2020届高中数学分册同步讲义(必修1) 初中、高中衔接课 第2课时原卷版
2020初高中数学衔接教材

初高中数学衔接教材目录第一章数与式1.1 数与式的运算1.1.1 绝对值1.1.2 乘法公式1.1.3 二次根式1.1.4 分式1.2 分解因式第二章二次方程与二次不等式2.1 一元二次方程2.1.1 根的判别式2.1.2 根与系数的关系2.2 二次函数2.2.1 二次函数y=ax2+bx+c的图像和性质2.2.2 二次函数的三种表达方式2.2.3 二次函数的应用2.3 方程与不等式2.3.1 二元二次方程组的解法第三章相似形、三角形、圆3.1 相似形3.1.1 平行线分线段成比例定理3.1.2 相似三角形形的性质与判定3.2 三角形3.2.1 三角形的五心3.2.2 解三角形:钝角三角函数、正弦定理和余弦定理及其应用3.3 圆3.3.1 直线与圆、圆与圆的位置关系:圆幂定理3.3.2 点的轨迹3.3.3 四点共圆的性质与判定3.3.4 直线和圆的方程(选学)1.1 数与式的运算1.1.1.绝对值绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. 两个数的差的绝对值的几何意义:b a -表示在数轴上,数a 和数b 之间的距离. 例1 解不等式:13x x -+->4.解法一:由01=-x ,得1=x ;由30x -=,得3x =; ①若1<x ,不等式可变为(1)(3)4x x ---->, 即24x -+>4,解得x <0, 又x <1, ∴x <0;②若12x ≤<,不等式可变为(1)(3)4x x --->, 即1>4,∴不存在满足条件的x ;③若3x ≥,不等式可变为(1)(3)4x x -+->, 即24x ->4, 解得x >4. 又x ≥3, ∴x >4.综上所述,原不等式的解为 x <0,或x >4. 解法二:如图1.1-1,1-x 表示x 轴上坐标为x 的点P 到坐标为1的点A 之间的距离|P A |,即|P A |=|x -1|;|x -3|表示x 轴上点P 到坐标为2的点B 之间的距离|PB |,即|PB |=|x -3|. 所以,不等式13x x -+->4的几何意义即为|P A |+|PB |>4. 由|AB |=2,可知点P 在点C (坐标为0)的左侧、或点P 在点D (坐标为4)的右侧.x <0,或x >4.练 习A B C P |x -1||x -3| 图1.1-11.填空:(1)若5=x ,则x =_________;若4-=x ,则x =_________.(2)如果5=+b a ,且1-=a ,则b =________;若21=-c ,则c =________. 2.选择题:下列叙述正确的是 ( )(A )若a b =,则a b = (B )若a b >,则a b > (C )若a b <,则a b < (D )若a b =,则a b =± 3.化简:|x -5|-|2x -13|(x >5).1.1.2. 乘法公式我们在初中已经学习过了下列一些乘法公式:(1)平方差公式 22()()a b a b a b +-=-;(2)完全平方公式 222()2a b a a b b ±=±+. 我们还可以通过证明得到下列一些乘法公式:(1)立方和公式 2233()()a b a a b b a b +-+=+;(2)立方差公式 2233()()a b a a b b a b -++=-; (3)三数和平方公式 2222()2()a b c a b c a b b c a c ++=+++++; (4)两数和立方公式 33223()33a b a a b a b b +=+++; (5)两数差立方公式 3322()33a b a a b a b b -=-+-.对上面列出的五个公式,有兴趣的同学可以自己去证明. 例1 计算:22(1)(1)(1)(1)x x x x x x +--+++.解法一:原式=2222(1)(1)x x x ⎡⎤-+-⎣⎦=242(1)(1)x x x -++ =61x -.解法二:原式=22(1)(1)(1)(1)x x x x x x +-+-++ =33(1)(1)x x +- =61x -.例2 已知4a b c ++=,4ab bc ac ++=,求222a b c ++的值. 解: 2222()2()8a b c a b c ab bc ac ++=++-++=.练 习 1.填空:(1)221111()9423a b b a -=+( ); (2)(4m + 22)164(m m =++ );(3 ) 2222(2)4(a b c a b c +-=+++ ).2.选择题:(1)若212x mx k ++是一个完全平方式,则k 等于 ( ) (A )2m (B )214m (C )213m (D )2116m (2)不论a ,b 为何实数,22248a b a b +--+的值 ( )(A )总是正数 (B )总是负数(C )可以是零 (D )可以是正数也可以是负数1.1.3.二次根式0)a ≥的代数式叫做二次根式.根号下含有字母、且不能够开得尽方的式子称为无理式. 例如 32a b ,等是无理式,而212x ++,22x y +1.分母(子)有理化把分母(子)中的根号化去,叫做分母(子)有理化.为了进行分母(子)有理化,需要引入有理化因式的概念.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式,例如与,与,与一般地,,b 与b 互为有理化因式.分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程在二次根式的化简与运算过程中,二次根式的乘法可参照多项式乘法进行,运算中要运用0,0)a b =≥≥;而对于二次根式的除法,通常先写成分式的形式,然后通过分母有理化进行运算;二次根式的加减法与多项式的加减法类似,应在化简的基础上去括号与合并同类二次根式.2a ==,0,,0.a a a a ≥⎧⎨-<⎩例1 将下列式子化为最简二次根式:(1 (20)a ≥; (30)x <.解: (1=(20)a ==≥;(3220)x x x ==-<.例2 (3-.解法一: (33)-=12.解法二:(33)=12.例3试比较下列各组数的大小:(1(2.解:(11===,1110=,>(2)∵1===又4>22,∴6+4>6+22,例4化简:20042005+⋅.解:20042005⋅-=20042004⋅⋅=2004⎡⎤+⋅-⋅-⎣⎦=20041⋅例 5 化简:(1;(21)x<<.解:(1)原式===2=2=.(2)原式1xx=-,∵01x<<,∴11xx>>,所以,原式=1xx-.例 6 已知x y==22353x xy y-+的值.解:∵2210x y+==+=,1xy==,∴22223533()1131011289x xy y x y xy-+=+-=⨯-=.练习1.填空: (1=__ ___;(2(x =-x 的取值范围是_ _ ___; (3)=__ ___; (4)若x ==______ __. 2.选择题:=( ) (A )2x ≠ (B )0x > (C )2x > (D )02x <<3.若b =,求a b +的值.4.比较大小:2-4(填“>”,或“<”).1.1.4.分式1.分式的意义形如A B 的式子,若B 中含有字母,且0B ≠,则称A B 为分式.当M ≠0时,分式AB具有下列性质: A A M B B M ⨯=⨯; A A MB B M÷=÷. 上述性质被称为分式的基本性质.2.繁分式 像ab c d+,2m n pm n p +++这样,分子或分母中又含有分式的分式叫做繁分式.例1 若54(2)2x A Bx x x x +=+++,求常数,A B 的值.解: ∵(2)()2542(2)(2)(2)A B A x Bx A B x A x x x x x x x x x ++++++===++++,∴5,24,A B A +=⎧⎨=⎩解得 2,3A B ==.例2 (1)试证:111(1)1n n n n =-++(其中n 是正整数);(2)计算:1111223910+++⨯⨯⨯; (3)证明:对任意大于1的正整数n , 有11112334(1)2n n +++<⨯⨯+.(1)证明:∵11(1)11(1)(1)n n n n n n n n +--==+++,∴111(1)1n n n n =-++(其中n 是正整数)成立.(2)解:由(1)可知1111223910+++⨯⨯⨯ 11111(1)()()223910=-+-++-1110=- =910. (3)证明:∵1112334(1)n n +++⨯⨯+=111111()()()23341n n -+-++-+=1121n -+, 又n ≥2,且n 是正整数,∴1n +1 一定为正数,∴1112334(1)n n +++⨯⨯+<12 . 例3 设ce a =,且e >1,2c 2-5ac +2a 2=0,求e 的值.解:在2c 2-5ac +2a 2=0两边同除以a 2,得 2e 2-5e +2=0, ∴(2e -1)(e -2)=0,∴e =12 <1,舍去;或e =2. ∴e =2.练 习1.填空题:对任意的正整数n ,1(2)n n =+ (112n n -+);2.选择题:若223x y x y -=+,则xy= ( ) (A )1 (B )54 (C )45(D )653.正数,x y 满足222x y xy -=,求x y x y-+的值.4.计算1111 (12233499100)++++⨯⨯⨯⨯.习题1.1A 组1.解不等式:(1) 13x ->; (2) 327x x ++-< ; (3) 116x x -++>.2.已知1x y +=,求333x y xy ++的值. 3.填空:(1)1819(2(2+=________;(22=,则a 的取值范围是________;(3=________.B 组1.填空:(1)12a =,13b =,则2223352a ab a ab b -=+-____ ____; (2)若2220x xy y +-=,则22223x xy y x y++=+__ __; 2.已知:11,23x y ==的值. C 组1.选择题:(1( ) (A )a b < (B )a b > (C )0a b << (D )0b a << (2)计算 ( ) (A(B(C) (D)2.解方程22112()3()10x x x x +-+-=. 3.计算:1111132435911++++⨯⨯⨯⨯. 4.试证:对任意的正整数n ,有111123234(1)(2)n n n +++⨯⨯⨯⨯++<14.1.2因式分解因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法例1 分解因式:(1)x 2-3x +2; (2)x 2+4x -12; (3)22()x a b xy aby -++; (4)1xy x y -+-. 解:(1)如图1.1-1,将二次项x 2分解成图中的两个x 的积,再将常数项2分解成-1与-2的乘积,而图中的对角线上的两个数乘积的和为-3x ,就是x 2-3x +2中的一次项,所以,有x 2-3x +2=(x -1)(x -2).说明:今后在分解与本例类似的二次三项式时,可以直接将图1.1-1中的两个x 用1来表示(如图1.1-2所示).-1 -2 x x 图1.1-1 -1 -2 1 1 图1.1-2 -2 6 1 1 图1.1-3 -ay -by x x 图1.1-4(2)由图1.1-3,得x 2+4x -12=(x -2)(x +6). (3)由图1.1-4,得22()x a b xy aby -++=()()x ay x by -- (4)1xy x y -+-=xy +(x -y )-1=(x -1) (y+1) (如图1.1-5所示).课堂练习一、填空题:1、把下列各式分解因式:(1)=-+652x x __________________________________________________。
2020年高中数学新教材同步必修第一册 第1章 1.3 第2课时 补 集

二、交、并、补的综合运算
例2 已知全集U={x|x≤4},集合A={x|-2<x<3},B={x|-3≤x≤2},求A∩B, (∁UA)∪B,A∩(∁UB),∁U(A∪B).
1 知识梳理
PART ONE
知识点 全集与补集
1.全集 (1)定义:如果一个集合含有所研究问题中涉及的 所有元素 ,那么就称这个集合为 全集. (2)记法:全集通常记作 U .
思考 全集一定是实数集R吗?
答案 不一定.全集是一个相对概念,因研究问题的不同而变化,如在实数范围内解 不等式,全集为实数集R,而在整数范围内解不等式,则全集为整数集Z.
反思
感悟 解决集合交、并、补运算的技巧 (1)如果所给集合是有限集,则先把集合中的元素一一列举出来,然后结 合交集、并集、补集的定义来求解.在解答过程中常常借助于Venn图来 求解.这样处理起来,相对来说比较直观、形象且解答时不易出错. (2)如果所给集合是无限集,则常借助数轴,把已知集合及全集分别表示 在数轴上,然后进行交、并、补集的运算.解答过程中要注意边界问题.
跟踪训练3 已知集合A={x|x<a},B={x|x<-1,或x>0}.若A∩(∁RB)=∅,求实数a 的取值范围. 解 ∵B={x|x<-1,或x>0}, ∴∁RB={x|-1≤x≤0}, ∴要使A∩(∁RB)=∅,结合数轴分析(如图),可得a≤-1.
跟踪训练1 (1)若全集U={x∈R|-2≤x≤2},A={x∈R|-2≤x≤0},则∁UA等于
A.{x|0<x<2}
2020年高中数学新教材同步必修第一册 第1章 1.1 第2课时 集合的表示

(3)平面直角坐标系中坐标轴上的点组成的集合.
解 坐标轴上的点(x,y)的特点是横、纵坐标中至少有一个为0,即xy=0, 故平面直角坐标系中坐标轴上的点的集合可表示为{(x,y)|xy=0}.
反思
感悟 利用描述法表示集合应关注五点 (1)写清楚该集合代表元素的符号.例如,集合{x∈R|x<1}不能写成{x<1}. (2)所有描述的内容都要写在花括号内.例如,{x∈Z|x=2k},k∈Z,这种表 达方式就不符合要求,需将k∈Z也写进花括号内,即{x∈Z|x=2k,k∈Z}. (3)不能出现未被说明的字母. (4)在通常情况下,集合中竖线左侧元素的所属范围为实数集时可以省略不 写.例如,方程x2-2x+1=0的实数解集可表示为{x∈R|x2-2x+1=0},也 可写成{x|x2-2x+1=0}.
三、集合表示法的综合应用
例3 集合A={x|kx2-8x+16=0},若集合A中只有一个元素,求实数k的值组成的集合.
解 (1)当k=0时,方程kx2-8x+16=0变为-8x+16=0,解得x=2,满足题意; (2)当k≠0时,要使集合A={x|kx2-8x+16=0}中只有一个元素, 则方程kx2-8x+16=0有两个相等的实数根, 所以Δ=64-64k=0,解得k=1,此时集合A={4},满足题意. 综上所述,k=0或k=1,故实数k的值组成的集合为{0,1}.
跟踪训练1 用列举法表示下列给定的集合: (1)大于1且小于6的整数组成的集合A;
解 因为大于1且小于6的整数包括2,3,4,5,所以A={2,3,4,5}. (2)方程x2-9=0的实数根组成的集合B; 解 方程x2-9=0的实数根为-3,3,所以B={-3,3}.
(3)一次函数y=x+2与y=-2x+5的图象的交点组成的集合D. 解 由yy==-x+22x+,5, 得yx==31,, 所以一次函数y=x+2与y=-2x+5的交点为(1,3),所以D={(1,3)}.
2020届高中数学分册同步讲义(必修1) 第1章 1.2.1 函数的概念原卷版

§1.2 函数及其表示1.2.1 函数的概念学习目标 1.理解函数的概念,了解构成函数的三要素.2.能正确使用区间表示数集.3.会求一些简单函数的定义域、函数值.知识点一 函数的有关概念特别提醒:对于函数的定义,需注意以下几点:①集合A ,B 都是非空数集;②集合A 中元素的无剩余性;③集合B 中元素的可剩余性,即集合B 不一定是函数的值域,函数的值域一定是B 的子集. 知识点二 函数相等一般地,函数有三个要素:定义域,对应关系与值域.如果两个函数的定义域相同,并且对应关系完全一致,我们就称这两个函数相等.特别提醒:两个函数的定义域和对应关系相同就决定了这两个函数的值域也相同. 思考定义域和值域分别相同的两个函数相等吗?答案 不一定,如果对应关系不同,这两个函数一定不相等. 知识点三 区 间区间的定义、名称、符号及数轴表示如下表:{x|a≤x<b}半开半闭区间[a,b){x|a<x≤b}半开半闭区间(a,b]{x|x≥a}[a,+∞){x|x>a}(a,+∞){x|x≤a}(-∞,a]{x|x<a}(-∞,a)R(-∞,+∞)取遍数轴上所有的值特别提醒:①“∞”读作无穷大,是一个符号,不是数,以-∞或+∞作为区间一端时,这一端必须是小括号.②区间是数集的另一种表示方法,区间的两个端点必须保证左小、右大.1.任何两个集合之间都可以建立函数关系.(×)2.已知定义域和对应关系就可以确定一个函数.(√)3.根据函数的定义,定义域中的每一个x可以对应着不同的y.(×)4.区间不可能是空集.(√)题型一函数关系的判断命题角度1给出三要素判断是否为函数例1(1)下列对应关系式中是A到B的函数的是()A.A⊆R,B⊆R,x2+y2=1B.A={-1,0,1},B={1,2},f:x→y=|x|+1C.A=R,B=R,f:x→y=1 x-2D.A=Z,B=Z,f:x→y=2x-1(2)下列对应关系是集合P 上的函数的是________.①P =Z ,Q =N *,对应关系f :对集合P 中的元素取绝对值与集合Q 中的元素相对应; ②P ={-1,1,-2,2},Q ={1,4},对应关系f :x →y =x 2,x ∈P ,y ∈Q ;③P ={三角形},Q ={x |x >0},对应关系f :对P 中的三角形求面积与集合Q 中的元素对应.跟踪训练1 下列对应是从集合A 到集合B 的函数的是( ) A.A =R ,B ={x ∈R |x >0},f :x →1|x |B.A =N ,B =N *,f :x →|x -1|C.A ={x ∈R |x >0},B =R ,f :x →x 2D.A =R ,B ={x ∈R |x ≥0},f :x →x命题角度2 给出图形判断是否为函数图象 例2 如图可作为函数y =f (x )的图象的是( )跟踪训练2 下列图形中不是函数图象的是( )题型二 求函数的定义域 例3 求下列函数的定义域. (1)y =3-12x ;(2)y =2x -1-7x ; (3)y =(x +1)0x +2;(4)y =2x +3-12-x +1x.跟踪训练3 (1)函数f (x )=xx -1的定义域为________.(2)函数y =(x +1)2x +1-1-x 的定义域是________.题型三 函数相等例4 下列函数中哪个与函数y =x 相等? (1)y =(x )2;(2)y =3x 3;(3)y =x 2;(4)y =x 2x.跟踪训练4 下列各组中的两个函数是否为相等的函数? (1)y 1=(x +3)(x -5)x +3,y 2=x -5;(2)y 1=x +1·x -1,y 2=(x +1)(x -1).函数求值问题典例 已知f (x )=11+x (x ∈R 且x ≠-1),g (x )=x 2+2 (x ∈R ).(1)求f (2),g (2)的值; (2)求f (g (2))的值; (3)求f (a +1),g (a -1).1.若f (x )=x +1,则f (3)等于( ) A.2 B.4 C.2 2 D.102.函数f (x )=xx -1的定义域为( ) A.(1,+∞)B.[0,+∞)C.(-∞,1)∪(1,+∞)D.[0,1)∪(1,+∞)3.对于函数f :A →B ,若a ∈A ,则下列说法错误的是( ) A.f (a )∈BB.f (a )有且只有一个C.若f (a )=f (b ),则a =bD.若a =b ,则f (a )=f (b )4.设f :x →x 2是集合A 到集合B 的函数,若集合B ={1},则集合A 不可能是( ) A.{1} B.{-1} C.{-1,1} D.{-1,0}5.下列各组函数是同一函数的是________.(填序号)①f (x )=-2x 3与g (x )=x -2x ;②f (x )=x 0与g (x )=1x 0;③f (x )=x 2-2x -1与g (t )=t 2-2t -1.一、选择题1.下列各图中,可表示函数图象的是( )2.已知函数f (x )=x 2+1,那么f (a +1)的值为( ) A.a 2+a +2 B.a 2+1 C.a 2+2a +2 D.a 2+2a +13.下列各组函数中,表示同一函数的是( ) A.f (x )=x -1,g (x )=x 2x -1B.f (x )=|x |,g (x )=(x )2C.f (x )=x ,g (x )=3x 3 D.f (x )=2x ,g (x )=4x 24.函数y=21-1-x的定义域为()A.(-∞,1)B.(-∞,0)∪(0,1]C.(-∞,0)∪(0,1)D.[1,+∞)5.已知f(x)=π(x∈R),则f(π2)的值是()A.π2B.πC.πD.不确定6.已知函数f(x)的定义域A={x|0≤x≤2},值域B={y|1≤y≤2},下列选项中,能表示f(x)的图象的只可能是()7.已知x∈(-1,3),则函数f(x)=(x-2)2的值域是()A.(1,4)B.[0,9)C.[0,9]D.[1,4)8.已知函数f(x)的定义域为[-3,4],在同一坐标系下,函数f(x)的图象与直线x=3的交点个数是()A.0B.1C.2D.0或1二、填空题9.函数y=x-2+x+1的定义域为________.10.已知函数f(x)=2x-3,x∈{x∈N|1≤x≤5},则函数f(x)的值域为________.11.若函数f(x)=ax2-1,a为一个正数,且f(f(-1))=-1,那么a=________.三、解答题12.已知函数f (x )=6x -1-x +4.(1)求函数f (x )的定义域(用区间表示); (2)求f (-1),f (12)的值.13.已知函数f (x )=3x 2+5x -2. (1)求f (3),f (a +1)的值; (2)若f (a )=-4,求a 的值.14.函数f (x )=3x +1x -1的值域是________.15.已知f (x )=1-x1+x (x ∈R ,且x ≠-1),g (x )=x 2-1(x ∈R ).(1)求f (2),g (3)的值; (2)求f (g (3))的值及f (g (x )).。
2020届高中数学分册同步讲义(选修1-1) 第2章 2.1.2 第2课时 椭圆几何性质的应用

第2课时椭圆几何性质的应用学习目标1.进一步巩固椭圆的简单几何性质.2.掌握直线与椭圆位置关系等相关知识.知识点一点与椭圆的位置关系点P(x0,y0)与椭圆x2a2+y2b2=1(a>b>0)的位置关系:点P在椭圆上⇔x20a2+y20b2=1;点P在椭圆内部⇔x20a2+y20b2<1;点P在椭圆外部⇔x20a2+y20b2>1.知识点二直线与椭圆的位置关系直线y=kx+m与椭圆x2a2+y2b2=1(a>b>0)的位置关系的判断方法:联立⎩⎪⎨⎪⎧y=kx+m,x2a2+y2b2=1.消去y得到一个关于x的一元二次方程.直线与椭圆的位置关系、对应一元二次方程解的个数及Δ的取值的关系如表所示.知识点三弦长公式设直线方程为y=kx+m(k≠0),椭圆方程为x2a2+y2b2=1(a>b>0)或y2a2+x2b2=1(a>b>0),直线与椭圆的两个交点为A(x1,y1),B(x2,y2),则|AB |=(x 1-x 2)2+(y 1-y 2)2, ∴|AB |=(x 1-x 2)2+(kx 1-kx 2)2 =1+k 2(x 1-x 2)2=1+k 2(x 1+x 2)2-4x 1x 2, 或|AB |=⎝⎛⎭⎫1ky 1-1k y 22+(y 1-y 2)2=1+1k 2(y 1-y 2)2 =1+1k2(y 1+y 2)2-4y 1y 2. 其中,x 1+x 2,x 1x 2或y 1+y 2,y 1y 2的值,可通过由直线方程与椭圆方程联立消去y (或x )后得到关于x (或y )的一元二次方程求得.1.若直线的斜率一定,则当直线过椭圆的中心时,弦长最大.( √ ) 2.直线x 2-y =1被椭圆x 24+y 2=1截得的弦长为 5.( √ )3.已知椭圆x 2a 2+y 2b 2=1(a >b >0)与点P (b,0),过点P 可作出该椭圆的一条切线.( × )4.直线y =k (x -a )与椭圆x 2a 2+y 2b2=1的位置关系是相交.( √ )题型一 直线与椭圆的位置关系例1 已知直线l :y =2x +m ,椭圆C :x 24+y 22=1.试问当m 取何值时,直线l 与椭圆C :(1)有两个公共点; (2)有且只有一个公共点; (3)没有公共点. 考点 题点解 直线l 的方程与椭圆C 的方程联立,得方程组⎩⎪⎨⎪⎧y =2x +m ,x 24+y 22=1,消去y ,得9x 2+8mx +2m 2-4=0.①方程①的判别式Δ=(8m )2-4×9×(2m 2-4)=-8m 2+144.(1)当Δ>0,即-32<m <32时,方程①有两个不同的实数解,可知原方程组有两组不同的实数解.这时直线l 与椭圆C 有两个公共点.(2)当Δ=0,即m =±32时,方程①有两个相同的实数解,可知原方程组有两组相同的实数解.这时直线l 与椭圆C 有且只有一个公共点.(3)当Δ<0,即m <-32或m >32时,方程①没有实数解,可知原方程组没有实数解.这时直线l 与椭圆C 没有公共点.反思感悟 判断直线与椭圆的位置关系,通过解直线方程与椭圆方程组成的方程组,消去方程组中的一个变量,得到关于另一个变量的一元二次方程,则Δ>0⇔直线与椭圆相交; Δ=0⇔直线与椭圆相切; Δ<0⇔直线与椭圆相离.跟踪训练1 若直线y =kx +1与焦点在x 轴上的椭圆x 25+y 2m =1总有公共点,则实数m 的取值范围为________. 考点 题点 答案 [1,5)解析 ∵直线y =kx +1过定点M (0,1),∴要使直线与该椭圆总有公共点,则点M (0,1)必在椭圆内或椭圆上, 由此得⎩⎪⎨⎪⎧0<m <5,025+12m ≤1,解得1≤m <5.题型二 直线与椭圆的相交弦问题例2 已知椭圆x 236+y 29=1和点P (4,2),直线l 经过点P 且与椭圆交于A ,B 两点.(1)当直线l 的斜率为12时,求线段AB 的长度;(2)当P 点恰好为线段AB 的中点时,求l 的方程. 考点 直线与椭圆的位置关系 题点 中点弦问题解 (1)由已知可得直线l 的方程为y -2=12(x -4),即y =12x .由⎩⎨⎧y =12x ,x 236+y29=1,消去y 可得x 2-18=0,若设A (x 1,y 1),B (x 2,y 2).则x 1+x 2=0,x 1x 2=-18. 于是|AB |=(x 1-x 2)2+(y 1-y 2)2 =(x 1-x 2)2+14(x 1-x 2)2=52(x 1+x 2)2-4x 1x 2 =52×62=310.所以线段AB 的长度为310.(2)方法一 当直线l 的斜率不存在时,不合题意. 所以直线l 的斜率存在.设l 的斜率为k ,则其方程为y -2=k (x -4). 联立⎩⎪⎨⎪⎧y -2=k (x -4),x 236+y 29=1,消去y ,得(1+4k 2)x 2-(32k 2-16k )x +64k 2-64k -20=0. 显然,Δ>0,若设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=32k 2-16k1+4k 2,由于AB 的中点恰好为P (4,2),所以x 1+x 22=16k 2-8k 1+4k 2=4,解得k =-12,且满足Δ>0.这时直线的方程为y -2=-12(x -4),即x +2y -8=0.方法二 设A (x 1,y 1),B (x 2,y 2),则有⎩⎨⎧x 2136+y 219=1,x 2236+y229=1,两式相减得x 22-x 2136+y 22-y 219=0,整理得k AB =y 2-y 1x 2-x 1=-9(x 2+x 1)36(y 2+y 1),由于P (4,2)是AB 的中点,∴x 1+x 2=8,y 1+y 2=4, 于是k AB =-9×836×4=-12,于是直线AB 的方程为y -2=-12(x -4),即x +2y -8=0.反思感悟 处理直线与椭圆相交的关系问题的通法是通过解直线与椭圆构成的方程.利用根与系数的关系或中点坐标公式解决,涉及弦的中点,还可使用点差法:设出弦的两端点坐标,代入椭圆方程,两式相减即得弦的中点与斜率的关系.跟踪训练2 已知椭圆ax 2+by 2=1(a >0,b >0且a ≠b )与直线x +y -1=0相交于A ,B 两点,C 是AB 的中点,若|AB |=22,OC 的斜率为22,求椭圆的方程. 考点 直线与椭圆的位置关系题点 中点弦问题解 方法一 设A (x 1,y 1),B (x 2,y 2),代入椭圆方程并作差, 得a (x 1+x 2)(x 1-x 2)+b (y 1+y 2)(y 1-y 2)=0.① ∵A ,B 为直线x +y -1=0上的点,∴y 1-y 2x 1-x 2=-1.由已知得y 1+y 2x 1+x 2=k OC =22,代入①式可得b =2a .∵直线x +y -1=0的斜率k =-1. 又|AB |=1+k 2|x 2-x 1|=2|x 2-x 1|=22, ∴|x 2-x 1|=2.联立ax 2+by 2=1与x +y -1=0,可得(a +b )x 2-2bx +b -1=0.且由已知得x 1,x 2是方程(a +b )x 2-2bx +b -1=0的两根,∴x 1+x 2=2ba +b ,x 1x 2=b -1a +b ,∴4=(x 2-x 1)2=(x 1+x 2)2-4x 1x 2 =⎝⎛⎭⎫2b a +b 2-4·b -1a +b.② 将b =2a 代入②式,解得a =13,∴b =23.∴所求椭圆的方程是x 23+2y 23=1.方法二 由⎩⎪⎨⎪⎧ax 2+by 2=1,x +y -1=0消去y ,得(a +b )x 2-2bx +b -1=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2ba +b ,x 1x 2=b -1a +b ,且直线AB 的斜率k =-1, ∴|AB |=(k 2+1)(x 1-x 2)2 =(k 2+1)[(x 1+x 2)2-4x 1x 2] =2·4b 2-4(a +b )(b -1)a +b.∵|AB |=22,∴2·4b 2-4(a +b )(b -1)a +b =22,∴a +b -aba +b=1.①设C (x ,y ),则x =x 1+x 22=b a +b ,y =1-x =aa +b.∵OC 的斜率为22, ∴y x =a b =22,将其代入①式得,a =13,b =23. ∴所求椭圆的方程为x 23+2y 23=1.题型三 椭圆中的最值(或范围)问题 例3 已知椭圆4x 2+y 2=1及直线y =x +m .(1)当直线和椭圆有公共点时,求实数m 的取值范围; (2)求被椭圆截得的最长弦所在的直线方程. 考点 直线与椭圆的位置关系 题点 直线与椭圆相交时的其他问题解 (1)由⎩⎪⎨⎪⎧4x 2+y 2=1,y =x +m ,得5x 2+2mx +m 2-1=0,因为直线与椭圆有公共点,所以Δ=4m 2-20(m 2-1)≥0,解得-52≤m ≤52. (2)设直线与椭圆交于A (x 1,y 1),B (x 2,y 2)两点, 由(1)知5x 2+2mx +m 2-1=0, 所以x 1+x 2=-2m 5,x 1x 2=15(m 2-1),所以|AB |=(x 1-x 2)2+(y 1-y 2)2 =2(x 1-x 2)2=2[(x 1+x 2)2-4x 1x 2] =2⎣⎡⎦⎤4m 225-45(m 2-1)=2510-8m 2. 所以当m =0时,|AB |最大,此时直线方程为y =x . 引申探究本例中,设直线与椭圆相交于A (x 1,y 1),B (x 2,y 2)两点,求△AOB 面积的最大值及△AOB 面积最大时的直线方程. 解 可求得O 到AB 的距离d =|m |2, 又|AB |=2510-8m 2, ∴S △AOB =12|AB |·d=12×2510-8m 2×|m |2=25⎝⎛⎭⎫54-m 2m 2≤25·⎝⎛⎭⎫54-m 2+m 22=14,当且仅当54-m 2=m 2时,上式取“=”,此时m =±104∈⎝⎛⎭⎫-52,52. ∴所求直线方程为x -y ±104=0. 反思感悟 解析几何中的综合性问题很多,而且可与很多知识联系在一起出题,例如不等式、三角函数、平面向量以及函数的最值问题等.解决这类问题需要正确地应用转化思想、函数与方程思想和数形结合思想.其中应用比较多的是利用方程根与系数的关系构造等式或函数关系式,这其中要注意利用根的判别式来确定参数的限制条件. 跟踪训练3 已知椭圆C :x 2+2y 2=4.(1)若点P (a ,b )是椭圆C 上一点,求a 2+b 2的取值范围;(2)设O 为原点,若点A 在直线y =2上,点B 在椭圆C 上,且OA ⊥OB ,求|AB |的最小值. 考点 直线与椭圆的位置关系 题点 直线与椭圆相交时的其他问题 解 (1)由题意得a 2+2b 2=4, 则a 2=4-2b 2,∴a 2+b 2=4-2b 2+b 2=4-b 2, ∵b ∈[-2,2],∴4-b 2∈[2,4]. 故a 2+b 2∈[2,4],a 2+b 2的取值范围为[2,4]. (2)设A (t,2),B (x 0,y 0),x 0≠0.∵OA ⊥OB , ∴OA →·OB →=0,∴tx 0+2y 0=0,∴t =-2y 0x 0.又∵x 20+2y 20=4,∴0<x 20≤4.∴|AB |2=(x 0-t )2+(y 0-2)2=x 202+8x 20+4≥4+4=8,当且仅当x 202=8x 20,即x 20=4时等号成立, ∴|AB |的最小值为2 2.转化化归思想在椭圆中的应用典例 已知椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),左、右焦点分别是F 1,F 2,若椭圆C 上的点P ⎝⎛⎭⎫1,32到F 1,F 2的距离和等于4. (1)写出椭圆C 的方程和焦点坐标;(2)直线l 过定点M (0,2),且与椭圆C 交于不同的两点A ,B ,若原点O 在以线段AB 为直径的圆外,求直线l 的斜率k 的取值范围. 考点 题点解 (1)由题意得2a =4,即a =2, 又点P ⎝⎛⎭⎫1,32在椭圆C 上, ∴14+34b2=1,即b 2=1, ∴椭圆C 的方程为x 24+y 2=1,焦点F 1(-3,0),F 2(3,0).(2)由题意得直线l 的斜率存在且不为0, 设l :y =kx +2,代入x 24+y 2=1,整理得(1+4k 2)x 2+16kx +12=0, Δ=(16k )2-4(1+4k 2)·12=16(4k 2-3)>0, 得k 2>34.①设A (x 1,y 1),B (x 2,y 2),∴x 1+x 2=-16k 1+4k 2,x 1x 2=121+4k 2. ∵原点O 在以线段AB 为直径的圆外, ∴∠AOB 为锐角,∴cos ∠AOB >0, 则OA →·OB →=x 1x 2+y 1y 2>0, 又y 1y 2=(kx 1+2)·(kx 2+2) =k 2x 1x 2+2k (x 1+x 2)+4,∴x 1x 2+y 1y 2=(1+k 2)x 1x 2+2k (x 1+x 2)+4 =(1+k 2)121+4k 2+2k⎝⎛⎭⎫-16k 1+4k 2+4 =4(4-k 2)1+4k 2>0.∴k2<4,∴34<k 2<4, ∴直线l 的斜率k 的取值范围是⎝⎛⎭⎫-2,-32∪⎝⎛⎭⎫32,2. [素养评析](1)本例中点O 在以AB 为直径的圆外⇒∠AOB 为锐角⇒OA →·OB →>0⇒x 1x 2+y 1y 2>0 利用根与系数的关系与判别式可得到直线斜率的范围.(2)逻辑推理是得到数学结论、构建数学体系的重要方式,本例从条件出发与已有知识结合,逐步推出相应的结论.对逻辑推理素养的培养有很好的帮助.1.点A (a,1)在椭圆x 24+y 22=1的内部,则a 的取值范围是( )A .-2<a < 2B .a <-2或a > 2C .-2<a <2D .-1<a <1考点 椭圆的几何性质 题点 点与椭圆的位置关系 答案 A解析 由题意知a 24+12<1,解得-2<a < 2.2.直线y =x +2与椭圆x 2m +y 23=1有两个公共点,则m 的取值范围是( )A .m >1B .m >1且m ≠3C .m >3D .m >0且m ≠3考点 直线与椭圆的位置关系 题点 直线与椭圆的公共点个数问题 答案 B解析 由⎩⎪⎨⎪⎧y =x +2,x 2m +y 23=1,得(3+m )x 2+4mx +m =0,∵Δ=(4m )2-4m (3+m )>0,∴16m 2-4m (3+m )>0, ∴m >1或m <0.又∵m >0且m ≠3,∴m >1且m ≠3.3.过椭圆x 28+y 24=1内一点P (1,1)的直线l 与椭圆交于A ,B 两点,且P 是线段AB 的中点,则直线l 的方程是( ) A .x +2y -3=0 B .x -2y +1=0 C .2x +y -3=0D .2x -y -1=0 考点 直线与椭圆的位置关系 题点 直线与椭圆的公共点个数问题 答案 A解析 设A (x 1,y 1),B (x 2,y 2),P (1,1)是线段AB 的中点,则x 1+x 2=2,y 1+y 2=2,将点A ,B 的坐标代入椭圆方程作差,得18(x 1+x 2)(x 1-x 2)+14(y 1+y 2)(y 1-y 2)=0,即14(x 1-x 2)+12(y 1-y 2)=0,由题意知,直线l 的斜率存在,∴k AB =y 1-y 2x 1-x 2=-12,∴直线l 的方程为y -1=-12(x-1),整理得x +2y -3=0.4.已知以F 1(-2,0),F 2(2,0)为焦点的椭圆与直线x +3y +4=0有且仅有一个公共点,则椭圆的长轴长为___________________________________________. 考点 直线与椭圆的位置关系 题点 直线与椭圆的公共点个数问题 答案 27解析 由题意可设椭圆的方程为x 2a 2+y 2a 2-4=1(a >2),与直线方程x +3y +4=0联立,得4(a 2-3)y 2+83(a 2-4)y +(16-a 2)(a 2-4)=0, 由Δ=0,得a =7, 所以椭圆的长轴长为27.5.已知椭圆C 的两个焦点是F 1(-2,0),F 2(2,0),且椭圆C 经过点A (0,5). (1)求椭圆C 的标准方程;(2)若过左焦点F 1且倾斜角为45°的直线l 与椭圆C 交于P ,Q 两点,求线段PQ 的长. 考点 直线与椭圆的位置关系 题点 弦长与三角形面积解 (1)由已知得,椭圆C 的焦点在x 轴上,可设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),(0,5)是椭圆短轴上的一个顶点,可得b =5,由题意可得c =2,故a =b 2+c 2=3,则椭圆C 的标准方程为x 29+y 25=1.(2)由已知得,直线l 的斜率k =tan 45°=1,而F 1(-2,0),所以直线l 的方程为y =x +2,代入方程x 29+y 25=1,得5x 2+9(x +2)2=45,即14x 2+36x -9=0,设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=-187,x 1x 2=-914,则|PQ |=1+k 2|x 1-x 2|=1+12×(x 1+x 2)2-4x 1x 2=2×⎝⎛⎭⎫-1872-4×⎝⎛⎭⎫-914=307.1.直线与椭圆的位置关系,可考虑由直线方程和椭圆方程得到的一元二次方程,利用“Δ”进行判定,求弦长时可利用根与系数的关系,中点弦问题考虑使用点差法.2.最值往往转化为函数最值或利用数形结合思想.一、选择题1.直线y=kx-k+1与椭圆x29+y24=1的位置关系为()A.相切B.相交C.相离D.不确定考点题点答案 B解析直线y=kx-k+1可变形为y-1=k(x-1),故直线恒过定点(1,1),而该点在椭圆x 29+y 24=1内部,所以直线y =kx -k +1与椭圆x 29+y 24=1相交,故选B.2.椭圆x 225+y 29=1上的点P 到椭圆左焦点的最大距离和最小距离分别是( )A .8,2B .5,4C .5,1D .9,1 考点 椭圆的几何性质题点 通过所给条件研究椭圆的几何性质 答案 D解析 因为a =5,c =4,所以最大距离为a +c =9,最小距离为a -c =1.3.已知AB 为过椭圆x 2a 2+y 2b 2=1中心的弦,F (c,0)为椭圆的右焦点,则△AFB 面积的最大值为( )A .b 2B .abC .acD .bc 考点 直线与椭圆的位置关系 题点 弦长与三角形面积 答案 D解析 当直线AB 为y 轴时,面积最大, 此时|AB |=2b ,△AFB 的高为c , ∴S △AFB =12·2b ·c =bc .4.椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为22,若直线y =kx 与椭圆的一个交点的横坐标x 0=b ,则k 的值为( ) A.22 B .±22 C.12 D .±12考点 直线与椭圆的位置关系 题点 求椭圆中的直线方程 答案 B解析 根据椭圆的离心率为22,得c a =22. 由x 0=b ,得y 20=b 2⎝⎛⎭⎫1-b 2a 2=b 2c 2a 2, ∴y 0=±bc a ,∴k =y 0x 0=±c a =±22.5.若直线ax +by +4=0和圆x 2+y 2=4没有公共点,则过点(a ,b )的直线与椭圆x 29+y 24=1的公共点个数为( ) A .0 B .1C .2D .需根据a ,b 的取值来确定考点 直线与椭圆的位置关系 题点 直线与椭圆的公共点个数问题 答案 C解析 ∵直线与圆没有交点,∴d =4a 2+b 2 >2, ∴a 2+b 2<4,即a 2+b 24<1,∴a 29+b 24<1, ∴点(a ,b )在椭圆内部, 故直线与椭圆有2个交点.6.设F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过点F 1,F 2分别作x 轴的垂线,交椭圆的四点构成一个正方形,则椭圆的离心率e 为( ) A.3-12 B.5-12 C.22 D.32考点 椭圆几何性质的应用 题点 求椭圆离心率的值 答案 B解析 将x =±c 代入椭圆方程,得y =±b 2a .由题意得2b 2a =2c ,即b 2=ac ,所以a 2-c 2=ac ,则⎝⎛⎭⎫c a 2+ca -1=0, 解得c a =5-12(负值舍去).7.经过椭圆x 2+2y 2=2的一个焦点作倾斜角为45°的直线l ,交椭圆于M ,N 两点,设O 为坐标原点,则OM →·ON →等于( ) A .-3 B .±13 C .-13 D .-12考点 椭圆的几何性质 题点 椭圆范围的简单应用解析 由x 2+2y 2=2,得a 2=2,b 2=1,c 2=a 2-b 2=1,焦点为(±1,0),不妨设直线l 过右焦点,则直线l 的方程为y =x -1,代入x 2+2y 2=2,得x 2+2(x -1)2-2=0,化简得3x 2-4x =0.设M (x 1,y 1),N (x 2,y 2),则x 1x 2=0,x 1+x 2=43,y 1y 2=(x 1-1)(x 2-1)=x 1x 2-(x 1+x 2)+1=1-43=-13,所以OM →·ON →=x 1x 2+y 1y 2=0-13=-13. 8.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( ) A.x 245+y 236=1 B.x 236+y 227=1 C.x 227+y 218=1 D.x 218+y 29=1 考点 直线与椭圆的位置关系 题点 中点弦问题 答案 D解析 设A (x 1,y 1),B (x 2,y 2),代入椭圆方程,得x 21a 2+y 21b 2=1,x 22a 2+y 22b 2=1,两式相减得y 1-y 2x 1-x 2=-b 2a 2·x 1+x 2y 1+y 2=12,因为线段AB 的中点坐标为(1,-1),所以b 2a 2=12.因为右焦点为F (3,0),c =3,所以a 2=18,b 2=9,所以椭圆E 的方程为x 218+y 29=1.二、填空题9.椭圆x 23+y 2=1被直线x -y +1=0所截得的弦长|AB |=________.考点 直线与椭圆的位置关系 题点 弦长问题 答案322解析 由⎩⎪⎨⎪⎧x -y +1=0,x 23+y 2=1,得交点为(0,1),⎝⎛⎭⎫-32,-12, 则|AB |=⎝⎛⎭⎫322+⎝⎛⎭⎫1+122=322. 10.F 1,F 2是椭圆x 22+y 2=1的两个焦点,过右焦点F 2作倾斜角为π4的弦AB ,则△F 1AB 的面积等于________.题点 答案 4311.如图,椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,焦距为2c ,若直线y =3(x+c )与椭圆的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率为________.考点 椭圆几何性质的应用 题点 求椭圆离心率的值 答案3-1解析 由直线方程y =3(x +c ),得直线与x 轴的夹角∠MF 1F 2=π3,且过点F 1(-c,0).∵∠MF 1F 2=2∠MF 2F 1,∴∠MF 1F 2=2∠MF 2F 1=π3,即F 1M ⊥F 2M .∴在Rt △F 1MF 2中,|F 1F 2|=2c ,|F 1M |=c ,|F 2M |=3c ,∴由椭圆定义可得2a =c +3c , ∴离心率e =c a =21+3=3-1.12.若椭圆mx 2+ny 2=1(m >0,n >0且m ≠n )与直线x +y -1=0交于A ,B 两点,且nm =2,则原点与线段AB 的中点M 的连线的斜率为________. 考点 直线与椭圆的位置关系 题点 中点弦问题 答案22解析 设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧mx 21+ny 21=1, ①mx 22+ny 22=1, ②①-②,得m (x 1+x 2)(x 1-x 2)+n (y 1+y 2)(y 1-y 2)=0, 即m n +y 1+y 2x 1+x 2·y 1-y 2x 1-x 2=0. ∵y 1-y 2x 1-x 2=-1,m n =22,∴y 1+y 2x 1+x 2=22,∴k OM =22.三、解答题13.已知椭圆x 23+y 22=1的左、右焦点分别为F 1,F 2,过F 1且倾斜角为45°的直线l 与椭圆相交于A ,B 两点. (1)求AB 的中点坐标; (2)求△ABF 2的周长与面积. 考点 直线与椭圆的位置关系 题点 弦长与三角形面积解 (1)由x 23+y 22=1,知a =3,b =2,所以c =1.所以F 1(-1,0),F 2(1,0), 所以直线l 的方程为y =x +1, 由⎩⎪⎨⎪⎧x 23+y 22=1,y =x +1消去y , 整理得5x 2+6x -3=0.设A (x 1,y 1),B (x 2,y 2),AB 的中点为M (x 0,y 0),则 x 1+x 2=-65,x 1x 2=-35,x 0=x 1+x 22=-35,y 0=y 1+y 22=x 1+1+x 2+12=x 1+x 22+1=25⎝⎛⎭⎫或y 0=x 0+1=-35+1=25, 所以AB 的中点坐标为⎝⎛⎭⎫-35,25. (2)由题意,知F 2到直线AB 的距离d =|1-0+1|12+12=22=2,|AB |=1+k 2·(x 1+x 2)2-4x 1x 2=835,所以2ABF S=12|AB |d =12×835×2=465, 所以△ABF 2的周长为4a =43,面积为465.14.椭圆x 2a 2+y 2b 2=1(a >b >0)与直线x +y -1=0相交于P ,Q 两点,且OP →⊥OQ →(O 为坐标原点).(1)求证:1a 2+1b 2等于定值;(2)若椭圆的离心率e ∈⎣⎡⎦⎤33,22,求椭圆长轴长的取值范围. 考点 直线与椭圆的位置关系 题点 直线与椭圆相交时的其他问题(1)证明 椭圆的方程可化为b 2x 2+a 2y 2-a 2b 2=0.由⎩⎪⎨⎪⎧b 2x 2+a 2y 2-a 2b 2=0,x +y -1=0消去y , 得(a 2+b 2)x 2-2a 2x +a 2(1-b 2)=0. 由Δ=4a 4-4(a 2+b 2)·a 2·(1-b 2)>0, 得a 2+b 2>1.设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=2a 2a 2+b 2,x 1x 2=a 2(1-b 2)a 2+b 2.∵OP →⊥OQ →,∴x 1x 2+y 1y 2=0, 即2x 1x 2-(x 1+x 2)+1=0,即2a 2(1-b 2)a 2+b 2-2a 2a 2+b 2+1=0, ∴a 2+b 2=2a 2b 2,即1a 2+1b 2=2. ∴1a 2+1b 2等于定值. (2)解 ∵e =c a,∴b 2=a 2-c 2=a 2-a 2e 2. 又∵a 2+b 2=2a 2b 2,∴2-e 2=2a 2(1-e 2),即a 2=2-e 22(1-e 2)=12+12(1-e 2). ∵33≤e ≤22, ∴54≤a 2≤32,即52≤a ≤62, ∴5≤2a ≤6,即椭圆长轴长的取值范围是[5,6].15.已知椭圆x 2a 2+y 2b 2=1(a >b >0)经过点(0,3),离心率为12,左、右焦点分别为F 1(-c,0),F 2(c,0).(1)求椭圆的方程;(2)若直线l :y =-12x +m 与椭圆交于A ,B 两点,与以F 1F 2为直径的圆交于C ,D 两点,且满足|AB ||CD |=534,求直线l 的方程. 考点 直线与椭圆的位置关系题点 弦长与三角形面积解 (1)由题设知⎩⎪⎨⎪⎧ b =3,c a =12,b 2=a 2-c 2,解得a =2,b =3,c =1,∴椭圆的方程为x 24+y 23=1. (2)由题设,以F 1F 2为直径的圆的方程为x 2+y 2=1,∴圆心到直线l 的距离d =2|m |5, 由d <1,得|m |<52.(*) ∴|CD |=21-d 2=21-45m 2=255-4m 2. 设A (x 1,y 1),B (x 2,y 2),由⎩⎨⎧ y =-12x +m ,x 24+y 23=1,消去y ,得x 2-mx +m 2-3=0,Δ=(-m )2-4(m 2-3)>0,得m 2<4.由根与系数的关系可得x 1+x 2=m ,x 1x 2=m 2-3. ∴|AB |=⎣⎡⎦⎤1+⎝⎛⎭⎫-122[m 2-4(m 2-3)] =1524-m 2. 由|AB ||CD |=534,得4-m 25-4m 2=1, 解得m =±33,满足(*)式,也满足Δ>0. ∴直线l 的方程为y =-12x +33或y =-12x -33.。
2020届高中数学分册同步讲义(选修1-2) 第1章 章末检测试卷(一)

章末检测试卷(一)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.下列说法中正确的是( )A .相关关系是一种不确定的关系,回归分析是对相关关系的分析,因此没有实际意义B .独立性检验对分类变量关系的研究没有100%的把握,所以独立性检验研究的结果在实际中也没有多大的实际意义C .相关关系可以对变量的发展趋势进行预报,这种预报可能会是错误的D .独立性检验如果得出的结论有99%的可信度,就意味着这个结论一定是正确的 答案 C解析 相关关系虽然是一种不确定关系,但是回归分析可以在某种程度上对变量的发展趋势进行预报,这种预报在尽量减小误差的条件下可以对生产与生活起到一定的指导作用,独立性检验对分类变量的检验也是不确定的,但是其结果也有一定的实际意义.故选C. 2.对于线性回归方程y ^=b ^x +a ^,下列说法中不正确的是( ) A .直线必经过点(x ,y )B .x 增加1个单位时,y 平均增加b ^个单位 C .样本数据中x =0时,可能有y =a ^ D .样本数据中x =0时,一定有y =a ^ 答案 D解析 线性回归方程是根据样本数据得到的一个近似曲线,故由它得到的值也是一个近似值. 3.根据如下样本数据:得到的线性回归方程为y ^=b ^x +a ^,则( ) A.a ^>0,b ^<0 B.a ^>0,b ^>0 C.a ^<0,b ^>0 D.a ^<0,b ^<0答案 A解析 根据题意,画出散点图.根据散点图,知两个变量为负相关,且回归直线与y 轴的交点在y 轴正半轴,所以a ^>0,b ^<0.4.下表显示出样本中变量y随变量x变化的一组数据,由此判断它最可能是()A.线性函数模型B.二次函数模型C.指数函数模型D.对数函数模型考点回归分析题点建立回归模型的基本步骤答案 A解析画出散点图(图略)可以得到这些样本点在某一条直线上或该直线附近,故最可能是线性函数模型.5.如图是调查某地区男、女中学生喜欢理科的等高条形图,阴影部分表示喜欢理科的百分比,从图中可以看出()A.性别与喜欢理科无关B.女生中喜欢理科的比例约为80%C.男生比女生喜欢理科的可能性大些D.男生中不喜欢理科的比例约为60%考点定性分析的两类方法题点利用图形定性分析答案 C解析由图可知,女生中喜欢理科的比例约为20%,男生中喜欢理科的比例约为60%,因此男生比女生喜欢理科的可能性大些.6.为了评价某个电视栏目的改革效果,某机构在改革前后分别从居民点抽取了100位居民进行调查,经过计算K2≈0.99,根据这一数据分析,下列说法正确的是()A.有99%的人认为该电视栏目优秀B.有99%的人认为该电视栏目是否优秀与改革有关系C.有99%的把握认为该电视栏目是否优秀与改革有关系D.没有理由认为该电视栏目是否优秀与改革有关系考点独立性检验及其基本思想题点独立性检验的方法答案 D解析只有K2≥6.635时才能有99%的把握认为该电视栏目是否优秀与改革有关系,而即使K2≥6.635也只是对“该电视栏目是否优秀与改革有关系”这个论断成立的可能性大小的推论,与是否有99%的人等无关.7.如图,5个(x,y)数据,去掉D(3,10)后,下列说法错误的是()A.相关系数r变大B.残差平方和变大C.R2变大D.解释变量x与预报变量y的相关性变强考点残差分析与相关指数题点残差及相关指数的应用答案 B解析由散点图知,去掉D后,x,y的相关性变强,且为正相关,所以r变大,R2变大,残差平方和变小.8.某车间加工零件的数量x与加工时间y的统计数据如下表:现已求得上表数据的线性回归方程y ^=b ^x +a ^中的b ^值为0.9,则据此回归模型可以预测,加工100个零件所需要的加工时间约为( ) A .84分钟 B .94分钟 C .102分钟 D .112分钟考点 线性回归分析 题点 线性回归方程的应用 答案 C解析 由已知可得x =20,y =30, 又b ^=0.9,∴a ^=y -b ^x =30-0.9×20=12. ∴线性回归方程为y ^=0.9x +12. ∴当x =100时,y ^=0.9×100+12=102. 故选C.9.已知变量x 和y 满足关系y =-0.1x +1,变量y 与z 正相关.下列结论中正确的是( ) A .x 与y 正相关,x 与z 负相关 B .x 与y 正相关,x 与z 正相关 C .x 与y 负相关,x 与z 负相关 D .x 与y 负相关,x 与z 正相关 考点 线性回归分析 题点 线性回归方程的应用 答案 C解析 因为y =-0.1x +1,-0.1<0,所以x 与y 负相关.又y 与z 正相关,故可设z =ay +b (a >0),所以z =-0.1ax +a +b ,-0.1a <0,所以x 与z 负相关.故选C.10.在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为( )A .-1B .0 C.12 D .1答案 D解析 所有点均在直线上,则样本相关系数最大即为1,故选D. 11.根据下面的列联表得到如下四个判断:①至少有99.9%的把握认为“患肝病与嗜酒有关”;②至少有99%的把握认为“患肝病与嗜酒有关”;③在犯错误的概率不超过0.01的前提下认为“患肝病与嗜酒有关”;④在犯错误的概率不超过0.01的前提下认为“患肝病与嗜酒无关”.其中正确命题的个数为()A.0 B.1 C.2 D.3答案 C解析由列联表中数据可求得随机变量K2的观测值k=992×(700×32-60×200)2 760×232×900×92≈7.349>6.635,所以在犯错误的概率不超过0.01的前提下,认为“患肝病与嗜酒有关系”,即至少有99%的把握认为“患肝病与嗜酒有关系”.因此②③正确,故选C.12.下表给出5组数据(x,y),为选出4组数据使其线性相关程度最大,且保留第1组数据(-5,-3),则应去掉()A.第2组B.第3组C.第4组D.第5组答案 B解析通过散点图选择,画出散点图如图,应除去第三组,对应点的坐标是(-3,4).故选B.二、填空题(本大题共4小题,每小题5分,共20分)13.已知下表所示数据的线性回归方程为y ^=4x +242,则实数a =________.答案 262解析 由题意,得x =4,y =15(1 028+a ),代入y ^=4x +242,可得15(1 028+a )=4×4+242,解得a =262.14.在评价建立的线性回归模型刻画身高和体重之间关系的效果时,R 2=________,可以叙述为“身高解释了64%的体重变化,而随机变量贡献了剩余的36%”. 答案 0.64解析 当R 2=0.64时,说明体重的差异有64%是由身高引起的,所以身高解释了64%的体重变化,而随机变量贡献了剩余的36%.15.对某台机器购置后的运营年限x (x =1,2,3,…)与当年利润y 的统计分析知具备线性相关关系,线性回归方程为y =10.47-1.3x ,估计该台机器使用________年最合算. 考点 线性回归分析 题点 线性回归方程的应用 答案 8解析 只要预计利润不为负数,使用该机器就算合算,即y ≥0,所以10.47-1.3x ≥0,解得x ≤8.05,所以该台机器使用8年最合算. 16.若两个分类变量X 与Y 的2×2列联表为:则“X 与Y 之间有关系”这个结论出错的概率为________. 答案 0.01解析 由列联表数据,可求得随机变量K 2的观测值 k =81×(10×16-40×15)225×56×50×31≈7.227>6.635.因为P (K 2≥6.635)≈0.01,所以“X 与Y 之间有关系”出错的概率为0.01. 三、解答题(本大题共6小题,共70分)17.(10分)在对人们休闲方式的一次调查中,仅就看电视与运动这两种休闲方式比较喜欢哪一种进行了调查.调查结果:接受调查总人数110人,其中男、女各55人;受调查者中,女性有30人比较喜欢看电视,男性有35人比较喜欢运动. (1)请根据题目所提供的调查结果填写下列2×2列联表:(2)能否在犯错误的概率不超过0.05的前提下认为“性别与休闲方式有关系”? 注:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d 为样本容量.解 (1)根据题目所提供的调查结果,可得下列2×2列联表:(2)根据列联表中的数据,可计算K 2的观测值k =110×(30×35-20×25)250×60×55×55≈3.667,因为3.667<3.841,所以不能在犯错误的概率不超过0.05的前提下认为“性别与休闲方式有关系”.18.(12分)某地随着经济的发展居民收入逐年增长,下表是该地某银行连续五年的储蓄存款(年底余额),如下表1:为了研究计算的方便,工作人员将上表的数据进行了处理,t =x -2 010,z =y -5得到下表2:(1)求z 关于t 的线性回归方程;(2)通过(1)中的方程,求出y 关于x 的线性回归方程;(3)用所求线性回归方程预测到2020年年底,该地储蓄存款可达多少?(附:对于线性回归方程y ^=b ^x +a ^,其中b ^=∑i =1nx i y i -n x y∑i =1nx 2i -n x2,a ^=y -b ^x )考点 线性回归方程 题点 求线性回归方程解 (1)t =3,z =2.2,∑i =15t i z i =45,∑i =15t 2i =55,b ^=45-5×3×2.255-5×9=1.2,a ^=z -b ^ t =2.2-1.2×3=-1.4,∴z ^=1.2t -1.4.(2)将t =x -2 010,z ^=y ^-5,代入z ^=1.2t -1.4, 得y ^-5=1.2(x -2 010)-1.4,即y ^=1.2x -2 408.4. (3)∵y ^=1.2×2 020-2 408.4=15.6,∴预测到2020年年底,该地储蓄存款额可达15.6千亿元.19.(12分)某校社团对“学生性别与是否喜欢韩剧有关”作了一次调查,其中女生人数是男生人数的12,男生喜欢韩剧的人数占男生人数的16,女生喜欢韩剧的人数占女生人数的23,若在犯错误的概率不超过0.05的前提下认为是否喜欢韩剧和性别有关,则男生至少有多少人? 考点 独立性检验思想的应用 题点 独立性检验在分类变量中的应用 解 设男生人数为x ,依题意可得列联表如下:若在犯错误的概率不超过0.05的前提下认为是否喜欢韩剧和性别有关,则K 2>3.841, 由K 2=3x 2×⎝⎛⎭⎫x 6×x 6-5x 6×x 32x ×x 2×x 2×x =38x >3.841,解得x >10.24,∵人数为整数,∴x 为6的倍数,∴若在犯错误的概率不超过0.05的前提下认为是否喜欢韩剧和性别有关,则男生至少有12人. 20.(12分)为了了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对30名六年级的学生进行了问卷调查得到如下列联表.平均每天喝500 mL 以上为常喝,体重超过50 kg 为肥胖.已知在30人中随机抽取1人,抽到肥胖的学生的概率为415.(1)请将上面的列联表补充完整;(2)是否有99.5%的把握认为肥胖与常喝碳酸饮料有关?说明你的理由;(3)现从常喝碳酸饮料且肥胖的学生中(其中有2名女生)抽取2人参加电视节目,则正好抽到1男1女的概率是多少?解 (1)设常喝碳酸饮料且肥胖的学生有x 人,则x +230=415,解得x =6.(2)由已知数据,得K 2=30×(6×18-2×4)210×20×8×22≈8.523>7.879.因此有99.5%的把握认为肥胖与常喝碳酸饮料有关.(3)设常喝碳酸饮料的肥胖者男生为A ,B ,C ,D ,女生为E ,F ,则任取2人有AB ,AC ,AD ,AE ,AF ,BC ,BD ,BE ,BF ,CD ,CE ,CF ,DE ,DF ,EF 共15种.其中1男1女有AE ,AF ,BE ,BF ,CE ,CF ,DE ,DF ,故抽出1男1女的概率P =815.21.(12分)某服装批发市场1-5月份的服装销售量x 与利润y 的统计数据如下表:(1)从这五个月的利润中任选2个,分别记为m ,n ,求事件“m ,n 均不小于30”的概率; (2)已知销售量x 与利润y 大致满足线性相关关系,请根据前4个月的数据,求出y 关于x 的线性回归方程y ^=b ^x +a ^;(3)若由线性回归方程得到的利润的估计数据与真实数据的误差不超过2万元,则认为得到的利润的估计数据是理想的.请用表格中第5个月的数据检验由(2)中线性回归方程所得的第5个月的利润的估计数据是否理想?参考公式:b ^=∑i =1nx i y i -n x y∑i =1nx 2i -n x2,a ^=y -b ^x .解 (1)所有的基本事件为(19,34),(19,26),(19,41),(19,46),(34,26),(34,41),(34,46),(26,41),(26,46),(41,46),共10个.记“m ,n 均不小于30”为事件A ,则事件A 包含的基本事件为(34,41),(34,46),(41,46),共3个. 所以P (A )=310.(2)由前4个月的数据可得,x =5,y =30,∑i =14x i y i =652,∑i =14x 2i =110.所以b ^=∑i =14x i y i -4x y∑i =14x 2i -4x2=652-4×5×30110-4×52=5.2,a ^=30-5.2×5=4,所以线性回归方程为y ^=5.2x +4, (3)由题意得,当x =8时, y ^=45.6,|45.6-46|=0.4<2.所以利用(2)中的线性回归方程所得的第5个月的利润估计数据是理想的.22.(12分)为了解中学生课余观看某热门综艺节目是否与性别有关,某中学一研究性学习小组从该校学生中随机抽取了n 人进行问卷调查.调查结果表明:女生中喜欢观看该节目的占女生总人数的34,男生喜欢看该节目的占男生总人数的13.随后,该小组采用分层抽样的方法从这n 份问卷中继续抽取了5份进行重点分析,知道其中喜欢看该节目的有3人.(1)现从重点分析的5人中随机抽取了2人进行现场调查,求这两人都喜欢看该节目的概率; (2)若有99%的把握认为“爱看该节目与性别有关”,则参与调查的总人数n 至少为多少? 参考数据:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d .解 (1)记重点分析的5人中喜欢看该节目的为a ,b ,c ,不喜欢看的为d ,e ,从5人中随机抽取2人,所有可能的结果有(a ,b ),(a ,c ),(a ,d ),(a ,e ),(b ,c ),(b ,d ),(b ,e ),(c ,d ),(c ,e ),(d ,e),共10种,则这两人都喜欢看该节目的有3种, ∴P =310,即这两人都喜欢看该节目的概率为310.(2)∵进行重点分析的5人中,喜欢看该节目的有3人,故喜欢看该节目的总人数为35n ,不喜欢看该节目的总人数为25n .设这次调查问卷中女生总人数为a ,男生总人数为b ,a ,b ∈N *,则由题意可得2×2列联表如下:解得a =1625n ,b =925n ,∴正整数n 是25的倍数,设n =25k ,k ∈N *, 则34a =12k ,14a =4k , 13b =3k ,23b =6k , 则K 2=25k (12k ·6k -3k ·4k )216k ·9k ·15k ·10k =256k .由题意得256k ≥6.635,解得k ≥1.59,∵k ∈N *,∴取k =2,故n min =50.。
2020届高中数学分册同步讲义(必修1) 初中、高中衔接课 第1课时原卷版

初中、高中衔接课第1课时因式分解学习目标 1.理解提取公因式法、分组分解法.2.掌握十字相乘法.3.对于复杂的问题利用因式分解简化运算.知识点一常用的乘法公式(1)平方差公式:(a+b)(a-b)=a2-b2.(2)立方差公式:(a-b)(a2+ab+b2)=a3-b3.(3)立方和公式:(a+b)(a2-ab+b2)=a3+b3.(4)完全平方公式:(a±b)2=a2±2ab+b2.(5)三数和平方公式:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.(6)完全立方公式:(a±b)3=a3±3a2b+3ab2±b3.知识点二因式分解的常用方法(1)十字相乘法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数,即运用乘法公式(x+a)(x+b)=x2+(a+b)x+ab的逆运算进行因式分解.(2)提取公因式法:当多项式的各项有公因式时,可以把这个公因式提到括号外面,将多项式写成因式乘积形式的方法.(3)公式法:把乘法公式反过来用,把某些多项式因式分解的方法.(4)求根法:若关于x的方程ax2+bx+c=0(a≠0)的两个实数根是x1,x2,则二次三项式ax2+bx+c(a≠0)就可分解为a(x-x1)(x-x2).(5)试根法:对于简单的高次因式,可以通过先试根再分解的方法分解因式.如2x3-x-1,试根知x=1为2x3-x-1=0的根,通过拆项,2x3-x-1=2x3-2x2+2x2-2x +x-1提取公因式后分解因式.1.a3+b3=(a+b)(a2+ab+b2).(×)2.a2+2ab+b2+c2+2ac+2bc=(a+b+c)2.(√)3.a3-3a2b-3ab2+b3=(a-b)3.(×)4.多项式ax2+bx+c(a≠0)一定可以分解成a(x-x1)·(x-x2)的形式.(×)突破一配方法因式分解例1把下列关于x的二次多项式分解因式:(1)x2+2x-1;(2)x2+4xy-4y2.跟踪训练1分解因式x2+6x-16.突破二十字相乘法因式分解命题角度1形如x2+(p+q)x+pq型的因式分解例2把下列各式因式分解:(1)x2-3x+2;(2)x2+4x-12;(3)x2-(a+b)xy+aby2;(4)xy-1+x-y.跟踪训练2把下列各式因式分解:(1)x2+xy-6y2;(2)(x2+x)2-8(x2+x)+12.命题角度2形如一般二次三项式ax2+bx+c型的因式分解例3把下列各式因式分解:(1)12x2-5x-2;(2)5x2+6xy-8y2.跟踪训练3 把下列各式因式分解:(1)6x 2+5x +1;(2)6x 2+11x -7;(3)42x 2-33x +6;(4)2x 4-5x 2+3.1.分解因式x 2-3x +2为( )A.(x +1)(x +2)B.(x -1)(x -2)C.(x -1)(x +2)D.(x +1)(x -2)2.分解因式x 2-x -1为( )A.(x -1)(x +1)B.(x +1)(x -2)C.⎝ ⎛⎭⎪⎫x -1+52⎝ ⎛⎭⎪⎫x -1-52 D.⎝ ⎛⎭⎪⎫x +1-52⎝ ⎛⎭⎪⎫x -1+523.分解因式:m 2-4mn -5n 2=________.4.分解因式:(a -b )2+11(a -b )+28=________.5.分解因式:x 2-y 2-x +3y -2=____________.一、选择题1.计算(-2)100+(-2)101的结果是( )A.2B.-2C.-2100D.21002.边长为a ,b 的长方形周长为12,面积为10,则a 2b +ab 2的值为( ) A.120 B.60 C.80 D.403.下列各式中,能运用两数和(差)的平方公式进行因式分解的是()A.x2+4xB.a2-4b2C.x2+4x+1D.x2-2x+14.将代数式x2+4x-5因式分解的结果为()A.(x+5)(x-1)B.(x-5)(x+1)C.(x+5)(x+1)D.(x-5)(x-1)5.要在二次三项式x2+()x-6的括号中填上一个整数,使它能按公式x2+(a+b)x+ab=(x+a)(x+b)分解因式,那么这些数只能是()A.1,-1B.5,-5C.1,-1,5,-5D.以上答案都不对6.已知多项式x2+bx+c因式分解的结果为(x-1)(x+2),则b+c的值为()A.-3B.-2C.-1D.07.下列变形正确的是()A.x3-x2-x=x(x2-x)B.x2-3x+2=x(x-3)-2C.a2-9=(a+3)(a-3)D.a2-4a+4=(a+2)28.若2m+n=25,m-2n=2,则(m+3n)2-(3m-n)2的值为()A.200B.-200C.100D.-100二、填空题9.因式分解:ax+ay+bx+by=______________________.10.因式分解:(x+y)2-2y(x+y)=_________________________________________________.11.分解因式:(a2+1)2-4a2=__________________.三、解答题12.分解因式:(1)x2+6x+8;(2)x2-x-6.14.若x(x+1)+y(xy+y)=(x+1)·M,则M=_______________________________________.15.分解因式:(1)(x-y)2+4(x-y)+3;(2)m(m+2)(m2+2m-2)-3.。
2019-2020同步人A数学必修第一册新教材讲义:第1章+1.1+第2课时 集合的表示和答案

第2课时 集合的表示1.列举法把集合的所有元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.2.描述法一般地,设A 是一个集合,把集合A 中所有具有共同特征P (x )的元素x 所组成的集合表示为{x ∈A |P (x )},这种表示集合的方法称为描述法.思考:(1)不等式x -2<3的解集中的元素有什么共同特征? (2)如何用描述法表示不等式x -2<3的解集? 提示:(1)元素的共同特征为x ∈R ,且x <5. (2){x |x <5,x ∈R }.1.方程x 2=4的解集用列举法表示为( ) A .{(-2,2)} B .{-2,2} C .{-2}D .{2}B [由x 2=4得x =±2,故用列举法可表示为{-2,2}.] 2.用描述法表示函数y =3x +1图象上的所有点的是( )A .{x |y =3x +1}B .{y |y =3x +1}C .{(x ,y )|y =3x +1}D .{y =3x +1}C [该集合是点集,故可表示为{(x ,y )|y =3x +1},选C.] 3.用描述法表示不等式4x -5<7的解集为________. {x |x <3} [用描述法可表示为{x |x <3}.]用列举法表示集合【例1】 用列举法表示下列给定的集合: (1)不大于10的非负偶数组成的集合A ; (2)小于8的质数组成的集合B ;(3)方程2x 2-x -3=0的实数根组成的集合C ;(4)一次函数y =x +3与y =-2x +6的图象的交点组成的集合D . [解] (1)不大于10的非负偶数有0,2,4,6,8,10,所以A ={0,2,4,6,8,10}. (2)小于8的质数有2,3,5,7, 所以B ={2,3,5,7}.(3)方程2x 2-x -3=0的实数根为-1,32, 所以C =⎩⎨⎧⎭⎬⎫-1,32. (4)由⎩⎪⎨⎪⎧ y =x +3,y =-2x +6,得⎩⎪⎨⎪⎧x =1,y =4.所以一次函数y =x +3与y =-2x +6的交点为(1,4), 所以D ={(1,4)}.用列举法表示集合的3个步骤(1)求出集合的元素;(2)把元素一一列举出来,且相同元素只能列举一次; (3)用花括号括起来.提醒:二元方程组的解集,函数图象上的点构成的集合都是点的集合,一定要写成实数对的形式,元素与元素之间用“,”隔开.如{(2,3),(5,-1)}.1.用列举法表示下列集合:(1)满足-2≤x ≤2且x ∈Z 的元素组成的集合A ; (2)方程(x -2)2(x -3)=0的解组成的集合M ; (3)方程组⎩⎨⎧2x +y =8,x -y =1的解组成的集合B ;(4)15的正约数组成的集合N .[解] (1)满足-2≤x ≤2且x ∈Z 的元素有-2,-1,0,1,2,故A ={-2,-1,0,1,2}.(2)方程(x -2)2(x -3)=0的解为x =2或x =3, ∴M ={2,3}.(3)解⎩⎪⎨⎪⎧ 2x +y =8,x -y =1,得⎩⎪⎨⎪⎧x =3,y =2,∴B ={(3,2)}.(4)15的正约数有1,3,5,15,故N ={1,3,5,15}. 用描述法表示集合【例2】 用描述法表示下列集合: (1)比1大又比10小的实数组成的集合;(2)平面直角坐标系中第二象限内的点组成的集合; (3)被3除余数等于1的正整数组成的集合. [解] (1){x ∈R |1<x <10}.(2)集合的代表元素是点,用描述法可表示为{(x ,y )|x <0,且y >0}. (3){x |x =3n +1,n ∈N }.描述法表示集合的2个步骤2.用描述法表示下列集合:(1)函数y =-2x 2+x 图象上的所有点组成的集合; (2)不等式2x -3<5的解组成的集合; (3)如图中阴影部分的点(含边界)的集合; (4)3和4的所有正的公倍数构成的集合.[解] (1)函数y =-2x 2+x 的图象上的所有点组成的集合可表示为{(x ,y )|y =-2x 2+x }.(2)不等式2x -3<5的解组成的集合可表示为{x |2x -3<5},即{x |x <4}.(3)图中阴影部分的点(含边界)的集合可表示为⎩⎨⎧ (x ,y )⎪⎪⎪⎭⎬⎫0≤x ≤32,0≤y ≤1.(4)3和4的最小公倍数是12,因此3和4的所有正的公倍数构成的集合是{x |x =12n ,n ∈N *}.,集合表示方法的综合应用[探究问题] 下面三个集合:①{x |y =x 2+1};②{y |y =x 2+1};③{(x ,y )|y =x 2+1}.(1)它们各自的含义是什么? (2)它们是不是相同的集合?提示:(1)集合①{x |y =x 2+1}的代表元素是x ,满足条件y =x 2+1中的x ∈R ,所以实质上{x |y =x 2+1}=R ;集合②的代表元素是y ,满足条件y =x 2+1的y 的取值范围是y ≥1,所以实质上{y |y =x 2+1}={y |y ≥1};集合③{(x ,y )|y =x 2+1}的代表元素是(x ,y ),可以认为是满足y =x 2+1的数对(x ,y )的集合,也可以认为是坐标平面内的点(x ,y )构成的集合,且这些点的坐标满足y =x 2+1,所以{(x ,y )|y =x 2+1}={P |P 是抛物线y =x 2+1上的点}.(2)由(1)中三个集合各自的含义知,它们是不同的集合.【例3】 集合A ={x |kx 2-8x +16=0},若集合A 中只有一个元素,求实数k 的值组成的集合.[思路点拨]A 中只有一个元素――→等价转化方程kx 2-8x +16=0只有一解――→分类讨论求实数k 的值[解] (1)当k =0时,方程kx 2-8x +16=0变为-8x +16=0,解得x =2,满足题意;(2)当k ≠0时,要使集合A ={x |kx 2-8x +16=0}中只有一个元素,则方程kx 2-8x +16=0只有一个实数根,所以Δ=64-64k =0,解得k =1,此时集合A ={4},满足题意.综上所述,k =0或k =1,故实数k 的值组成的集合为{0,1}.1.(变条件1.若已知集合是用描述法给出的,读懂集合的代表元素及其属性是解题的关键,如例3中集合A中的元素就是所给方程的根,由此便把集合的元素个数问题转化为方程的根的个数问题.2.在学习过程中要注意数学素养的培养,如本例中用到了等价转化思想和分类讨论的思想.1.表示一个集合可以用列举法,也可以用描述法,一般地,若集合元素为有限个,常用列举法,集合元素为无限个,多用描述法.2.处理描述法给出的集合问题时,首先要明确集合的代表元素,特别要分清数集和点集;其次要确定元素满足的条件是什么.1.思考辨析(1){1}=1.()(2){(1,2)}={x =1,y =2}.( ) (3){x ∈R |x >1}={y ∈R |y >1}.( ) (4){x |x 2=1}={-1,1}.( ) [答案] (1)× (2)× (3)√ (4)√2.由大于-3且小于11的偶数所组成的集合是( ) A .{x |-3<x <11,x ∈Z } B .{x |-3<x <11} C .{x |-3<x <11,x =2k } D .{x |-3<x <11,x =2k ,k ∈Z }D [由题意可知,满足题设条件的只有选项D ,故选D.]3.一次函数y =x -3与y =-2x 的图象的交点组成的集合是( ) A .{1,-2} B .{x =1,y =-2} C .{(-2,1)}D .{(1,-2)}D [由⎩⎪⎨⎪⎧ y =x -3,y =-2x ,得⎩⎪⎨⎪⎧x =1,y =-2,∴两函数图象的交点组成的集合是{(1,-2)}.]4.设集合A ={x |x 2-3x +a =0},若4∈A ,试用列举法表示集合A . [解] ∵4∈A ,∴16-12+a =0,∴a =-4, ∴A ={x |x 2-3x -4=0}={-1,4}.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时 二次函数、二次方程及简单的一元二次不等式
学习目标 理解和掌握二次函数的图象和性质,理解和掌握一元二次方程的相关知识并能熟练解出一元二次方程,借助于二次函数的图象会解简单一元二次不等式.
知识点一 一元二次方程的根的判别式 一元二次方程ax 2+bx +c =0(a ≠0),用配方法将其变形为
⎝⎛⎭⎫x +b 2a 2=b 2
-4ac 4a 2
. (1)当
b 2-4a
c >0
时,右端是正数.因此,方程有两个不相等的实数根:x 1,2=-b ±b 2-4ac
2a
;
(2)当b 2-4ac =0时,右端是零.因此,方程有两个相等的实数根:x 1,2=-b
2a ;
(3)当b 2-4ac <0时,右端是负数.因此,方程没有实数根.
由于可以用b 2-4ac 的取值情况来判定一元二次方程的根的情况.因此,把b 2-4ac 叫做一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式,表示为Δ=b 2-4ac . 知识点二 一元二次方程的根与系数的关系 一元二次方程ax 2+bx +c =0(a ≠0)的两个根为 x 1=-b +b 2-4ac 2a ,x 2=-b -b 2-4ac 2a ,
所以:x 1+x 2=-b +b 2-4ac 2a +-b -b 2-4ac
2a
=-b
a ,x 1x 2=-
b +b 2-4a
c 2a ·-b -b 2-4ac 2a
=(-b )2-(b 2-4ac )2(2a )2
=4ac 4a 2=c a .
一元二次方程根与系数的关系由十六世纪的法国数学家韦达发现,所以通常把此定理称为“韦达定理”.
定理:如果一元二次方程ax 2+bx +c =0(a ≠0)的两个根为x 1,x 2,那么x 1+x 2=-b a ,x 1x 2=c
a .
知识点三 二次函数的图象与性质 仅讨论y =ax 2+bx +c (a >0)的情况: 1.x 的取值范围为一切实数. 2.y 的取值范围为⎣⎡⎭
⎫4ac -b 24a ,+∞
当x =-b
2a 时,y 取得最小值4ac -b 24a .
3.二次函数的三种表达方式: ⎩⎪⎨⎪
⎧
y =ax 2+bx +c ;y =a (x -x 1)(x -x 2);y =a (x -h )2+k .
4.对称轴x =-b 2a (图象关于x =-b
2a 对称).
5.(1)当x 1<x 2≤-b
2a 时,则y 1>y 2.
(2)当x 2>x 1≥-b
2a
时,则y 1<y 2.
6.二次函数、一元二次方程、一元二次不等式之间的联系列表如下:
有相异两实根x b 2-4ac
2a
(x 有相等两实根x b
没有实根
1.方程ax 2+bx +c =0如果有实数根,则Δ=b 2-4ac ≥0.( × )
2.二次函数y =ax 2+bx +c (a ≠0)在x =-b
2a
时取得最值.( √ )
3.一元二次方程ax 2+bx +c =0(a ≠0)有两个不相等实数根,则ax 2+bx +c >0的范围为x >x 2或x <x 1.( × )
突破一 一元二次方程的相关知识的应用
例1 已知关于x 的方程x 2+2(m -2)x +m 2+4=0有两个实数根,并且这两个实数根的平方和比两个根的积大21,求m 的值.
跟踪训练1 若x 1和x 2分别是一元二次方程2x 2+5x -3=0的两根, (1)求|x 1-x 2|的值; (2)求1x 21+1
x 22
的值;
(3)x 31+x 3
2.
突破二 二次函数的图象与性质
例2 已知函数y =x 2,-2≤x ≤a ,其中a ≥-2,求该函数的最大值与最小值,并求出函数取最大值和最小值时所对应的自变量x 的值.
跟踪训练2 求二次函数y =-3x 2-6x +1图象的开口方向、对称轴、顶点坐标、最大值(或最小值),并指出当x 取何值时,y 随x 的增大而增大(或减小)?画出该函数的图象,并指出y >0时x 的取值范围.
突破三 一元二次不等式的解法 例3 求不等式4x 2-4x +1>0的解.
跟踪训练3 求不等式-3x 2+6x >2的解.
1.不等式9x 2-6x +1≤0的解为( ) A.全体实数 B.无解 C.x ≠13
D.x =1
3
2.不等式-4x 2+4x <-15的解为( ) A.-32<x <52
B.-52<x <32
C.x >52或x <-32
D.x >32或x <-52
3.函数y =x 2-2x ,当-1≤x ≤t 时,该函数的最大值为3,则t 的最大值为__________.
4.方程x 2-ax +1=0的两根为x 1,x 2,若|x 1-x 2|=
5.则a =________.
5.不等式ax 2+bx +1>0的解为-12<x <1
3,则a +b =________.
一、选择题
1.若关于x 的方程(a +1)x 2-3x -2=0是一元二次方程,则a 的取值范围是( ) A.a ≠0 B.a ≠-1 C.a >-1 D.a <-1
2.若一元二次方程x 2-2x +1-a =0无实根,则a 的取值范围是( ) A.a <0 B.a >0 C.a <3
4
D.a >34
3.若m ,n 是一元二次方程x 2+x -2=0的两个根,则m +n -mn 的值是( ) A.-3 B.3 C.-1 D.1
4.不等式2x 2-x -1>0的解是( ) A.-1
2<x <1
B.x >1
C.x <1或x >2
D.x <-1
2
或x >1
5.关于二次函数y =-2x 2+1,下列说法中正确的是( ) A.它的开口方向是向上
B.当x <-1时,y 随x 的增大而增大
C.它的顶点坐标是(-2,1)
D.当x =0时,y 有最大值是2
6.若二次函数y=x2-mx的对称轴是x=-3,则关于x的方程x2+mx=7的解是()
A.x1=0,x2=6
B.x1=1,x2=7
C.x1=1,x2=-7
D.x1=-1,x2=7
7.y=ax2+ax-1对于任意实数x都满足y<0,则a的取值范围是()
A.a≤0
B.a<-4
C.-4<a<0
D.-4<a≤0
二、填空题
8.已知关于x的不等式x2+ax+b<0的解为1<x<2,则关于x的不等式bx2+ax+1>0的解为________________________________________________________________________.
9.函数y=-x2+1,当-1≤x≤2时,函数y的最小值是________.
10.不等式x2-5x+6≤0的解为________________.
11.x1,x2是方程x2+2x-3=0的两个根,则代数式x21+3x1+x2=________.
三、解答题
12.画出函数y=2x2-4x-6的草图.
13.已知关于x的一元二次方程x2-2(k-1)x+k2-1=0有两个不相等的实数根.
(1)求k的取值范围;
(2)若该方程的两根分别为x1,x2,且满足|x1+x2|=2x1x2,求k的值.
14.将抛物线y=(x-1)2+1向左平移1个单位,得到的抛物线解析式为()
A.y=(x-2)2+1
B.y=x2+1
C.y=(x+1)2+1
D.y=(x-1)2
15.解关于x的不等式x2-ax-2a2<0.。