺杂(氧化/还原剂掺杂、酸碱掺杂)及非物质掺杂(电化学掺杂、光化学掺杂、电子注入掺杂)等,由掺杂效果又可以分为n掺杂和P 掺杂。
1、p掺杂(电子受体掺杂或氧化掺杂)利用氧化性物质掺入高分子中,从满轨道中夺走电子,使满轨道成为半充满能量的能带,出现空穴导电层。
典型p掺杂剂:(1)卤素:Cl2,Br2,I2,IC l,ICl3,IBr,IF5(2)酸:PF5,AsF5,SbF5,BF5,BCl3,BBr5,SO3(3)过渡金属卤化物:NbF5,TaF5,MoF5,WF5,RuF5,PtCl4,TiCl4(4)过渡金属盐:AgClO4,AgBF4,HPtCl6,FeCl3,FeTsOH(5)有机化合物:TCNE,TCNQ,DDO,四氯苯醌(6)质子酸:HF,HCl,H2SO4,HNO3,HCLO4 ,(7)其他:O2,XeOF4,XeF4,NOSbCl6,NOPF62、n掺杂(电子受体掺杂或还原掺杂)利用还原化性物质掺入高分子中,提供电子给空轨道,使空轨道成为半充满能量的能带,出现电子导电层。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导电聚合物的结构,导电机理及聚合方法
摘要导电聚合物具有长程π电子主链结构。
在外电场作用下,其内部的载流子(孤子、极化子和双极化子)沿共轭π键移动,从而实现了电子的定向传递,表现为导电性。
化学聚合法和电化学聚合法是合成导电聚合物常用的方法,同时还介绍了生物聚合法以及其它聚合方法。
关键词导电聚合物;结构特点;导电机理;合成方法;应用
自1971年,Shirakawa等,先后制得高质量顺式聚乙炔(PA)铜色薄膜和反式聚乙炔银色薄膜。
1977年,Heeger等,发现用I2、AsF5进行P型掺杂的反式聚乙炔,电导率接近金属铋。
这引起世界范围内对导电聚合物研究的热潮,并相继出现了聚吡咯(PPy)、聚对苯(PPP)、聚对苯撑乙烯(PPV)、聚苯胺(PAn)、聚噻吩(PTh)等(表1)。
1结构及其特征
导电聚合物都具有长程π电子主链结构。
π键的成键与反键之间能隙差小,接近无机半导体,因此共轭聚合物大都表现出半导体的性质;共轭聚合物还易被氧化还原,被其它物质掺杂其中,电导率提高,接近金属,从而表现出金属的特征。
2分类及其导电机理
导电聚合物的导电机理有别于金属和半导体。
金属导体的载流子是电子,半导体的是电子或空穴,而导电聚合物的是由孤子、极化子和双极化子构成的。
在外电场作用下,载流子沿着共轭主链定向移动,宏观上表现为导电性。
当聚合物共轭程度越大,载流子的电迁移率提高,因此加强了聚合物的电导性。
3聚合方法及其举例
通常,制备导电聚合物的方法分为化学法和电化学法。
本文还介绍生物催化法和其它方法。
1)化学聚合法。
化学聚合是指应用强氧化剂催化单体的聚合。
其操作简单,成本较低,适合大批量生产,但其产物的性能不佳。
Travers以过硫酸铵作氧化剂,在酸性水溶液中使苯胺氧化聚合。
Corradi以三氯化铁和对甲苯磺酸铁作氧化剂,合成并得到聚-3-乙烯二氧噻吩(PEDOT)。
2)电化学聚合法。
电化学聚合是指用电化学原理,在阴极上或阳极上进行的聚合。
此法实现了聚合与掺杂同时进行,可通过改变电学参数方便地控制产物的性质,但成本较高,难以大规模生产。
导电聚合物大都可通过电化学法制备,但条件不尽相同。
如表2所示,聚合电位越高,单体越难进行氧化聚合。
1979年,Diaz通过电化学方法合成制备出聚吡咯薄膜。
1980年,Diaz又运用此法得到聚苯胺薄膜。
3)生物催化聚合法。
生物催化聚合是指利用酶或是生物有机体(细胞或是细胞器)催化单体进行的聚合。
它具有催化效率高,反应专一性好,反应条件温和,可调节等优点。
常用到的生物酶有:辣根过氧化物酶(HRP)、大豆过氧化物酶(SBP)、漆酶(Laccase)等。
Liu运用酶催化合成导电聚苯胺。
Tomasz,Subhalakshmi分别运用HRP和SBP制得PEDOT。
4)其它聚合方法。
Segawa利用金属钌配合物作光敏剂对吡咯进行了光聚合。
Tanaka采用等离子体聚合法,在辉光放电下使单体聚合。
参考文献
[1] Shirakawa H,Ikeda S. Poly J,1971,2:231.
[2] Ito T, Shirakawa H, Ikeda S. J Polymer Chem Ed, 1974, 12(11): 20-23.
[3] Shirakawa H, MacDiarmid A G, Heeger A J, at al. J Chem Soc. Chem Comm.,1977,16: 578-580.
[4] 任丽,王立新,赵金玲,张福强,李佐邦.导电聚合物及导电聚吡咯的研究进展[J].材料导报,2002,2:60-62.
[5] 王槐三,寇晓康.高分子化学教程(第二版)[M].北京:科学出版社,2007,344.
[6] Su W P, Schrieffer J R, Heeger A J. Phys Rev Lett. 1979,42:1698-1702.
[7]Ivory D M,Miller G G,Sowa J M,et mun.,1979:854-855.
[8]Baughman R H,Bredas J L, et al.Chem.Rev,1982(82):209-222.
[9]Travers J P,Chroboczek J,Derreux F,et al.Mol Cryst Liq Cryst,1985,121:195.
[10]Corradi R,Ates S P.Synth Met,1997,84(13):453-454.
[11]李永舫.导电聚合物的电化学制备和电化学性质研究[J].电化
学,2004,10:369-378.
[12]Diaz A F,Kanazawa K K,Gardini G mun.,1979:635.
[13]Diaz A F,Logan J A.J.Electroanal Chem,1980,111:111.
[14]Wei Liu,Jayant K,Sukaut T,et al.J.Am.Chem.Soc.,1999,121:71-78.
[15]Tomasz S,et al.J.Polymer Science:Part A:Polymer Chenmistry,2009,47:306-309.
[16]Subhalakshmi N,Jayant K,et al.Macromolecules, 2008,41:3049-3052.
[17]Segawa H, Shimidzu T,Honda K.J Chem Soc Chem Commun, 1989:132.
[18]Tanaka K,Yoshizawa K,et al.Synth Met,1990,38:07.
注:本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文。