定积分知识点汇总(新、选)

合集下载

定积分的知识点总结

定积分的知识点总结

定积分的知识点总结一、定积分的基本概念定积分是微积分学中的重要概念,可以用来计算曲线下的面积,曲线的弧长,质心等物理量。

定积分的基本思想是将曲线下的面积划分为无穷多个微小的矩形,然后求和得到整体的面积。

定积分的符号表示为∫。

对于一个函数f(x),在区间[a, b]上的定积分表示为:∫[a, b]f(x)dx其中,a和b为区间的端点,f(x)为函数在该区间上的取值。

定积分表示在区间[a, b]上的函数f(x)所确定的曲线下的面积。

二、定积分的计算方法1. 黎曼和定积分的计算基本思想是将曲线下的面积划分为很多个小矩形,然后对这些小矩形的面积求和。

这就是定积分的计算方法。

在实际计算中,根据黎曼和的定义,我们可以将区间[a, b]等分为n个小区间,每个小区间长度为Δx=(b-a)/n,然后在每个小区间上取一个样本点xi,计算f(xi)Δx的和:∑[i=1,n]f(xi)Δx当n趋近于无穷大时,这个和就可以逼近定积分的值。

这就是黎曼和的基本思想。

2. 定积分的几何意义定积分可以用来计算曲线下的面积,也可以用来计算曲线的弧长。

对于一个函数f(x),其在区间[a, b]上的定积分表示的是曲线y=f(x)和x轴之间的面积。

这个面积就是曲线下的面积。

如果函数f(x)在区间[a, b]上非负且连续,那么函数y=f(x)、直线x=a、x=b以及x轴所围成的区域的面积就是∫[a, b]f(x)dx。

3. 定积分的物理意义定积分还可以用来计算物理量,比如质量、质心等。

在物理学中,可以用定积分来计算物体的质量、质心等物理量。

对于一个连续的物体,将其质量密度函数表示为ρ(x),则物体的质量可以表示为定积分:M=∫[a, b]ρ(x)dx三、定积分的性质1. 线性性定积分具有线性性质,即∫[a, b](c1f1(x)+c2f2(x))dx=c1∫[a, b]f1(x)dx+c2∫[a, b]f2(x)dx。

其中c1、c2为常数,f1(x)、f2(x)为函数。

初中数学知识归纳定积分的基本概念和性质

初中数学知识归纳定积分的基本概念和性质

初中数学知识归纳定积分的基本概念和性质定积分作为数学中的一个重要概念,是初中数学学习中必须掌握的内容之一。

本文将从定积分的基本概念和性质两个方面进行归纳,帮助初中生更好地理解和掌握这一知识点。

1. 定积分的基本概念定积分是对函数在一定区间上的积分,可以理解为曲线与x轴所夹的面积。

具体而言,定积分可以表示为∫ab f(x)dx,其中a和b分别表示积分的下限和上限,f(x)表示被积函数。

定积分的计算方法有多种,常见的有几何法和定积分的运算法则。

几何法是通过图形的面积进行计算,而定积分的运算法则则利用不定积分求解。

2. 定积分的性质定积分具有以下几个性质:(1)可加性:对于函数f(x)和g(x),定积分具有可加性,即∫ab[f(x) + g(x)] dx = ∫ab f(x) dx + ∫ab g(x) dx。

(2)线性性:对于任意实数k,定积分具有线性性质,即∫ab kf(x) dx = k∫ab f(x) dx。

(3)区间可加性:对于函数f(x)在区间[a, b]上的定积分,可以将该区间分割成若干小区间,然后进行分别计算再求和,即∫ab f(x) dx =∑(i=1 to n) ∫xi-1 xi f(x) dx,其中[xi-1, xi]表示分割后的小区间。

(4)定积分的性质与原函数相关:如果函数F(x)在区间[a, b]上是函数f(x)的原函数,则∫ab f(x) dx = F(b) - F(a)。

(5)无关紧要的加法常数:定积分无关紧要的加法常数,即∫abf(x) dx = ∫ab [f(x) + C] dx,其中C为任意常数。

3. 定积分的应用定积分不仅仅在数学理论中有重要应用,还广泛应用于物理、经济学等实际问题中。

以下是一些常见的应用场景:(1)面积计算:定积分可以用来计算曲线与x轴所夹的面积,从而解决几何学中的面积问题。

(2)求解平均值:对于某些变量随时间变化的过程,可以通过定积分计算平均值,如平均速度、平均密度等。

高数《定积分》章节重点--期末重点

高数《定积分》章节重点--期末重点

1exdx 1ex2dx
0
0
高 3. 积分的导数
变限积分求导公式:
d ( (x) f (t)dt) f ( (x)) (x) f ((x))(x)
dx ( x)

常见题型 1.计算下列各导数:
(1) d x2 1 t3 dt ;
dx 0
解: d x2 1 t3 dt 1 (x2 )3 d (x 2 ) 2x 1 x6 .
帮 (换元法)
解 令 1 e2x =u ,则 u2 1 e2x e2x 1 u2来自 x= 1 ln 1 u2 . 2
数 数 原式
3 2
ud
(
1
ln(1
u
2
))
0
2
0
3 2
u(
1 2
)
2 u 1 u2
du
3 2 0
1
u
2
u
2du
3 2 0
u
2
1
1 u2
1du
.
3
高 高
3 2
x
dx.
(凑微分)

原式
0
1
1 cos2
x
d
cos
x
arctan(cos
x)
0
arctan(cos ) arctan(cos 0) ( ) . 4 42
常考题型 3 1 xe2xdx. 0
(分部积分)

数 解
原式 1 2
1 xde2x
0
1 2
xe2 x
1 0
1

lim
x0
x sin t 2dt
0
x3
lim x0

定积分公式大全24个

定积分公式大全24个

定积分公式大全24个在微积分中,定积分是一个非常重要的概念,它在数学和物理学等领域有着广泛的应用。

定积分公式作为定积分的重要工具,可以帮助我们解决各种复杂的问题。

在本文中,我们将介绍24个常见的定积分公式,希望对大家的学习和工作有所帮助。

1. 基本积分公式。

定积分的基本公式是。

\[ \int_{a}^{b} f(x)dx=F(b)-F(a) \]其中,\(F(x)\)是\(f(x)\)的不定积分。

这个公式是定积分的基础,我们可以通过它来求解更复杂的积分问题。

2. 定积分的线性性质。

如果\(f(x)\)和\(g(x)\)在区间\([a,b]\)上可积,\(k\)是任意常数,那么有。

\[ \int_{a}^{b} [kf(x)+g(x)]dx=k\int_{a}^{b} f(x)dx+\int_{a}^{b} g(x)dx \]这个公式可以帮助我们简化定积分的计算过程,尤其是在处理复杂的函数时非常有用。

3. 定积分的换元积分法。

如果\(u=g(x)\)在\([a,b]\)上具有连续导数,\(f(u)\)在对应区间上可积,那么有。

\[ \int_{a}^{b} f(g(x))g'(x)dx=\int_{g(a)}^{g(b)} f(u)du \]这个公式可以帮助我们将原来的积分转化为更容易处理的形式,从而简化计算。

4. 定积分的分部积分法。

如果\(u=f(x)\)和\(v=g(x)\)都在\([a,b]\)上具有连续导数,那么有。

\[ \int_{a}^{b} u dv=uv|_{a}^{b}-\int_{a}^{b} v du \]这个公式可以帮助我们将原来的积分转化为更容易处理的形式,从而简化计算。

5. 定积分的换限积分法。

如果\(f(x)\)在\([a,b]\)上可积,\(F(x)\)是\(f(x)\)的一个原函数,那么有。

\[ \int_{a}^{b} f(x)dx=-\int_{b}^{a} f(x)dx \]这个公式可以帮助我们简化定积分的计算过程,尤其是在处理对称函数时非常有用。

积分知识点总结公式

积分知识点总结公式

积分知识点总结公式一、基本概念1. 定积分定积分是对函数f(x)在区间[a, b]上积分的概念,表示为∫f(x)dx。

它的几何意义是函数f(x)与x轴所围成的面积。

定积分的概念可以表示成:∫f(x)dx = lim[n→∞]∑[i=1]ⁿ f(xᵢ)Δx其中,Δx = (b - a)/n,xᵢ = a + iΔx。

求解定积分通常使用牛顿-莱布尼茨公式:∫[a, b]f(x)dx = F(b) - F(a)其中,F(x)是f(x)的不定积分。

2. 不定积分不定积分是对函数f(x)的积分的概念,表示为∫f(x)dx。

它的几何意义是求解函数f(x)的原函数F(x)。

求解不定积分的常用方法包括换元法、分部积分法、特殊积分法等。

3. 曲线的长、面积、体积通过积分的方法可以求解曲线的长度、曲线围成的面积以及体积。

曲线的长度可以表示成:L = ∫[a, b]√(1 + (dy/dx)²)dx曲线围成的面积可以表示成:S = ∫[a, b]f(x)dx体积可以表示成:V = ∫[a, b]A(x)dx其中A(x)是截面积。

二、常见积分公式1. 基本积分公式基本积分公式包括:∫xⁿdx = (1/(n+1))x^(n+1) + C,其中n≠-1∫eˣdx = eˣ + C∫aˣdx = (1/lna)aˣ + C,其中a>0,a≠1∫sinxdx = -cosx + C∫cosxdx = sinx + C∫sec²xdx = tanx + C∫csc²xdx = -cotx + C∫secxtanxdx = secx + C∫cscxcotxdx = -cscx + C∫1/(1+x²)dx = arctanx + C∫1/√(1-x²)dx = arcsinx + C∫1/(x²+a²)dx = (1/a)arctan(x/a) + C2. 分部积分公式分部积分公式是对两个函数的积分的概念,表示为∫u(x)v'(x)dx = u(x)v(x) - ∫v(x)u'(x)dx。

定积分知识点总结等价

定积分知识点总结等价

定积分知识点总结等价在本文中,我们将对定积分的基本概念、性质和求解方法进行总结,希望能够帮助读者更好地理解和运用定积分。

一、定积分的基本概念定积分可以看作是一个区间上面积的度量,它描述了函数在一定区间上的总体变化情况。

在数学上,定积分可以理解为函数在指定区间内的面积或者是曲线的弧长,在物理上可以表示为质量、能量、熵等的总量。

1.1 定积分的定义设f(x)在区间[a, b]上有定义,且[a, b]是有限闭区间,将[a, b]上的分割记作Δ,记Δ的任一分点为x0, x1, ..., xn,对应的区间为[x0, x1], [x1, x2], ..., [xn-1, xn]。

则对应的分割Δ表示为:Δ = {x0, x1, ..., xn}Δ的长度记作δxi = xi - xi-1,假设Δ长度的最大值为δ = max{δxi}。

我们将区间[a, b]分成n个小区间,当n趋于无穷大时,(也就是每个小区间的长度趋于0),则这个过程称为区间[a, b]的分割,也称之为区间[a, b]的划分。

对于函数f(x)在区间[a, b]上的定积分,可以用如下的极限形式定义:∫(a->b)f(x)dx = lim(Δ->0)Σ(i=1->n)f(xi*)δxi其中,xi*是区间[xi-1, xi]上的任意一点。

1.2 定积分的几何意义定积分的几何意义是非常直观的,它表示了曲线与坐标轴以及两条直线之间的面积。

当函数f(x)在区间[a, b]上是非负的时候,定积分表示了曲线y=f(x)与x轴以及直线x=a, x=b之间的面积。

当函数f(x)在区间[a, b]上是有正有负的时候,定积分表示了曲线y=f(x)与x轴之间的面积,其中函数f(x)在区间[a, b]上的正值与负值部分面积互相抵消,最终得到曲线与x轴之间的面积。

1.3 定积分的物理意义在物理上,定积分可以用来描述某一物理量在一定的时间或空间范围内的总量。

例如,对于质量密度为ρ(x)的一根杆在区间[a, b]上的质量总量可以表示为:m = ∫(a->b)ρ(x)dx这里ρ(x)dx表示了杆上长度为dx的小段的质量。

积分知识点归纳总结

积分知识点归纳总结

积分知识点归纳总结一、积分的概念积分指的是对函数的定积分。

在数学中,积分的概念是对函数的区间内的曲线的面积进行求解。

积分可以分为定积分和不定积分。

定积分是指对一个函数在一个给定的区间内求积分,而不定积分是指对一个函数的积分不指定上下限的积分。

二、积分的性质1. 可加性:即若f(x)在区间[a,b]内有积分,则f(x)在[a,b]的积分等于f(x)在[a,c]的积分加上f(x)在[c,b]的积分。

2. 线性:若f(x)和g(x)都在区间[a,b]内有积分,则f(x)+g(x)在[a,b]的积分等于f(x)在[a,b]的积分加上g(x)在[a,b]的积分。

3. 区间上下限对换:若f(x)在区间[a,b]内有积分,则f(x)在[a,b]的积分等于f(x)在[b,a]的积分的负数。

三、积分的计算积分的计算主要有两种方法:一种是不定积分的计算,一种是定积分的计算。

不定积分的计算中主要是使用换元法、分部积分法等方法进行计算。

而定积分的计算主要是使用积分的定义进行计算。

四、积分的应用积分的应用非常广泛,可以应用于各个领域,如物理学、生物学、工程学等等。

积分可以用来求解函数的面积、体积、质量、重心、惯性矩等等。

五、积分的意义积分的意义在于求解曲线下的面积。

通过对函数的积分,可以求解出曲线下任意区间内的面积,从而可以理解函数的几何意义。

六、积分的历史积分的概念最早可以追溯到17世纪的牛顿和莱布尼兹。

他们分别独立地创立了微积分学的基本理论。

牛顿和莱布尼兹都研究了曲线的面积问题,并最终建立了积分的概念和性质。

积分的发展历程与微积分的发展历程是分不开的。

七、积分与微分的关系积分与微分是微积分学中两个最重要的概念。

积分和微分是相互联系的。

微分是求函数的导数,而积分是对函数的定积分。

微分和积分是相互倒数的关系。

微分与积分都是微积分的两个基本概念,两者相辅相成。

八、积分的解题方法积分的解题方法有很多种,例如常见的换元法、分部积分法、三角换元法等等。

定积分知识总结(总9页)

定积分知识总结(总9页)

定积分知识总结(总9页)1. 定积分的定义定积分是数学中的一个概念,它表示将一个函数沿着一条给定的路径积累起来的总和。

在数学上,定积分是描述函数在一定区间上的面积、体积、虚功等概念的一种工具。

(1)可加性:若f(x)在[a,b]、[b,c]上可积,则:∫(a,c)f(x)dx=∫(a,b)f(x)dx+∫(b,c)f(x)dx∫(a,b)f(x)dx≥03. 函数可积的充分条件Riemann可积的充分条件有:(1)区间[a,b]上f(x)存在上下积分,且上下积分相等;(2)对任意ϵ>0,可找到划分P及加细之后的划分P1,使得S(P1,f)-s(P1,f)<ϵ,其中S(P1,f)表示P1的上和式,s(P1,f)表示P1的下和式。

4. 定积分的计算方法定积分可以通过换元法、分部积分法、牛顿-莱布尼茨公式等数学方法进行计算。

(1)求曲线下面的面积;(2)求曲线绕x轴或y轴旋转的体积;(3)求物理问题中的虚功;(4)求平均值、方差等统计量。

6. 常用定积分公式$\int x^ndx={x^{n+1}}/{n+1}+C$$\int\sin xdx=-\cos x+C$7. 例题(1)计算定积分: $\int_{0}^{\frac{\pi}{2}}\sin xdx$解:$ \int_{0}^{\frac{\pi}{2}}\sin xdx=\left . -\cos x \right |\begin{matrix} 0\\\frac{\pi}{2} \end{matrix} =1$8. 求导与积分的对应关系如果函数f(x)在区间[a,b]上可导,则:$\int_{a}^{b}f'(x)dx = f(b)-f(a)$微积分是数学的一个分支,其中包括微分和积分两个部分。

微积分对象是函数的导数和原函数。

定积分是微积分中的积分部分,用于计算函数在一定区间内的积累量。

因此,微积分中的求导和积分是密不可分的,两者相辅相成,是微积分学中的核心概念。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定积分
一.定积分的几何意义

()0f x >时,()b
a
f x dx S =⎰
()0f x <时,
()b
a
f x dx S =-⎰
()f x 有正有负时,
1(),
b
a
f x dx S =⎰2(),
c
b
f x dx S =-⎰
3()d
c
f x dx S =⎰
面积和123()()()b
c
d
a
b
c
S S S f x dx f x dx f x dx ++=-+⎰
⎰⎰
[()()]b
a
f x
g x dx S -=⎰
二.定积分基本性质 ①当a b =时,()0b
a
f x dx =⎰
.
②()()b
b a
a
kf x dx k f x dx =⎰

③1212[()()()]()()()b
b b b
n n a
a
a
a
f x f x f x dx f x dx f x dx f x dx
±±⋅⋅⋅±=±±÷⋅⋅±⎰
⎰⎰⎰

12
1
()()()()n
b
c c b
a
a
c c f x dx f x dx f x dx f x dx =++⋅⋅⋅+⎰
⎰⎰⎰
⑤若奇函数()y f x =在[,]a a -上连续不断,则()0a
a f x dx -=⎰
⑥若偶函数()y f x =在[,]a a -上连续不断,则0()2()a
a
a
f x dx f x dx -=⎰

123()()()().d b
c d a a
b
c
f x dx f x dx f x dx f x dx S S S =++=-+⎰

⎰⎰
微分基本定理:如果()f x 是区间[,]a b 上的连续函数,且'()()F x f x =,则 ()()
()()b
b a
a
f x dx F x F b F a ==-⎰
(牛顿—莱布尼兹公式)
1.直线0,,0x x y π===与曲线sin y x =所围成图形的面积用定积分表示为
2.用定积分表示抛物线2
23y x x =-+与直线3y x =+所围成图形的面积为
3.曲线2
1,2,0,0y x x x y =-===围成的阴影部分的面积用定积分表示为
4.由曲线24,4,0,0y x x x y =-===和x 轴围成的封闭图形的面积是( )
4
2
.(4)A x dx -⎰ 4
20
.|(4)|B x dx -⎰
420
.|4|C x dx -⎰ 24
2202
.(4)(4)D x dx x dx -+-⎰⎰
5.计算下列定积分 (1)3
23
9x dx --⎰
(2)1
21
44x dx --⎰
(3)2
1
1
(1)
dx x x +⎰
(4)10(2)x x e dx +⎰
(5)2
cos 2
x
dx π

(6)91(1)x x dx +⎰
6.正方形的四个顶点(1,1),(1,1),(1,1),(1,1)A B C D ----分别在抛物线2y x =-和2
y x
=上,如图,若将一质点随机投入正方形ABCD 中,则质点落在图中阴影区域的概率是
7.已知函数2
y x =与y kx =的图象所围成的阴影部分的面积是4
,3
则k =
8.求曲线2
4y x =与直线24y x =-围成的图形面积
9.已知函数3
2
()f x x ax bx =++的图象如图所示,它与直线0y =在原点处相切,此切线与函数图象所围区域的面积是27
,4
求a .
最新文件 仅供参考 已改成word 文本 。

方便更改。

相关文档
最新文档