高中数学《古典概型》公开课优秀教学设计
古典概型教学设计--【教学参考】

古典概型教学设计教学目标:1、知识与技能目标⑴理解等可能事件的概念及概率计算公式;⑵能够准确计算等可能事件的概率。
2、过程与方法根据本节课的知识特点和学生的认知水平,教学中采用探究式和启发式教学法,通过生活中常见的实际问题引入课题,层层设问,经过思考交流、概括归纳,得到等可能性事件的概念及其概率公式,使学生对问题的理解从感性认识上升到理性认识。
3、情感态度与价值观概率问题与实际生活联系紧密,学生通过概率知识的学习,可以更好的理解随机现象的本质,掌握随机现象的规律,科学地分析、解释生活中的一些现象,初步形成实事求是的科学态度和锲而不舍的求学精神。
教学重点等可能事件的概念及等可能事件概率公式的简单应用。
教学难点判断一个试验是否为等可能事件。
教学方法探究式和启发式教学方法。
教具:多媒体课件和自制教具。
教学过程一、温故知新,提出问题上节课我们学习了随机事件及其概率,现在请大家思考下面两个问题:1、什么是随机事件?2、什么是随机事件/的概率?强调:对于概率的定义,我们可以从以下三方面来理解:1、概率从数量上反映了一个事件发生的可能性的大小,它可以做为我们决策的理论依据。
问大家两个问题:①福利彩券一等奖的资金是多少?②中一等奖的概率是多少?有没有人算过?(因此,买彩券只能做为我们生活中的一种娱乐,而不可以做为主题投资)2、概率与频率的区别:一定条件下,事件的概率是一个确定的值,而频率则是随机变化的,在概率附近摆动。
3、概率的定义,实际上也是求一个事件概率的基本方法:即进行大量重复试验,用事件发生的频率近似做为事件的概率。
我们知道“大量重复试验”在实践中操作起来是很困难的。
有人要问了:是不是随机事件的概率只有通过大量重复试验才能求得?有没有一些或一类随机事件,不进行大量重复试验也能求出其概率呢?这也是今天我们要研究的问题。
二、设置情境,引出新课:现在,我们进行一个免费的抽奖活动:1、规则说明口袋中装有大小相同的红球、黄球、白球各一个,一个人一次只能从口袋中摸出一个球。
13古典概型一等奖创新教学设计

13古典概型一等奖创新教学设计一等奖创新教学设计:13古典概型一、教学目标:1.理解和掌握古典概型的概念、构成和数学意义;2.能够应用古典概型解决生活中的问题;3.发展学生的思维能力和数学建模能力。
二、教学内容:本节课的教学内容主要围绕古典概型展开,包括古典概型的定义、构成和数学意义等方面。
三、教学方法:本节课采用启发式教学法和探究式学习法相结合的方式进行教学。
通过情境引入、问题导入和案例分析等手段,激发学生的学习兴趣,培养他们的问题解决能力和创新思维能力。
四、教学步骤:1.情境引入:通过一个有关概率的问题引入古典概型的概念。
例如,一批共有12个彩球,其中3个红球,4个蓝球,5个绿球,请问从中任取一个球,取到红球的概率是多少?2.问题导入:从情境引入中抽取问题,引导学生思考如何计算取到红球的概率。
通过让学生分组,对问题展开讨论与交流,并收集不同的解决方法。
3.案例分析:分析学生集体尝试解决问题的方法,并总结出一种较为普遍的解决方法,古典概型。
介绍古典概型的定义、构成和数学意义。
4.探究学习:激发学生的学习兴趣,引导他们通过实际操作和实验,通过各种情境来理解和运用古典概型。
5.锻炼和拓展:通过一些类似的问题,让学生运用古典概型解决实际问题。
例如,一个有5张红色的卡片,3张蓝色的卡片,4张绿色的卡片,从中任取两张卡片,请问取到两张颜色相同的卡片的概率是多少?6.总结反思:对本节课的学习进行总结,让学生回顾和思考学到了什么,通过讨论和交流,加深对古典概型的理解和应用能力。
五、教学评价:1.学生参与度:观察学生的主动性和参与度,在教学过程中是否积极思考,回答问题,并提出自己的观点和解决方法。
2.学习成果:学生是否理解和掌握了古典概型的概念、构成和数学意义,是否能够独立运用古典概型解决问题。
3.学习能力:观察学生在解决问题过程中的思维方式和策略,是否能够运用学到的知识和方法解决实际问题。
通过以上的教学设计,学生可以通过实际操作和实验,逐步理解和应用古典概型,培养他们的问题解决能力和数学建模能力。
古典概型公开课教案

解:这是一个古典概型,因为试验的可能结果只有 4 个:
基本事件的总数。
选择 A、选择 B、选择 C、选择 D,即基本事件共有 4
巩固学生对已学
个,考生随机地选择一个答案是选择 A,B,C,D 的可
知识的掌握。
能性是相等的。从而由古典概型的概率计算公式得:
P(“答对”)=“答对”所基包本含事的件基的本总事数件的个数
问题 1:根据以前的学习,完成下面的表格.
试验
试验结果
试
掷一枚质地均匀的 “正面朝上”
验
硬币
“反面朝上”
一
试
验 二
掷一枚质地均匀的 骰子
“1 点”“2 点”“3 点” “4 点”“5 点”“6 点”
二 提 出 问 题
试 在一副 52 张扑克牌
验 (去掉大小王)中随
三
机抽取一张
1.引入概念:基本事件
“红桃 A”…“红桃 K” “黑桃 A”…“黑桃 K” “方片 A”…“方片 K” “梅花 A”…“梅花 K”
教学课题
3.2.1 古典概型
授课年级
高 一(113)
授课类型
新授课
知识与技 (1)理解古典概型及其概率计算公式,
教
能目标
(2)会用列举法计算一些随机事件所含的基本事件数及事件发生的 概率。
学
过程与方
根据本节课的内容和学生的实际水平,通过抽牌游戏让学生理
目
法目标
解古典概型的定义,引领学生探究古典概型的概率计算公式。
5
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
的问题。
本事件的个数及
6
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
古典概型优秀教学设计

古典概型优秀教学设计古典概型优秀教学设计古典概型也叫传统概率、其定义是由法国数学家拉普拉斯提出的。
古典概型优秀教学设计是小编想跟大家分享的,欢迎大家浏览。
【教学目标】1.知识与技能:1)掌握随机事件、必然事件、不可能事件的概念。
2)了解随机事件发生的不确定性和频率的稳定性,进一步认识随机现象,了解概率的意义;2.过程与方法:通过经历数学实验,观察、发现随机事件的统计规律性,了解通过大量重复试验,用频率估计概率的方法;3. 情感、态度、价值观:通过随机事件的发生既有随机性,又存在着统计规律性的发现,体会偶然性和必然性的对立统一.【教学重点】概率的意义.【教学难点】通过观察数据图表,总结出在大量重复试验的情况下,随机事件的发生所呈现出的规律性.【教学方法】教师启发引导与学生自主探索相结合.【教学手段】投影和计算机辅助教学.【教学流程】考察概括【教学过程】一、创设情境,体会随机事件发生的不确定性1.展示生活实例1:“麦蒂的35秒奇迹”从同学们都很感兴趣的篮球比赛说起,介绍比赛最后时刻的情形.为什么在那个时刻,所有人都紧张的注视着麦蒂和他投出的篮球?你能确定神奇的麦蒂在即将开始的NBA比赛中的下一个三分球投进了吗?设计意图从学生感兴趣的生活实例引入,一方面是为了激发学生的听课热情,另一方面也是让学生体会学习随机事件及概率的原因和必要性.抓住生活实例中包含数学思维的部分进行提问,引导学生用数学的眼光观察、认识我们生活的世界,对生活中的现象和感性认识进行理性思考.2.展示生活实例2:杜丽北京奥运夺金我们都曾非常关注北京2008奥运会,大家知道这名中国射击运动员的名字吗?为什么射击比赛中每一枪都如此扣人心弦呢?设计意图奥运会是社会热点话题,可以增强学生的国家自豪感.3.展示生活实例3:“石头、剪刀、布”再看发生在我们身边的实例,甲、乙两个同学想看同一本好书,于是采用“石头、剪刀、布”的方式决定谁先看.那么能够预先确定甲和乙谁获胜吗?设计意图回到学生身边.从生活体验中归纳共性,包含了综合、概括、比较等分析过程,是形成概念的有效途径.因此在这一阶段通过创设情境唤起学生的兴趣,使他们身处现实情境中,为后续的思维活动建立起感性认识基础.二、归纳共性,形成随机事件的概念从数学的角度研究事件时我们主要关注事件是否发生,结果能否预先知道,从结果能够预知的角度看,能够发现以上事件的共同点吗?设计意图有了前面的基础,此时学生能够有效的概括、抽取上述生活体验的共性.在数学上研究事件时,主要关注在相应的条件下,事件是否发生,因此在提问时明确思考的角度,让学生的思维直指概念的本质,避免不必要的发散. 以上这些事件都是可能发生也可能不发生的事件.那么在自己的身边,还能找到此类的事件吗?有没有不属于此类的事件呢?通过以上思考,发现事件可以分为以下三类:必然事件:在一定的条件下必然要发生的事件;不可能事件:在一定的条件下不可能发生的事件;随机事件:在一定的条件下可能发生也可能不发生的事件.事件的表示:用大写字母A、B、C??表示设计意图在形成概念之前,通过主动的思考,在自己身边举例,巩固学生对随机事件的思维基础;二是通过对比,明确事件分类的标准和概念之间的差异. 巩固练习三、深入情境,体会随机事件的规律性我们看到,随机事件在生活中是广泛存在的.,时刻影响着我们的生活.正因为体育比赛中充满了随机事件,而让比赛更加刺激、精彩,让观众更加紧张投入;因为每天的校园生活充满了随机事件,而让我们走入校门的时候内心涌动着好奇与兴奋;因为人生道路上充满了随机事件,而让我们每个人的人生各有各的不同,各有各的精彩.我们生活在一个充满了随机事件的世界当中.同时,我们身边也有一些意外是随机事件,那我们是不是因此而时刻都充满着恐慌呢?实现自己的目标这也是个随机事件,我们是不是就因此而放弃了今天的努力了呢?我们没有,这就说明随着我们在每天的生活中不断地接触随机事件我们对他发生的规律性有了一些感性的认识,那么接下来我们将对此做一些理性思考设计意图这一段教学首先表现了随机事件带给人们丰富多彩的生活,体现了教师对数学、对概率的喜爱和热情,传递给学生学习数学的积极态度.其次,这段教学既是对前面内容的总结,也引出了下面研究思考的方向,起到承上启下的作用,同时也就揭示了人们认识随机事件的过程,以及随机事件随机性和规律性之间的联系.第三,通过反问,使学生意识到,生活的不断体验已经使我们积累了一些对随机事件规律性的感性认识,那么接下来就是要挖掘出这些感性认识下面的理性依据,以这种方式激发学生对生活经验的反思和探究,同时帮助学生形成正确的世界观.。
古典概型公开课教案

古典概型公开课教案一、教学目标1. 让学生了解古典概型的定义和特点。
2. 让学生掌握古典概型的计算方法。
3. 培养学生运用古典概型解决实际问题的能力。
二、教学内容1. 古典概型的定义与特点2. 古典概型的计算方法3. 实际问题中的应用案例三、教学重点与难点1. 教学重点:古典概型的定义、特点和计算方法。
2. 教学难点:古典概型的计算方法和实际问题中的应用。
四、教学方法1. 讲授法:讲解古典概型的定义、特点和计算方法。
2. 案例分析法:分析实际问题中的应用案例。
3. 互动教学法:引导学生参与课堂讨论,提高学生的思考能力。
五、教学过程1. 导入新课:通过引入古代骰子游戏,引发学生对古典概型的兴趣。
2. 讲解古典概型的定义与特点:引导学生了解古典概型的基本概念,分析其特点。
3. 讲解古典概型的计算方法:引导学生掌握古典概型的计算方法,并进行课堂练习。
4. 分析实际问题中的应用案例:通过案例分析,让学生学会将古典概型应用于实际问题。
5. 课堂小结:总结本节课所学内容,强调重点和难点。
6. 课后作业:布置相关练习题,巩固所学知识。
六、教学评价1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况,了解学生的学习状态。
2. 课后作业评价:检查学生完成的练习题,评估学生对古典概型的理解和应用能力。
3. 小组讨论评价:在小组讨论环节,评估学生的合作意识和问题解决能力。
七、教学拓展1. 引导学生思考:如何将古典概型应用于现实生活中的概率问题?2. 推荐阅读材料:让学生了解古典概型在数学发展史上的应用和重要性。
八、教学资源1. 教学PPT:展示古典概型的定义、特点、计算方法和应用案例。
2. 练习题:提供相关的练习题,帮助学生巩固所学知识。
3. 案例分析资料:提供实际问题案例,供学生分析讨论。
九、教学建议1. 注重学生基础知识的培养,确保学生掌握古典概型的基本概念和计算方法。
2. 鼓励学生积极参与课堂讨论,提高学生的思考和问题解决能力。
古典概型教学设计(汇总5篇)

古典概型教学设计(汇总5篇)篇1:古典概型教学设计古典概型教学设计一、教材分析本节课的内容选自《普通高中课程标准实验教科书数学必修3(A)版》第三章中的3.2.1节古典概型。
它安排在随机事件之后,几何概型之前,学生还未学习排列组合的情况下教学的。
古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有重要的地位,是学习概率必不可少的内容,同时有利于理解概率的概念及利用古典概型求随机事件的概率。
二、教学目标根据本节教材在本章中的地位和大纲要求以及学生实际,本节课的教学目标制定如下:①结合一些具体实例,让学生理解并掌握古典概型的两个特征及其概率计算公式,培养学生猜想、化归、观察比较、归纳问题的能力。
②会用列举法计算一些随机事件所含的基本事件数及事件发生的概率,渗透数形结合、分类讨论的思想方法。
③使学生初步学会把一些实际问题转化为古典概型,关键是要使该问题是否满足古典概型的两个条件,培养学生对各种不同的实际情况的分析、判断、探索,培养学生的应用能力。
三、教学的重点和难点重点:理解古典概型的含义及其概率的计算公式。
难点:如何判断一个试验是否为古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。
四、学情分析高一(x)班是一个xx班,学生数学基础比较薄弱,对数学的了解比较浅显,课堂接受容量较低。
本课的学习是建立在学生已经了解了概率的意义,掌握了概率的基本性质,知道了互斥事件和对立事件的概率加法公式。
学生已经具备了一定的归纳、猜想能力,但在数学的应用意识与应用能力方面尚需进一步培养。
多数学生能够积极参与研究,但在合作交流意识方面,发展不够均衡,有待加强。
五、教法学法分析本节课属于概念教学,根据这节课的.特点和学生的认知水平,本节课的教法与学法定为:为了培养学生的自主学习能力,激发学习兴趣,借鉴布鲁纳的发现学习理论,在教学中采取以问题式引导发现法教学,利用多媒体等手段,引导学生进行观察讨论、归纳总结。
古典概型一等奖优秀教案汇总古典概型公开课说课稿范文

古典概型一等奖优秀教案汇总古典概型公开课说课稿范文一、教学目标【知识与技能】会判断古典概型,会用列举法计算一些随机事件所含的基本事件数和试验中基本事件的总数;能够利用概率公式求解一些简单的古典概型的概率。
【过程与方法】通过从实际问题中抽象出数学模型的过程,提升运用从具体到抽象,特殊到一般的分析问题的能力和解决问题的能力。
【情感态度与价值观】在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是地科学态度,在此过程中还可以增加学习数学的学习兴趣。
二、教学重难点【重点】古典概型的概念以及概率公式。
【难点】如何判断一个试验是否是古典概型。
三、教学过程(一)导入新课提问:口袋里装2个白球和2个黑球,这4个球除颜色外完全相同,白球代表奖品,4个人按顺序依次从中摸球并记录结果,每一个人摸到白球的概率一样吗?追问:如何从理论上来计算出每个人的中奖率呢?引出课题:古典概型(二)探究新知1.探索基本事件和古典概型的概念师生活动:师生共同探讨两个概念的生成(1)抛掷一枚均匀的硬币,出现“正面朝上”和“反面朝上”的概率?(2)掷一粒均匀的骰子,出现“向上的点数为6”的概率是多少?活动:实验的结果只有6个,每种结果的可能性是相等的,每一种结果出现的概率都是(3)转动一个8等份标记的转盘,出现箭头指向4的概率为。
提问:以上三个实验都具有什么特征?预设:(1)试验的所有可能结果只有有限个,每次实验只出现其中的一个结果;(2)每一个试验结果出现的可能性相同。
我们把具有这样两个特征的随机试验的数学模型称为古典概型。
上面三个试验中,试验的每一个可能结果称为基本事件。
如果1次试验的等可能基本事件共有n个,那么每一个等可能基本事件发生的概率都是,如果一些事件A包含了其中M个等可能基本事件,那么事件A发生的概率P(A)=思考:向一个圆面内随机地投一个点,如果该点落在园内任意一点都是等可能的,你认为这是古典概型吗?为什么?(三)巩固提高1.一只口袋内装有大小相同的5只球,其中三只白球,2只黑球,从中一次摸出2只球。
古典概型的教案

古典概型的教案【篇一:古典概型教学设计】一、教学背景分析(一)本课时教学内容的功能和地位本节课内容是普通高中课程标准实验教科书人教a版必修3第三章概率第2节古典概型的第一课时,主要内容是古典概型的定义及其概率计算公式。
从教材知识编排角度看,学生已经学习完随机事件的概念,概率的定义,会利用随机事件的频率估计概率,学习了古典概型之后,学生还要学习几何概型,古典概型的知识在课本当中起到承前启后的作用。
古典概型是一种特殊的概率模型。
由于它在概率论发展初期曾是主要的研究对象,许多概率的最初结果也是由它得到的,因此,古典概型在概率论中占有重要地位,是学习概率必不可少的。
学习古典概型,有利于理解概率的概念,有利于计算事件的概率;为后续进一步学习几何概型,随机变量的分布等知识打下基础;它使学生进一步体会随机思想和研究概率的方法,能够解决生活中的实际问题,培养学生应用数学的意识。
(二)学生情况分析(所授对象接受知识情况和对本教学内容已知的可能情况)1、学生的认知基础:学生在初中已经对随机事件有了初步了解,并会用列表法和树状图求等可能事件的概率。
在前面的随机事件的概率一节中,已经掌握了用频率估计概率的方法,即概率的统计定义。
了解了事件的关系与运算,尤其是互斥事件的概念,以及概率的性质和概率的加法公式。
这些知识上的储备为本节课的基本事件的概念理解和古典概型的概率公式的推导打下了基础。
学生在前面的学习中熟悉了大量生活中的随机事件的实例,对于掷硬币,掷骰子这类简单的随机事件的概率可以求得。
2、学生的认知困难:我调查了初中的数学老师,和高一的学生对这部分知识的理解,发现学生初中学习了等可能事件的概率,对简单的等可能事件可计算其概率,但没有模型化,所以造成学生只知其然,不知其所以然。
根据以往的教学经验,如果不对概念进行深入的理解,学生学完古典概型之后,还停留在原有的认知水平上,那么,由于概念的模糊,会导致其对复杂问题的计算错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:《古典概型》第一课时教学设计及说明《古典概型》选自高中数学人教A版必修3第三章第2节第1课时。
在当代高中数学新课改的背景下,数学教育要把“数学育人”作为根本目标,要将“德育”渗透到教育教学的各个环节中去。
通过引导学生开展独立思考、主动探究、合作交流等多种活动形式来理解和掌握基本的数学方法和数学技能。
要鼓励学生的创新思考,加强学生的数学实践,培养学生的理性精神,从而激发学生的学习兴趣。
在数学教学过程中,学生成为课堂学习的主体,教师成为学生活动的组织者、引导者、合作者。
下面我将以此为指导思想从:教学内容解析→教学目标设置→学生学情分析→教学策略分析→教学过程等几个方面向各位评委老师说明我的构思与设想。
一、教学内容分析:1、教材分析:(1)教材将本节课内容安排在随机事件概率之后,几何概型之前,古典概型是一种特殊的概率模型,也是一种最基本的概率模型,它的引入避免了大量的重复实验,而且得到的是概率准确值,同时古典概型也为后面学习其他概率的基础。
在教材中起到承前启后的作用,所以在概率论中占有相当重要的地位。
(2)本节课学生将感知认识与理性认识相结合,并且利用生活中大量实例来归纳总结相关的数学概念。
能用系统的眼光看待以前已经接触的知识,通过本节课的探究确定古典概型的定义及计算公式,所以本节课对学生构建数学模型能力和方法有所提升。
(3)本节课渗透了数形结合的思想,分类讨论的思想以及变式化归的思想,树立学生从具体到抽象,从特殊到一般的数学思想,并且利用列举法(树状图、列表)来寻找基本事件,有利于培养学生良好的数学思维。
2、教材处理:依据新教材和新大纲的要求,本节课是《古典概型》第1课时,重点是古典概型的定义和古典概型的计算公式,为了让学生更好地掌握本节课的内容,在紧扣书上例题的同时,对例题做适当的变式、调整与补充。
二、教学目标设置:根据上述教材结构和内容分析,以及对学生认知水平的考察,我制定如下教学目标。
1,知识与技能:掌握基本事件的概念,正确理解古典概型的两个特点;并能归纳总结出古典概型的概率计算公式。
2,过程与方法:(1)通过模拟实验理解古典概型的特征;观察类比各个实验,正确理解古典概型的两个特点;再通过归纳总结出古典概型的计算公式。
学会运用分类讨论的思想解决概率的计算问题。
(2)让学生口头表述和书面表达提高学生数学表达及数学交流的能力。
(3)通过对例题的变式练习培养学生的化归思想。
3,情感态度与价值观:(1)通过生活中常见的实例引出新课内容,使学生体会到数学源于生活而又高于生活,从而激发学生的学习兴趣。
(2)利用多媒体课件,引导学生探索基本事件、古典概型的定义并能得出古典概型的计算公式,使学生认识到现代技术在数学认知过程中的作用,从而激发学生学习的欲望。
(3)通过实例变式,让学生体会化归思想,并且使学生清楚地认识到数学是以不变应万变。
(4)树立学生从具体到抽象,从特殊到一般的辩证唯物主义的观点,培养学生用随机的观点来理性地理解世界。
4,教学重难点:重点:古典概型的定义及利用古典概型求解随机事件的概率方法。
难点:判断一个试验是不是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和实验中基本事件的总数。
突破:能从实际生活中的例子提炼有效信息,并且能建立正确的数学模型,利用分类讨论的思想,列举法是突破重点和难点的关键。
三、学生学情分析:(1)学生是在初中学过概率的基础上进一步学习的,并且是在学习完统计后来学习本节课内容。
(2)我所教的是理科小尖班,大部分学生的基础好,学生的理解能力、运算能力、思维能力等方面都不错,所以我在设置例题时进行适当的增加与变式,而对例题进行一定的变式,让学生自己参与对知识的掌握和应用中去。
(3)由于本节课的内容和生活联系紧密,所以我利用了大量的实例进行分析。
四、教法分析和学法指导:教师要善于启发学生自主性学习,充分调动学生学习的积极性和主动性,有效地渗透数学思想和方法。
培养学生的数学能力和创新能力,使学生独立实现学习目标,本节课我主要采用启发探究式学习,其中,在探索结论时,采用发现法;在概念的形成及其公式的推导的教学中采用化归法;在训练部分中,主要采用讲练结合法。
它主要分四个环节:问题→思考→交流→总结。
鼓励学生针对问题展开讨论、相互合作,教师在课堂中起到引导作用,根据本节课知识特点,为突出重点、突破难点,增加课堂教学容量,我采用多媒体技术辅助教学来提高本节课的学习效率。
五、教学过程:1、创设情境、引出新课:(1)有一本好书,两位同学都想看.在一个不透明的箱子里放4个大小相同的球,标号为1,2,3,4,充分搅拌后随机摸取一个球,摸到标号为偶数的甲先看,摸到标号为奇数的乙先看。
而乙同学提议掷骰子:三点以下甲先看,三点以上乙先看,这两种方法是否公平?【设计意图】:由生活的实例,快速地将学生的注意力引入课堂,提出公平与否实质上是概率大小问题,进而切入本堂课的主题。
2、新课讲授:(一)学生交流,揭示规律在学生感知认识完实验结果的特点后,再由教师组织学生分组合作来模拟以下两个实验:试验一:抛掷一枚质地均匀的硬币,分别记录“正面朝上”和“反面朝上”的次数,要求每个小组至少完成20次(最好是10的倍数),最后由数学课代表汇总;试验二:抛掷一个质地均匀的骰子,分别记录“1点”“2点”“3点”“4点”“5点”“6点“的次数,要求每个小组至少完成50次(最好是10的倍数),最后课代表汇总.问:(1)用模拟试验的方法来求某一随机事件的概率好不好?为什么?(2)根据以前的学习,上述两个模拟试验的每个结果之间有什么特点?【设计意图】:让学生理性的总结出特点,并且让学生感受与他人合作的重要性,培养学生运用数学语言的能力,随着问题的提出,激发了学生的求知欲望,通过观察对比,培养学生发现问题的能力。
概念形成:1、基本事件具有如下的两个特点:(1)任何两个基本事件是互斥的;(2) 任何事件(除不可能事件)都可以表示成基本事件的和.并且引导学生回忆初中学过的列表法和树状图法。
【例1】从字母中任意取出两个不同字母的试验中,有哪些基本事件【设计意图】通过例题让学生对比两种方法的利弊,让学生进一步加深对基本事件的列举方法。
(二)引导学生归纳结论在学生学习激情高涨的时候进一步给出生活中常见的三个实例引导学生归纳总结出古典概型的概念和两个特点。
(1)向一个圆面内随机投射一个点,如果该点落在圆内任意一点是等可能的,那么基本事件有多少?(2)某同学随机地向一靶心进行射击, 这个试验的结果只有有限个,但每种结果出现的可能性一样吗?(3)在一个不透明的箱子里放4个大小相同的球,标号为1,2,3,4,充分搅拌后随机摸取一个球,摸到标号为偶数的甲先看,摸到标号为奇数的乙先看。
【设计意图】:让学生观察对比实验结果的特点,归纳总结得到古典概型的概念以及准确地把握古典概型的两个特点,突破如何判断一个试验是不是古典概型这一教学难点。
2、在一个试验中如果(1)试验中所有可能出现的基本事件只有有限个. (有限性)(2)每个基本事件出现的可能性相等.(等可能性)我们将具有这两个特点的概率模型称为古典型概率模型,简称古典概型.接下来再进一步引导学生归纳总结出求古典概型的计算公式3、古典概型概率计算公式(三)运用规律,解决问题 例2、同时掷两个骰子,计算:⑴一共有多少种不同的结果? 【提示可以利用列举】⑵其中向上的点数之和为7的结果有多少种?⑶向上的点数之和为7的概率是多少?)A(n 和试验所有的基本事件之)A (m 包含的基本事件A 事件P(A)【设计意图】:利用数形结合和分类讨论,培养学生发现问题、解决问题的能力,增强学生数学思维情趣,形成学习数学知识的积极性。
进一步巩固对古典概型及其概率计算公式的理解。
例3、单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案.如果考生掌握了考察的内容,他可以选择唯一正确的答案.假设考生不会做,他随机地选择一个答案,问他答对的概率是多少?【设计意图】:深化巩固古典概型的两个特点,使得学生认识到在求古典概型的概率时,先要判断是否是古典概型,然后再计算,并且教育学生要完全掌握知识才可以对问题做出正确的判断。
将德育引进课堂。
变式题:若考题是不定项选择,那么他答对的概率又是多少?【设计意图】让学生通过列举法来找出基本事件,培养学生分类讨论的思想,强调在讨论时要做到不重不漏。
3、课堂小结:通过师生共同小结,一起回顾本节课所学内容,强调教学重点,由我提问,学生总结古典概型的两个特点和求解古典概型概率的一般步骤。
4、实践探究:近年来,国家越来越重视食品安全问题,经常组织质监部门对其进行抽样检测,请你收集相关的新闻材料、数据或进行实际的市场调查,从古典概型角度针对检测产品的数量,和检测出不合格产品的概率进行分析研究,说明质量抽查的科学性或提出你的建议。
【设计意图】本节课内容和生活联系紧密,通过设计实践探究题,进一步激发学生学习的兴趣。
体现了数学源于生活高于生活,从实践中来又回到实践中去的思想。
5、教学反馈设计:(1)在本节课的提问、讨论、练习中,注意学生的学习动态,及时引导学生思考与探索,纠正学生在课堂中出现的错误、进一步符合学生认知能力。
(2)在课堂教学过程中,根据学生对知识的理解和认识随时调整课堂的布局与容量。
(3)通过布置作业的方式来反映学生掌握课堂内容的情况。
6、板书设计:7、教学反思:我个人认为本节课有三大亮点。
第一:本节课以人为本,以学生为主体,教师为组织者、引导者来引导教学,同时将“数学育人”渗透到教学中去。
第二:在例题的安排上能紧扣教材,并对例题进行适当变式,符合学生的认知,也遵循教育规律。
本节课的例题贴近生活、贴近学生,课堂的讲解条理清晰,首尾呼应。
第三:在整堂课的讲解中师生交流融洽,给予学生充分的时间来思考与探究。
同时也培养学生发现问题、分析问题、解决问题的自主学习的能力。
当然本节课也存在一些遗憾:(1)比如在例1的讲解中应该将树状图法和列表法进行对比,讲清其使用条件。
(2)其次本节课的多媒体课件制作相对简单,对利用信息技术来研究数学的方法不够熟练。
课例点评《古典概型》为概念教学课。
数学概念是客观事物中数与形的本质属性的反映,学生通过比较、分析、综合、抽象、概括而形成。
建立数学概念要运用由特殊到一般,由局部到整体的观察方法,要遵循由现象到本质,由具体到抽象的认识规律。
所以,这节课教学设计是在教师的引导下由学生自主学习、合作探究而实施的。
为帮助学生完成任务,教师根据教材内容的地位和作用及新课程标准的具体要求,预设教学目标。
课堂前言部分是通过概率论的发展史来引入课题,充分调动学生的学习兴趣、激发学生的求知欲,同时也体现了数学文化进课堂的新理念。