雷达干扰信号产生系统实现

合集下载

基于MatLab的有源压制性干扰信号模拟与实现

基于MatLab的有源压制性干扰信号模拟与实现
陈 鸿 , 刘雅娟 , 李进杰
( 海军航空工程学院青岛校区 , 青岛 2 6 6 0 7 1 )
摘 要 :计 算机 仿 真 是 研 究雷 达 干 扰 系统 效 能 的 有 效 方 法 有 源压 制 性 干 扰 是 雷 达 干 扰 系统 中常 用
的 一种 信 号 . 通 过 分 析 压 制 性 干 扰 的原 理 . 在 Ma t L a b 平 台建 立 模 拟 和 产 生 干扰 信 号 的 仿 真
△ = ( 2 - 5) AE
效 干扰 功 率 。 下 面 我 们 主 要 讨 论 在 输 出功 率 一 定 的情
况下 , 建立仿真模型产生最有效 的压制性干扰信号
基 于 Ma t L a b的 压 制 性 干 扰 仿 真模 型 如 图 1 所示 。
宽 带 H 滤 波器
选 择 开 —_ .
( 2 ) 窄带 瞄 准式 干扰
干扰是 最早使 用但仍然命使用 的一种干扰手段 .它 能
干 扰 任 何 形 式 的雷 达 信 号 本 文 采 取 Ma t L a b作 为仿 真 平 台 .研 究 各 种 压 制 性 干 扰 信 号 的 产 生 及 干 扰 性 能 分 析. 为 雷 达 对 抗 效 能 分 析 研 究 提 供 支 撑
关 键 词 :雷达 对 抗 ;压 制 性 干 扰 :仿 真 模 型
0 引

阻塞式 干扰信 号的频谱宽度远大于雷达接收 机的
带宽 . 两者关系如下 :
△ > > △
在 现 代 电子 战条 件 下 . 电磁 威 胁 环境 日益 复 杂 . 相 应 的雷 达 系统 工作 体 制 和抗 干 扰 措 施 不 断 增 多 .使 得 对 雷 达 对 抗 系 统 性 能 预 测 以 及 作 战 效 能 评 估 愈 加 困 难 。而 仿 真技 术 由 于 具 有 安 全 、 经济 、 可 重 复 等 多 方 面 的优 点 . 已成 为 解 决 这 一 问 题 的 一 种有 效 手 段 压 制性

一种雷达信号处理模块的设计和实现

一种雷达信号处理模块的设计和实现

一种雷达信号处理模块的设计和实现一种雷达信号处理模块的设计和实现现代雷达特别是机载雷达数字信号处理机的特点是输入数据多,工作模式复杂,信息处理量大。

因此,在一个实时信号处理系统中,雷达信号处理系统要同时进行高速数据分配、处理和大量的数据交换.而传统的雷达信号处理系统的设计思想是基于任务,设计者针对应用背景确定算法流程,确定相应的系统结构,再将结构划分为模块进行电路设计。

这种方法存在一定的局限性。

首先,硬件平台的确定会使算法的升级受到制约,由此带来运算量加大、数据存储量增加甚至控制流程变化等问题。

此外,雷达信号处理系统的任务往往不是单一的,目前很多原来由模拟电路完成的功能转由数字器件来处理。

系统在不同工作阶段的处理任务不同,需要兼顾多种功能。

这些问题都对通用性提出了进一步要求[2].随着大规模集成电路技术、高速串行处理及各种先进算法的飞速发展,利用高速DSP和FPGA相结合的系统结构是解决上述问题的有效途径。

1雷达信号处理机方案设计1.1雷达信号处理的目的现代机载雷达信号处理的任务繁重,主要功能是在空空方式下将AD 数据录取后进行数字脉压处理、数据格式转换和重排、加权降低频谱副瓣电平,然后进行匹配滤波或相参积累(FFT或DFT)、根据重复频率的方式进行一维或二维CFAR处理、跟踪时测角等运算后提取出点迹目标送给数据处理机。

空地方式下还要进行地图(如RBM和SAR)等相关图像成像处理,最后坐标转换成显示数据送给显控处理机。

上述任务需要基于百万门级可编程逻辑器件FPGA与高性能DSP芯片作为信号处理模块,以充分满足系统的实时性要求,同时为了缩短机载雷达系统的研制周期和减少开发经费,设计的基本指导思想是通用化的信号处理模块,可以根据不同要求,通过软件自由修改参数,方便用户使用。

1.2系统模块化设计方案的功能模块,除了信号处理所必需的脉冲压缩模块、为MTD模块作准备的数据重排模块、FIR滤波器组模块、求模模块、恒虚警处理模块和显示数据存储模块外,还包括雷达同步信号和内部处理同步产生模块、自检数据产生模块以及不同测试点测试数据采样存储模块。

雷达干扰系统仿真研究

雷达干扰系统仿真研究

雷达干扰系统仿真研究随着现代战争的不断发展,雷达干扰技术在军事斗争中发挥着越来越重要的作用。

为了更好地研究和掌握雷达干扰系统的性能,仿真研究成为了一个重要的手段。

本文将围绕雷达干扰系统仿真研究展开讨论,探讨其历史、现状、未来发展趋势以及具体实现方法。

在雷达干扰系统仿真研究领域,过去的研究主要集中在干扰算法和信号处理方面。

随着计算机技术的不断发展,越来越多的研究者开始利用计算机仿真来研究雷达干扰系统。

目前,国内外的研究者们正在不断地探索新的仿真方法和工具,以便更好地对雷达干扰系统进行模拟和分析。

雷达干扰系统仿真研究的目的主要是为了验证干扰系统的性能,探究不同干扰策略的效果,并通过对干扰系统的优化来提高干扰效果。

本文采用计算机仿真方法对雷达干扰系统进行模拟,从而避免了对实际设备进行试验所带来的风险和成本。

同时,通过仿真研究还可以对干扰系统进行优化,提高其干扰性能。

在仿真过程中,我们首先建立雷达干扰系统的数学模型,并利用仿真工具进行模拟。

通过对不同干扰策略的对比试验,我们可以发现不同策略的优劣,从而为实际干扰系统的优化提供参考。

此外,我们还可以通过对仿真结果的分析来探究雷达干扰系统的性能指标,例如干扰效率、干扰范围等。

通过对雷达干扰系统仿真研究的历史、现状和未来发展趋势进行梳理和评价,我们可以发现仿真研究在雷达干扰系统领域中具有越来越重要的作用。

通过仿真不仅可以避免对实际设备进行试验所带来的风险和成本,还可以对干扰系统进行优化,提高其干扰性能。

然而,目前仿真研究还存在一些不足之处,例如仿真模型的精度、仿真工具的多样性等问题,需要未来的研究者们不断探索和完善。

在雷达干扰系统仿真研究中,常用的仿真工具包括MATLAB、Simulink、SystemC等。

这些仿真工具都提供了强大的仿真环境和丰富的函数库,可以满足雷达干扰系统仿真的各种需求。

此外,一些研究者还开发了专门的雷达干扰系统仿真软件,例如JASMIN、RASS等,这些软件针对雷达干扰系统进行了优化,可以更加真实地模拟实际情况。

基于深度学习的雷达抗主瓣干扰方法

基于深度学习的雷达抗主瓣干扰方法

基于深度学习的雷达抗主瓣干扰方法雷达技术在军事和民用领域中具有广泛应用,但在实际应用中常常受到主瓣干扰的影响,降低了雷达系统的性能。

面对这一问题,基于深度学习的雷达抗主瓣干扰方法应运而生。

本文将探讨深度学习在雷达信号处理中的应用,以及基于深度学习的雷达抗主瓣干扰方法的原理和实现。

一、深度学习在雷达信号处理中的应用深度学习是一种机器学习的方法,通过建立多层神经网络模型,实现对数据的自动学习和抽象。

在雷达信号处理中,深度学习可以应用于目标识别、目标跟踪和干扰抑制等方面。

首先,深度学习在雷达目标识别中起到了重要作用。

传统的目标识别方法通常需要人工提取特征,并设计基于特征的分类器。

而深度学习通过自动学习特征和分类器的过程,能够更加准确地对雷达目标进行识别。

例如,基于卷积神经网络(CNN)的目标识别方法可以直接从雷达数据中提取特征,然后进行分类,具有较高的准确率和鲁棒性。

其次,深度学习在雷达目标跟踪中也具有广泛应用。

雷达目标跟踪是指通过连续的雷达观测数据,实时地估计目标的位置、速度和航向等信息。

传统的目标跟踪方法通常依赖于滤波器和轨迹的预测等技术,而深度学习可以通过对大量雷达数据的学习,实现对运动目标的预测和跟踪。

例如,基于循环神经网络(RNN)的目标跟踪方法可以通过记忆之前的雷达观测数据,预测目标的未来位置和运动轨迹,从而实现高精度的目标跟踪。

最后,深度学习在雷达干扰抑制中也有一定的应用价值。

雷达主瓣干扰是指来自雷达主瓣方向的强干扰信号,会对雷达系统的性能造成严重影响。

传统的干扰抑制方法通常通过滤波和干扰识别等技术来减小干扰信号的影响,但效果有限。

而基于深度学习的雷达抗主瓣干扰方法可以通过对大量雷达数据的学习,实现对干扰信号的准确识别和抑制。

接下来将重点介绍基于深度学习的雷达抗主瓣干扰方法的原理和实现。

二、基于深度学习的雷达抗主瓣干扰方法的原理和实现基于深度学习的雷达抗主瓣干扰方法主要包括两个步骤:数据准备和模型训练。

浅谈雷达干扰与反干扰技术

浅谈雷达干扰与反干扰技术

浅谈雷达⼲扰与反⼲扰技术浅谈雷达⼲扰与抗⼲扰技术近年来,由于电⼦对抗技术的不断进步,⼲扰与抗⼲扰之间的⽃争亦⽇趋激烈。

⾯对⽇益复杂的电⼦⼲扰环境,雷达必须提⾼其抗⼲扰能⼒,才能在现代战争中⽣存,然后才能发挥其正常效能,为战局带来积极影响。

⼀、雷达⼲扰技术1、对雷达实施⼲扰的⽬的和⽅法雷达⼲扰的⽬的是使敌⽅雷达⽆法获得探测、跟踪、定位及识别⽬标的信息,或使有⽤的信息淹没在许多假⽬标中,以致⽆法提取真正的信息。

根据雷达⼯作原理,雷达是通过辐射电磁波在空间传播⾄⽬标,由⽬标散射回波被雷达接收实现探测⽬标。

因此对雷达实施⼲扰可以从传播空间和⽬标这两处着⼿。

具体来说就是辐射⼲扰信号,反射雷达信号,吸收雷达信号三个⽅⾯。

为了实现对雷达实现有效的⼲扰,⼀般需要满⾜下⾯⼏个条件。

空间上,⼲扰⽅向必须对准雷达,使得雷达能够接收到⼲扰信号。

频域上,⼲扰频率必须覆盖雷达⼯作频率或者和雷达⼯作频点相同。

能量上,⼲扰的能量必须⾜够⼤,使得雷达接收机接收的能量⼤于其最⼩可接收功率(灵敏度)。

极化⽅式上,⼲扰电磁波的极化⽅式应当和雷达接收天线的极化⽅式尽量接近,使得极化损失最⼩。

信号形式上,⼲扰的信号形式应当能够对雷达接收机实施有效⼲扰,增加其信号处理的难度。

2、雷达⼲扰分类雷达⾯临的复杂电⼦⼲扰可分为有意⼲扰和⽆意⼲扰两⼤类,这两者⼜分别包括有源和⽆源⼲扰,具体如下图所⽰。

有意⼲扰⽆意⼲扰有源⼲扰⽆源⼲扰有源⼲扰⽆源⼲扰遮盖性⼲扰欺骗性⼲扰⾃然界的⼈为的欺骗性⼲扰遮盖性⼲扰⾃然界的⼈为的噪声调频⼲扰复合调频⼲扰噪声调相⼲扰随机脉冲⼲扰距离欺骗⼲扰⾓度欺骗⼲扰速度欺骗⼲扰等箔条⾛廊⼲扰箔条区域⼲扰反雷达伪装雷达诱饵宇宙⼲扰雷电⼲扰等⼯业⼲扰友邻⼲扰等鸟群⼲扰等⼈⼯建筑⼲扰地物、⽓象⼲扰{友邻物体⼲扰{{{{{{{{{{{{{{雷达⼲扰⼆、雷达抗⼲扰技术雷达抗⼲扰的主要⽬标是在与敌⽅电⼦⼲扰对抗中保证⼰⽅雷达任务的顺利完成。

雷达抗⼲扰措施可分为两⼤类:(1)技术抗⼲扰措施;(2)战术抗⼲扰措施。

基于ADRV9009的小型化雷达侦察干扰实现

基于ADRV9009的小型化雷达侦察干扰实现

基于ADRV9009的小型化雷达侦察干扰实现
刘俊杰;郑沛;赵忠凯
【期刊名称】《电子信息对抗技术》
【年(卷),期】2022(37)5
【摘要】现代电子战中雷达侦察干扰设备小型化一直是一个重要的研究方向。

针对该需求,设计一种基于ADRV9009的小型化雷达侦察干扰子系统。

采用
ZC706+ADRV9009的架构,ZYNQ板保证该系统的雷达信号处理能力和易拓展性,该系统能够根据接收的雷达信号生成脉冲描述字,实时生成欺骗压制干扰和噪声调制干扰。

用宽带收发器ADRV9009实现侦察干扰系统中的射频部分,能够很好地满足机载、弹载等空间有限的应用场景下小型化雷达侦察干扰系统的需求。

对该子系统实现的功能进行仿真测试和上板测试,测试结果表明,该子系统设计正确,能够侦察雷达信号并发射欺骗压制干扰和噪声调制干扰。

【总页数】6页(P14-18)
【作者】刘俊杰;郑沛;赵忠凯
【作者单位】哈尔滨工程大学信息与通信工程学院;试验物理与计算数学国家级重点实验室
【正文语种】中文
【中图分类】TN97
【相关文献】
1.雷达有源干扰信号对雷达侦察装备的影响
2.雷达自动频率选择与干扰方位侦察系统的设计与实现
3.机载雷达侦察中载机雷达干扰的极化抑制
4.基于数字信道化的雷达侦察与干扰系统设计
5.基于ADRV9009频谱监测接收机设计与实现
因版权原因,仅展示原文概要,查看原文内容请购买。

防空雷达电子对抗仿真系统分析设计

防空雷达电子对抗仿真系统分析设计

防空雷达电子对抗仿真系统分析设计防空雷达电子对抗仿真系统是国防科技领域中非常重要的一项技术。

该系统可以对实际雷达进行仿真,进而分析其功能特性和电子攻击特性,为实际作战提供科学依据和技术支持。

本文将从系统分析和设计两个方面,探讨防空雷达电子对抗仿真系统的实现方法。

一、系统分析防空雷达电子对抗仿真系统主要是由仿真系统和协同控制系统两部分组成。

其中仿真系统主要实现防空雷达的仿真模拟,模拟雷达信号的发送和接收,模拟环境和干扰条件。

协同控制系统则负责管理和控制仿真系统的运行和数据处理。

仿真系统核心模块包括:模拟信号发生器模块、接收机模块、数字信号处理模块、图像处理模块、故障仿真模块等。

其中模拟信号发生器模块负责产生雷达发射的信号;接收机模块则接收雷达的回波信号,进行处理并输出相应的数据;数字信号处理模块则负责对接收到的信号进行采样、滤波、变换、识别等处理,提取其中的有用信息;图像处理模块则用于对采集到的图像数据进行处理、分析和识别;故障仿真模块则可以模拟故障情况,检测仿真系统的鲁棒性。

协同控制系统则负责对仿真系统的运行、数据处理和数据分析进行管理和控制。

其中,控制单元根据预设的仿真场景和任务要求,向仿真系统下发控制指令,使仿真系统按照预设的仿真步骤和流程运行,并在仿真结束后输出相关的数据和分析报告。

数据处理单元则用于对仿真系统采集到的数据进行处理、过滤和分析,提取其中的有用信息;数据存储单元则负责对处理后的数据进行储存和归档。

二、系统设计防空雷达电子对抗仿真系统实现过程中,需要考虑到系统的准确性、鲁棒性、安全性和易用性等方面。

因此,在系统设计中需要注意以下几个方面:1、硬件平台设计防空雷达电子对抗仿真系统需要采用先进的计算机硬件和传感器等设备进行实现。

在硬件平台设计上,需要考虑到系统运行的计算性能、速度和稳定性等方面。

可以采用多核CPU和GPU并行计算等技术来提升系统的运行速度和效率。

2、软件平台设计防空雷达电子对抗仿真系统需要依托于相应的软件平台进行开发和实现。

多策略雷达干扰资源分配方法

多策略雷达干扰资源分配方法

CATALOGUE目录•引言•雷达系统概述•干扰资源分配策略•资源分配算法实现•实验与分析•结论与展望030102研究背景与意义目前,针对雷达干扰资源分配的研究主要集中在单一天线或少量天线上。

然而,在实际应用中,由于雷达系统的复杂性和不确定性,单一天线或少量天线的干扰资源分配方法往往无法满足需求。

因此,需要研究适用于多天线雷达系统的干扰资源分配方法,以提高雷达系统的整体性能。

010203研究现状与问题01研究内容02研究方法03具体研究步骤包括研究内容与方法雷达系统工作原理雷达系统组成雷达工作频段0302011发射信号信号处理数据处理控制指令探测距离精度分辨率抗干扰能力01030204雷达系统性能指标基于博弈论的分配策略纳什均衡策略合作博弈策略拍卖理论策略线性规划方法通过设定目标函数和约束条件,寻找最优解。

动态规划方法通过状态转移方程,寻找最优解。

强化学习算法通过与环境的交互,学习最优策略。

030201通过训练,学习干扰资源的分配策略。

神经网络算法通过二分类,将干扰资源分配给关键目标或者非目标。

支持向量机算法通过树的构建,寻找干扰资源的最优分配路径。

决策树算法基于博弈论的算法实现纳什均衡01动态博弈02零和博弈03动态规划整数规划神经网络支持向量机遗传算法在一个复杂环境中,雷达系统需要应对各种干扰,包括固定和移动的干扰源。

场景描述构建了一个多策略雷达干扰资源分配模系统模型根据实际情况,设定了不同的干扰源实验参数010203实验场景与设置实验结果与分析结果比较与讨论比较对象讨论内容比较方法1 2 3雷达干扰资源分配策略的有效性策略适应性的重要联合优化效果研究结论研究不足与展望简化模型与实际差距未考虑动态变化多目标优化问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档