(完整)2019-2020年高考数学大题专题练习——立体几何(一)
最新2020高考数学《立体几何初步》专题完整考试题(含参考答案)

2019年高中数学单元测试卷立体几何初步学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.如图,在四面体ABCD 中,截面AEF 经过四面体的内切球(与四个面都相切的球)球心O ,且与BC ,DC 分别截于E 、F ,如果截面将四面体分成体积相等的两部分,设四棱锥A -BEFD 与三棱锥A -EFC 的表面积分别是S 1,S 2,则必有( ) A. S 1<S 2 B. S 1>S 2 C. S 1=S 2 D. S 1,S 2的大小关系不能确定(2006江西理)C2.在正三棱柱111C B A ABC -中,若AB=2,11AA =则点A 到平面BC A 1的距离为( )A .43 B .23C .433D .3(2005江苏)3.对于平面α和共面的直线m 、,n 下列命题中真命题是 ( )C (A )若,,m m n α⊥⊥则n α∥ (B )若m αα∥,n ∥,则m ∥n(C )若,m n αα⊂∥,则m ∥n (D )若m 、n 与α所成的角相等,则m ∥n (2006福建)4.在三棱锥P —ABC 中,所有棱长均相等,若M 为棱AB 的中点,则PA 与CM 所成角的余弦值为( ) A.2 B .4ACPMC.6 D.35.下列说法中正确的是----------------------------------------------------------------------------------( ) (A),a b αβ⊂⊂,则a 与b 是异面直线 (B)a 与b 异面,b 与c 异面,则a 与c 异面 (C)a b 、不同在平面α内,则a 与b 异面 (D)a b 、不同在任何一个平面内,则a 与b 异 6.两个平面重合的条件是( )(A)有三个公共点 (B)有两条公共直线 (C)有无数多个公共点 (D)有一条公共直 二、填空题7.若一个圆锥的侧面展开图是面积为4π的半圆面,则该圆锥的体积为 ▲ . 8.如图,在三棱锥ABC P -中,⊥PA 底面ABC ,90=∠ABC ,1===BC AB PA ,则PC 与底面ABC 所成角的正切值...为 ▲ .9.在棱长为4的正方体1111ABCD A B C D -中,,E F 分别为棱111,AA D C 上的动点,点G 为正方形11B BCC 的中心,则空间四边形AEFG 在该正方体各个面上的正投影所构成的图形中,面积的最大值为______________10.已知n m ,是两条不同的直线,α为两个不同的平面,有下列四个命题: ① 若//,//m n αα,则//m n ; ② 若,m n αα⊥⊥,则//m n ; ③ 若//,m n αα⊥,则n m ⊥;④ 若,m m n α⊥⊥,则//n α. 其中真命题的序号有 ▲ .(请将真命题的序号都填上)11.给出四个命题:①线段AB 在平面α内,则直线AB 不在α内;②两平面有一个公共点,则一定有无数个公共点;③三条平行直线共面;④有三个公共点的两平面重合. 其中PABC(第8题)(第16题图)正确命题的个数为12.如果一个水平放置的图形的斜二测直观图是一个底角为45︒,腰和上底均为1的等腰梯 形,那么原平面图形的面积是 .13.下列四个条件中,能确定一个平面的只有 ▲ .(填序号) ①空间中的三点 ②空间中两条直线 ③一条直线和一个点 ④两条平行直线14.已知四棱椎P ABCD -的底面是边长为 6 的正方形,侧棱PA ⊥底面ABCD ,且8PA =,则该四棱椎的体积是 96 。
最新精选2020高考数学《立体几何初步》专题完整考题(含参考答案)

2019年高中数学单元测试卷立体几何初步学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.如图,正方体的底面与正四面体的底面在同一平面α上,且AB CD ,正方体的六个面所在的平面与直线CE,EF 相交的平面个数分别记为,m n ,那么m n +=( )A .8B .9C .10D .11(2013年高考江西卷(理)) 2.如图,l A B A B αβαβαβ⊥=∈∈,,,,,到l 的距离分别是a 和b ,AB 与αβ,所成的角分别是θ和ϕ,AB 在αβ,内的射影分别是m 和n ,若a b >,则( )A .m n θϕ>>,B .m n θϕ><,C .m n θϕ<<,D .m n θϕ<>,(2008陕西理)3.如图,正三棱柱111ABC A B C -的各棱长都2,E ,F 分别是11,AB A C 的中点,则EF 的长是( C )A Ba bl αβC1C(2006浙江文)4.连结球面上两点的线段称为球的弦.半径为4的球的两条弦AB 、CD 的长度分别等于27、43,M 、N 分别为AB 、CD 的中点,每条弦的两端都在球面上运动,有下列四个命题:①弦AB 、CD 可能相交于点M ②弦AB 、CD 可能相交于点N ③MN 的最大值为5 ④MN 的最小值为l 其中真命题的个数为A .1个B .2个C .3个D .4个(2008江西理)5.在正方体1111ABCD A B C D -中,,E F 分别为棱11,AA CC 的中点,则在空间中与三条直线11,,A D EF CD 都相交的直线( )A.不存在B.有且只有两条C.有且只有三条D.有无数条(2008辽宁理) 6.已知a 、b 、c 是直线,β是平面,给出下列命题:①若c a c b b a //,,则⊥⊥; ②若c a c b b a ⊥⊥则,,//; ③若b a b a //,,//则ββ⊂;④若a 与b 异面,且ββ与则b a ,//相交;⑤若a 与b 异面,则至多有一条直线与a ,b 都垂直. 其中真命题的个数是( ) A .1B .2C .3D .4(2005湖北文)7.空间四边形ABCD 中,A B B C C D 、、的中点分别是P Q R 、、,且2,,3P Q Q P R ==,那么异面直线AC 和BD 所成的角是________________8.若点E F G H 、、、顺次为空间四边形ABCD 四边AB BC CD DA 、、、的中点,且3,4EG FH ==,则22AC BD +等于---------------------------------------------------------------( )(A) 25 (B) 50 (C) 100 (D) 209.如图,点,,E F G 分别是四面体ABCD 的棱,,BC CD DA 的中点,此四面体中与过,,E F G 的截面平行的棱的条数有( )A .0条B .1条C .2条D .3条二、填空题10.若,,l m n 是三条互不相同的空间直线,,αβ是两个不重合的平面, 则下列命题中为真命题的是 ▲ (填所有正确答案的序号). ①若//,,,l n αβαβ⊂⊂则//l n ; ②若,,l αβα⊥⊂则l β⊥; ③若,,l n m n ⊥⊥则//l m ; ④若,//,l l αβ⊥则αβ⊥.11.Rt ABC ∆在平面α内的射影是111A B C ∆,设直角边AB α,则111A B C ∆的形状是 三角形.12.已知圆锥的底面半径为2cm ,高为1cm ,则圆锥的侧面积是 2cm . 13.如图,在正三棱锥A BCD -中,底面BCD ∆的边长为,点,E F 分别是CD 和AD 的中点,且EF BF ⊥,则正三棱锥A BCD -的外接球的表面积为 ▲ .第11题14.圆柱形容器内盛有高度为3cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是____cm.15.在正四棱柱ABCD —A 1B 1C 1D 1中,AA 1=2AB ,E 为AA 1中点,则异面直线BE 与CD 1所成角的余弦值为__ ____。
最新精编2020高考数学《立体几何初步》专题完整题(含答案)

2019年高中数学单元测试卷立体几何初步学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于()A.1 B.2C.3D.2(2008全国2理) 、、、共面而不共线,那么这四点中----------------------------------------2.空间四点A B C D()(A)必有三点共线 (B)必有三点不共线 (C)至少有三点共线 (D)不可能有三点共3.给出下列四个命题:①一个角是平面图形;②三条直线两两相交,它们必在同一平面内;③两个平面有三个公共点,它们必重合;④四边形是平面图形。
其中正确命题的个数是----------------------------------------------------------------------------------()(A) 1 (B) 2 (C) 3 (D)a//的一个必要不充分的条件是 ( )4.已知直线a、b和平面α,那么b()Aαa,α⊥b⊥//b()Bα//a,αCα()D a、b与α成等角⊂b且αa()//5.过直线外一点与直线平行的平面有----------------------------------------------------------------()(A) 1个 (B)无数个 (C)不存在 (D)以上均不对6.1.在空间,如果一个角的两边与另一个角的两边分别平行,则这两个角-------------------()(A)相等 (B)互补 (C)相等或互补 (D)既不相等也不互二、填空题7.若正三棱锥的底面边长为1,则此三棱锥的体积为.8.设 , 为两不同直线及平面,给出下列四个命题:①若 ,,则; ②若,,则; ③若, 与 相交,则 与 也相交;④若 与 异面,,则.其中正确命题的序号是__________;9.已知直线,m n 与平面,αβ,给出下列四个命题:①若//,//m n αα,则//m n ;②若//,m n αα⊥,则n m ⊥;③若n m m ⊥⊥,α,则α//n ;若,,//α⊥n n m 则α⊥m ,其中正确..命题的个数..是__________; 10.棱长为3的正方体的顶点都在同一球面上,则该球的表面积为________. 11.已知一个正方体的所有顶点在一个球面上. 若球的体积为92π, 则正方体的棱长为 ______.(2013年高考天津卷(文))12.两球的体积之和是12π,它们的大圆周长之和是6π,则两球的半径之差是 13. 已知a 、b 是两条异面直线,c ∥a ,那么c 与b 的位置关系不可能是______________14.已知正六棱锥ABCDEF P -的底面边长为1cm , 侧面积为32cm ,则该棱锥的体积为 ▲ 3cm .15.已知圆锥的母线长为2,则该圆锥的侧面积是 。
精编2020高考数学《立体几何初步》专题完整考题(含参考答案)

2019年高中数学单元测试卷立体几何初步学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.设四面体的六条棱的长分别为和a 且长为a 的棱异面,则a 的取值范围是( )A .B .C .D .(2012重庆文)2.设γβα、、、为平面,l n m 、、为直线,则β⊥m 的一个充分条件是( ) A . l m l ⊥=⋂⊥,,βαβαB . γβγαγα⊥⊥=⋂,,mC . αγβγα⊥⊥⊥m ,,D . αβα⊥⊥⊥m n n ,,(2005天津)3.有一塔形几何体由若干个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各连接中点,已知最底层正方体的棱长为2,且该塔形的表面积(含最底层正方体的底面面积)超过39,则该塔形中正方体的个数至少是 ( )A .4B .5C .6D .7(2005重庆文)4.若二面角l αβ--为1200,直线m α⊥,则β所在平面内的直线与m 所成角的取值范围是( )(A )0(0,90] (B )[300,600] (C )[600,900] (D )[300,900] (2004安徽春季理7) 5.1.一条直线和直线外的三点所能确定的平面的个数是-------------------------------------------( )(A) 1或3个 (B) 1或4个 (C) 1个、3个或4个 (D) 1个、2个或46.若干个棱长为2、3、5的长方体,依相同方向拼成棱长为90的正方体,则正方体的一条对角线贯穿的小长方体的个数是( ) A .64 B .66C .68D .70二、填空题7.下列命题中正确命题的个数是①一条直线和另一条直线平行,那么它和经过另一条直线的任何平面平行;②一条直线平行于一个平面,则这条直线与这个平面内所有直线都没有公共点,因此这条直线与这个平面内的所有直线都平行;③若直线与平面不平行,则直线与平面内任一直线都不平行;④与一平面内无数条直线都平行的直线必与此平面平行。
2019年高考专题:立体几何试题及答案

2019年高考专题:立体几何试题1.【2019年高考全国Ⅱ卷文数】设α,β为两个平面,则α∥β的充要条件是A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面【解析】由面面平行的判定定理知:α内两条相交直线都与β平行是αβ∥的充分条件,由面面平行性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内两条相交直线都与β平行是αβ∥的必要条件,故选B .2.【2019年高考江苏卷】如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E −BCD 的体积是 .【解析】因为长方体1111ABCD A B C D -的体积为120,所以1120AB BC CC ⋅⋅=,因为E 为1CC 的中点,所以112CE CC =, 由长方体的性质知1CC ⊥底面ABCD ,所以CE 是三棱锥E BCD -的底面BCD 上的高, 所以三棱锥E BCD -的体积1132V AB BC CE =⨯⋅⋅=111111201032212AB BC CC =⨯⋅⋅=⨯=.3.【2019年高考全国Ⅰ卷文数】如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ;(2)求点C 到平面C 1DE 的距离.【解析】(1)连结1,B C ME .因为M ,E 分别为1,BB BC 的中点,所以1 ME B C ∥,且112ME B C =. 又因为N 为1A D 的中点,所以112ND A D =. 由题设知11=A B DC ∥,可得11=BC A D ∥,故=ME ND ∥, 因此四边形MNDE 为平行四边形,MN ED ∥. 又MN ⊄平面1C DE ,所以MN ∥平面1C DE .(2)过C 作C 1E 的垂线,垂足为H .由已知可得DE BC ⊥,1DE C C ⊥,所以DE ⊥平面1C CE ,故DE ⊥CH.从而CH ⊥平面1C DE ,故CH 的长即为C 到平面1C DE 的距离,由已知可得CE =1,C 1C =4,所以117C E =,故417CH =. 从而点C 到平面1C DE 的距离为1717. 4.【2019年高考全国Ⅱ卷文数】如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,AB =3,求四棱锥11E BB C C -的体积.【解析】(1)由已知得B 1C 1⊥平面ABB 1A 1,BE ⊂平面ABB 1A 1,故11B C BE ⊥.又1BE EC ⊥,所以BE ⊥平面11EB C .(2)由(1)知∠BEB 1=90°. 由题设知Rt △ABE ≌Rt △A 1B 1E ,所以1145AEB A EB ︒∠=∠=,故AE =AB =3,126AA AE ==. 作1EF BB ⊥,垂足为F ,则EF ⊥平面11BB C C ,且3EF AB ==.所以,四棱锥11E BB C C -的体积1363183V =⨯⨯⨯=. 5.【2019年高考全国Ⅲ卷文数】图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°.将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ;(2)求图2中的四边形ACGD 的面积.【解析】(1)由已知得AD BE ,CG BE ,所以AD CG ,故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB ⊥BE ,AB ⊥BC ,故AB ⊥平面BCGE .又因为AB ⊂平面ABC ,所以平面ABC ⊥平面BCGE .(2)取CG 的中点M ,连结EM ,DM.因为AB ∥DE ,AB ⊥平面BCGE ,所以DE ⊥平面BCGE ,故DE ⊥CG .由已知,四边形BCGE 是菱形,且∠EBC =60°得EM ⊥CG ,故CG ⊥平面DEM .因此DM ⊥CG .在Rt △DEM 中,DE =1,EM =3,故DM =2.所以四边形ACGD 的面积为4.6.【2019年高考北京卷文数】如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底部ABCD 为菱形,E 为CD 的中点.(1)求证:BD ⊥平面PAC ;(2)若∠ABC =60°,求证:平面PAB ⊥平面PAE ;(3)棱PB 上是否存在点F ,使得CF ∥平面PAE ?说明理由.【解析】(1)因为PA ⊥平面ABCD ,所以PA BD ⊥.又因为底面ABCD 为菱形,所以BD AC ⊥.所以BD ⊥平面PAC .(2)因为PA ⊥平面ABCD ,AE ⊂平面ABCD ,所以PA ⊥AE .因为底面ABCD 为菱形,∠ABC =60°,且E 为CD 的中点,所以AE ⊥CD .所以AB ⊥AE .所以AE ⊥平面PAB .所以平面PAB ⊥平面PAE .(3)棱PB 上存在点F ,使得CF ∥平面PAE .取F 为PB 的中点,取G 为PA 的中点,连结CF ,FG ,EG .则FG ∥AB ,且FG =12AB .因为底面ABCD 为菱形,且E 为CD 的中点, 所以CE ∥AB ,且CE =12AB .所以FG ∥CE ,且FG =CE . 所以四边形CEGF 为平行四边形.所以CF ∥EG .因为CF ⊄平面PAE ,EG ⊂平面PAE ,所以CF ∥平面PAE .7.【2019年高考天津卷文数】如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,PCD △为等边三角形,平面PAC ⊥平面PCD ,,2,3PA CD CD AD ⊥==.(1)设G ,H 分别为PB ,AC 的中点,求证:GH ∥平面PAD ;(2)求证:PA ⊥平面PCD ;(3)求直线AD 与平面PAC 所成角的正弦值.【解析】(1)连接BD ,易知ACBD H =,BH DH =.又由BG=PG ,故GH PD ∥.又因为GH ⊄平面P AD ,PD ⊂平面P AD ,所以GH ∥平面P AD .(2)取棱PC 的中点N ,连接DN .依题意,得DN ⊥PC ,又因为平面PAC ⊥平面PCD ,平面PAC 平面PCD PC =, 所以DN ⊥平面P AC ,又PA ⊂平面P AC ,故DN PA ⊥.又已知PA CD ⊥,CD DN D =,所以PA ⊥平面PCD .(3)连接AN ,由(2)中DN ⊥平面P AC ,可知DAN ∠为直线AD 与平面P AC 所成的角, 因为PCD △为等边三角形,CD =2且N 为PC 的中点, 所以3DN =.又DN AN ⊥,在Rt AND △中,3sin 3DN DAN AD ∠==. 所以,直线AD 与平面P AC 所成角的正弦值为33. 8.【2019年高考江苏卷】如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A 1B 1∥平面DEC 1;(2)BE ⊥C 1E .【解析】(1)因为D ,E 分别为BC ,AC 的中点,所以ED ∥AB .在直三棱柱ABC−A 1B 1C 1中,AB ∥A 1B 1,所以A 1B 1∥ED .又因为ED ⊂平面DEC 1,A 1B 1⊄平面DEC 1,所以A 1B 1∥平面DEC 1.(2)因为AB =BC ,E 为AC 的中点,所以BE ⊥AC .因为三棱柱ABC−A 1B 1C 1是直棱柱,所以CC 1⊥平面ABC .又因为BE ⊂平面ABC ,所以CC 1⊥BE .因为C 1C ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,C 1C ∩AC =C ,所以BE ⊥平面A 1ACC 1.因为C 1E ⊂平面A 1ACC 1,所以BE ⊥C 1E .9.【2019年高考浙江卷】如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是AC ,A 1B 1的中点.(1)证明:EF BC ⊥;(2)求直线EF 与平面A 1BC 所成角的余弦值.【解析】(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC . 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1,平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC ,则A 1E ⊥BC .又因为A 1F ∥AB ,∠ABC =90°,故BC ⊥A 1F .所以BC ⊥平面A 1EF .因此EF ⊥BC .(2)取BC 中点G ,连接EG ,GF ,则EGFA 1是平行四边形.由于A 1E ⊥平面ABC ,故A 1E ⊥EG ,所以平行四边形EGFA 1为矩形.由(1)得BC ⊥平面EGFA 1,则平面A 1BC ⊥平面EGFA 1, 所以EF 在平面A 1BC 上的射影在直线A 1G 上.连接A 1G 交EF 于O ,则∠EOG 是直线EF 与平面A 1BC 所成的角(或其补角). 不妨设AC =4,则在Rt △A 1EG 中,A 1E =23,EG =3.由于O 为A 1G 的中点,故11522A G EO OG ===, 所以2223cos 25EO OG EG EOG EO OG +-∠==⋅.因此,直线EF 与平面A 1BC 所成角的余弦值是35。
历年高考真题专题04立体几何

专题04 立体几何【2020年】1.(2020·新课标Ⅰ)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A. 51-B. 51-C. 51+D. 51+ 【解析】如图,设,CD a PE b ==,则22224a PO PE OEb =-=-, 由题意212PO ab =,即22142a b ab -=,化简得24()210b b a a -⋅-=,解得15b a +=(负值舍去).2.(2020·新课标Ⅰ)已知A 、B 、C 为球O 球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A. 64πB. 48πC. 36πD. 32π【解析】设圆1O 半径为r ,球的半径为R ,依题意,得24,2r r ππ=∴=,由正弦定理可得2sin 6023AB r =︒=,123OO AB ∴==,根据圆截面性质1OO ⊥平面ABC , 222211111,4OO O A R OA OO O A OO r ∴⊥==+=+=,∴球O 的表面积2464S R ππ==.3.(2020·新课标Ⅱ)如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M,在俯视图中对应的点为N,则该端点在侧视图中对应的点为()A. EB. FC. GD. H【解析】根据三视图,画出多面体立体图形,图中标出了根据三视图M点所在位置,可知在侧视图中所对应的点为E。
4.(2020·新课标Ⅲ)下图为某几何体的三视图,则该几何体的表面积是()2233【解析】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDBS S S===⨯⨯=△△△根据勾股定理可得:22AB AD DB===∴ADB△是边长为2根据三角形面积公式可得:2113sin 60(22)23222ADB S AB AD =⋅⋅︒=⋅=△ ∴该几何体的表面积是:2362332=⨯++.5.(2020·北京卷)某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为( ). A . 63+ B. 623+C. 123+D. 1223+ 【解析】由题意可得,三棱柱的上下底面为边长为2的等边三角形,侧面为三个边长为2的正方形, 则其表面积为:()1322222sin 6012232S ⎛⎫=⨯⨯+⨯⨯⨯⨯︒=+⎪⎝⎭. 6.(2020·山东卷)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为( )A. 20°B. 40°C. 50°D. 90°【解析】画出截面图如下图所示,其中CD 是赤道所在平面的截线;l 是点A 处的水平面的截线,依题意可知OA l ⊥;AB 是晷针所在直线.m 是晷面的截线,依题意依题意,晷面和赤道平面平行,晷针与晷面垂直,根据平面平行的性质定理可得可知//m CD 、根据线面垂直的定义可得AB m ⊥..由于40,//AOC m CD ∠=︒,所以40OAG AOC ∠=∠=︒,由于90OAG GAE BAE GAE ∠+∠=∠+∠=︒,所以40BAE OAG ∠=∠=︒,也即晷针与点A 处的水平面所成角为40BAE ∠=︒.7.(2020·天津卷)若棱长为23的正方体的顶点都在同一球面上,则该球的表面积为( ) A. 12π B. 24π C. 36π D. 144π【解析】这个球是正方体的外接球,其半径等于正方体的体对角线的一半,即()()()22223232332R ++==,所以,这个球的表面积为2244336S R πππ==⨯=.8.(2020·浙江卷)某几何体的三视图(单位:cm )如图所示,则该几何体的体积(单位:cm 3)是( )A. 73B. 143C. 3D. 6【解析】由三视图可知,该几何体是上半部分是三棱锥,下半部分是三棱柱,且三棱锥的一个侧面垂直于底面,且棱锥的高为1,棱柱的底面为等腰直角三角形,棱柱的高为2,所以几何体的体积为:11117211212232233⎛⎫⎛⎫⨯⨯⨯⨯+⨯⨯⨯=+= ⎪ ⎪⎝⎭⎝⎭. 9.(2020·山东卷)已知直四棱柱ABCD –A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以1D 为球心,5为半径的球面与侧面BCC 1B 1的交线长为________.【解析】如图:取11B C 的中点为E ,1BB 的中点为F ,1CC 的中点为G ,因为BAD ∠=60°,直四棱柱1111ABCD A B C D -的棱长均为2,所以△111D B C 为等边三角形,所以1D E 3=,111D E B C ⊥, 又四棱柱1111ABCD A B C D -为直四棱柱,所以1BB ⊥平面1111D C B A ,所以111BB B C ⊥,因为1111BB B C B =,所以1D E ⊥侧面11B C CB ,设P 为侧面11B C CB 与球面的交线上的点,则1D E EP ⊥, 因为球的半径为5,13D E =,所以2211||||||532EP D P D E =-=-=, 所以侧面11B C CB 与球面的交线上的点到E 的距离为2,因为||||2EF EG ==,所以侧面11B C CB 与球面的交线是扇形EFG 的弧FG ,因为114B EF C EG π∠=∠=,所以2FEG π∠=,所以根据弧长公式可得2222FG ππ=⨯=. 10.(2020·浙江卷)已知圆锥展开图的侧面积为2π,且为半圆,则底面半径为_______.【解析】设圆锥底面半径为r ,母线长为l ,则21222r l r l ππππ⨯⨯=⎧⎪⎨⨯⨯=⨯⨯⨯⎪⎩,解得1,2r l ==. 11.(2020·江苏卷)如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm ,高为2 cm ,内孔半轻为0.5 cm ,则此六角螺帽毛坯的体积是____cm.【解析】正六棱柱体积为23622=123⨯;圆柱体积为21()222ππ⋅=;所求几何体体积为1232π 12.(2020·新课标Ⅲ)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.2【解析】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中2,3BC AB AC ===,且点M 为BC 边上的中点,设内切圆的圆心为O ,由于223122AM =-=,故1222222S =⨯⨯=△ABC ,设内切圆半径为r ,则: ABC AOB BOC AOC S S S S =++△△△△111222AB r BC r AC r =⨯⨯+⨯⨯+⨯⨯ ()1332222r =⨯++⨯=,解得:22r ,其体积:34233V r ππ==. 【2019年】1.【2019·全国Ⅰ卷】已知三棱锥P −ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为( )A .68πB .64πC .62πD .6π 【解析】,PA PB PC ABC ==△为边长为2的等边三角形,P ABC ∴-为正三棱锥,PB AC ∴⊥,又E ,F 分别为PA ,AB 的中点,EF PB ∴∥,EF AC ∴⊥,又EF CE ⊥,,CEAC C EF =∴⊥平面PAC ,∴PB ⊥平面PAC ,2APB PA PB PC ∴∠=90︒,∴===,P ABC ∴-为正方体的一部分,22226R =++=,即364466,π62338R V R =∴=π=⨯=π,故选D .2.【2019·全国Ⅱ卷】设α,β为两个平面,则α∥β的充要条件是( )A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面【解析】由面面平行的判定定理知:α内两条相交直线都与β平行是αβ∥的充分条件,由面面平行性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内两条相交直线都与β平行是αβ∥的必要条件,故选B .3.【2019·全国Ⅲ卷】如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则( )A .BM =EN ,且直线BM ,EN 是相交直线;B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM ,EN 是异面直线;D .BM ≠EN ,且直线BM ,EN 是异面直线【解析】如图所示,作EO CD ⊥于O ,连接ON ,BD ,易得直线BM ,EN 是三角形EBD 的中线,是相交直线.过M 作MF OD ⊥于F ,连接BF ,平面CDE ⊥平面ABCD ,,EO CD EO ⊥⊂平面CDE ,EO ∴⊥平面ABCD ,MF ⊥平面ABCD ,MFB ∴△与EON △均为直角三角形.设正方形边长为2,易知3,12EO ON EN ===,,35,,722MF BF BM ==∴=,BM EN ∴≠,故选B .4.【2019·浙江卷】祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V 柱体=Sh ,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm ),则该柱体的体积(单位:cm 3)是( )A .158B .162C .182D .324 【解析】由三视图得该棱柱的高为6,底面可以看作是由两个直角梯形组合而成的,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为264633616222++⎛⎫⨯+⨯⨯=⎪⎝⎭. 故选B.5.【2019·浙江卷】设三棱锥V –ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P –AC –B 的平面角为γ,则( ) A .β<γ,α<γ B .β<α,β<γ C .β<α,γ<α D .α<β,γ<β 【解析】如图,G 为AC 中点,连接VG ,V 在底面ABC 的投影为O ,则P 在底面的投影D 在线段AO 上,过D 作DE 垂直于AC 于E ,连接PE ,BD ,易得PE VG ∥,过P 作PF AC ∥交VG 于F ,连接BF ,过D 作DH AC ∥,交BG 于H ,则,,BPF PBD PED αβγ=∠=∠=∠,结合△PFB ,△BDH ,△PDB 均为直角三角形,可得cos cos PF EG DH BD PB PB PB PBαβ===<=,即αβ>; 在Rt △PED 中,tan tan PD PD ED BD γβ=>=,即γβ>,综上所述,答案为B.6.【2019·全国Ⅲ卷】学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D -挖去四棱锥O —EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,16cm 4cm AB =BC =, AA =,3D 打印所用原料密度为0.9 g/cm 3,不考虑打印损耗,制作该模型所需原料的质量为___________g.【解析】由题意得,214642312cm 2EFGH S =⨯-⨯⨯⨯=四边形,∵四棱锥O −EFGH 的高为3cm , ∴3112312cm 3O EFGH V -=⨯⨯=. 又长方体1111ABCD A B C D -的体积为32466144cm V =⨯⨯=,所以该模型体积为3214412132cm O EFGH V V V -=-=-=,其质量为0.9132118.8g ⨯=.7.【2019·北京卷】某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.【解析】如图所示,在棱长为4的正方体中,三视图对应的几何体为正方体去掉棱柱1111MPD A NQC B -之后余下的几何体,则几何体的体积()3142424402V =-⨯+⨯⨯=.8.【2019·北京卷】已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l ⊥m ; ②m ∥α; ③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.【解析】将所给论断,分别作为条件、结论,得到如下三个命题:(1)如果l ⊥α,m ∥α,则l ⊥m ,正确;(2)如果l ⊥α,l ⊥m ,则m ∥α,不正确,有可能m 在平面α内;(3)如果l ⊥m ,m ∥α,则l ⊥α,不正确,有可能l 与α斜交、l ∥α.故答案为:如果l ⊥α,m ∥α,则l ⊥m.9.【2019·天津卷】已知四棱锥的底面是边长为2的正方形,侧棱长均为5.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为_____________.【解析】由题意,四棱锥的底面是边长为2的正方形,侧棱长均为5,借助勾股定理,可知四棱锥的高为512-=.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,一个底面的圆心为四棱锥底面的中心,故圆柱的高为1,圆柱的底面半径为12,故圆柱的体积为21ππ124⎛⎫⨯⨯= ⎪⎝⎭. 10.【2019·江苏卷】如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E −BCD 的体积是 ▲ .【解析】因为长方体1111ABCD A B C D -的体积为120,所以1120AB BC CC ⋅⋅=,因为E 为1CC 的中点,所以112CE CC =,由长方体的性质知1CC ⊥底面ABCD , 所以CE 是三棱锥E BCD -的底面BCD 上的高,所以三棱锥E BCD -的体积1132V AB BC CE =⨯⋅⋅=111111201032212AB BC CC =⨯⋅⋅=⨯=. 【2018年】1.【2018·全国Ⅰ卷】某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .172B .52C .3D .2【答案】B2.【2018·全国Ⅰ卷】已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为 A .33 B .23 C .324D .3【解析】根据相互平行的直线与平面所成的角是相等的,所以在正方体1111ABCD A B C D -中, 平面11AB D 与线11111,,AA A B A D 所成的角是相等的,所以平面11AB D 与正方体的每条棱所在的直线所成角都是相等的, 同理,平面1C BD 也满足与正方体的每条棱所在的直线所成角都是相等的,要求截面面积最大,则截面的位置为夹在两个面11AB D 与1C BD 中间,且过棱的中点的正六边形,且边长为22,所以其面积为232336424S ⎛⎫=⨯⨯= ⎪ ⎪⎝⎭,故选A. 3.【2018·全国Ⅲ卷】中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是【解析】本题主要考查空间几何体的三视图.由题意知,俯视图中应有一不可见的长方形,且俯视图应为对称图形.故选A .4.【2018·浙江卷】某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是俯视图正视图2211A .2B .4C .6D .8【解析】根据三视图可得几何体为一个直四棱柱,高为2,底面为直角梯形,上、下底分别为1,2,梯形的高为2,因此几何体的体积为()112226,2⨯+⨯⨯=故选C. 5.【2018·全国Ⅲ卷】设A B C D ,,,是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为93,则三棱锥D ABC -体积的最大值为 A .123B .183C .243D .543【解析】如图所示,设点M 为三角形ABC 的重心,E 为AC 中点,当点D 在平面ABC 上的射影为M 时,三棱锥D ABC -的体积最大,此时,4OD OB R ===,2393ABC S AB ==△,6AB ∴=,点M 为三角形ABC 的重心,2233BM BE ∴==,Rt OBM ∴△中,有222OM OB BM =-=,426DM OD OM ∴=+=+=,()max 19361833D ABC V -∴=⨯⨯=,故选B.6.【2018·全国Ⅱ卷】在长方体1111ABCD A B C D -中,1AB BC ==,13AA =,则异面直线1AD 与1DB 所成角的余弦值为 A .15B .5C .5 D .2 【解析】方法一:用一个与原长方体相同的长方体拼到原长方体的前面,如图,则11B P AD ∥,连接DP ,易求得1=5DB DP =,12B P =,则1DB P ∠是异面直线1AD 与1DB 所成的角,由余弦定理可得222111115cos 2545DB B P DP DB P DB PB +-∠===⋅.故选C.方法二:以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴建立空间直角坐标系, 则()()((110,0,0,1,0,0,3,3D A B D ,所以()(111,0,3,3AD DB =-=, 因为1111115cos ,25AD DB AD DB AD DB ⋅===⨯, 所以异面直线1AD 与1DB 所成角的余弦值为55,故选C. 7.【2018·浙江卷】已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则A .θ1≤θ2≤θ3B .θ3≤θ2≤θ1C .θ1≤θ3≤θ2D .θ2≤θ3≤θ1【解析】设O 为正方形ABCD 的中心,M 为AB 中点,过E 作BC 的平行线EF ,交CD 于F ,过O 作ON 垂直EF 于N ,连接SO ,SN ,SE ,SM ,OM ,OE ,则SO 垂直于底面ABCD ,OM 垂直于AB , 因此123,,,SEN SEO SMO ∠=∠=∠=θθθ 从而123tan ,tan ,tan ,SN SN SO SOEN OM EO OM====θθθ 因为SN SO EO OM ≥≥,,所以132tan tan tan ,≥≥θθθ即132≥≥θθθ,故选D.8.【2018·江苏卷】如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.【答案】439.【2018·全国II 卷】已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若SAB △的面积为515__________.【解析】因为母线SA ,SB 所成角的余弦值为78,所以母线SA ,SB 所成角的正弦值为158,因为SAB △的面积为515,l 所以22115515,802l l ⨯=∴=,因为SA 与圆锥底面所成角为45°,所以底面半径为π2cos ,42r l ==因此圆锥的侧面积为22ππ402π.2rl l == 【2017年】1.【2017·全国Ⅱ卷】已知直三棱柱111ABC A B C -中,120ABC ∠=︒,2AB =,11BC CC ==,则异面直线1AB 与1BC 所成角的余弦值为A 3B 15C 10D 3【答案】C【解析】如图所示,补成直四棱柱1111ABCD A B C D -,则所求角为21111,2,21221cos603,5BC D BC BD C D AB ∠==+-⨯⨯⨯︒===,易得22211C D BD BC =+,因此111210cos 55BC BC D C D ∠===,故选C . 2.【2017·全国Ⅰ卷】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A .10B .12C .14D .16【解析】由题意该几何体的直观图是由一个三棱锥和三棱柱构成,如下图,则该几何体各面内只有两个相同的梯形,则这些梯形的面积之和为12(24)2122⨯+⨯⨯=,故选B . 3.【2017·北京卷】某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为A .2B .3C .2D .2【解析】几何体是四棱锥P ABCD -,如图.最长的棱长为补成的正方体的体对角线,即该四棱锥的最长棱的长度为22222223l =++=,选B . 4.【2017·全国Ⅱ卷】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A .90πB .63πC .42πD .36π【解析】由题意,该几何体是一个组合体,下半部分是一个底面半径为3,高为4的圆柱,其体积213436V =π⨯⨯=π,上半部分是一个底面半径为3,高为6的圆柱的一半,其体积221(36)272V =⨯π⨯⨯=π,故该组合体的体积12362763V V V =+=π+π=π.故选B .5.【2017·全国Ⅲ卷】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .πB .3π4 C .π2D .π4【解析】绘制圆柱的轴截面如图所示:由题意可得:11,2AC AB ==,结合勾股定理,底面半径2213122r ⎛⎫=-= ⎪⎝⎭, 由圆柱的体积公式,可得圆柱的体积是2233ππ1π24V r h ⎛⎫==⨯⨯= ⎪ ⎪⎝⎭,故选B. 6.【2017·浙江卷】某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是A .12π+ B .32π+ C .312π+ D .332π+ 【解析】根据所给三视图可还原几何体为半个圆锥和半个棱锥拼接而成的组合体,所以,几何体的体积为21113(21)13222V π⨯π=⨯⨯+⨯⨯=+,故选A .7.【2017·浙江卷】如图,已知正四面体–D ABC (所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP=PB ,2BQ CRQC RA==,分别记二面角D –PR –Q ,D –PQ –R ,D –QR –P 的平面角为αβγ,,,则A . γαβ<<B .αγβ<<C .αβγ<<D .βγα<<【解析】设O 为三角形ABC 中心,则O 到PQ 距离最小,O 到PR 距离最大,O 到RQ 距离居中,而三棱锥的高相等,因此αγβ<<,所以选B .8.【2017·全国I 卷】如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D ,E ,F 为圆O 上的点,△DBC ,△ECA ,△F AB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△F AB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为 .【解析】如下图,连接DO 交BC 于点G ,设D ,E ,F 重合于S 点,正三角形的边长为x (x >0),则133OG x =⨯3x =.∴35FG SG x ==-, 222233566SO h SG GO x x ⎛⎫⎛⎫==-=-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭3553x ⎛⎫=- ⎪ ⎪⎝⎭, ∴三棱锥的体积2113355333ABC V S h x x ⎛⎫=⋅=⨯⨯- ⎪ ⎪⎝⎭△451535123x x =-. 设()4535n x x x =-,x >0,则()345320n x x x '=-, 令()0n x '=,即43403x -=,得43x =,易知()n x 在43x =处取得最大值. ∴max 154854415V =⨯⨯-=.9.【2017·山东卷】由一个长方体和两个14圆柱体构成的几何体的三视图如图,则该几何体的体积为.【解析】由三视图可知,长方体的长、宽、高分别为2,1,1,圆柱的高为1,底面圆的半径为1,所以2π1π21121242V⨯=⨯⨯+⨯⨯=+.10.【2017·天津卷】已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为___________.【解析】设正方体的边长为a,则26183a a=⇒=,其外接球直径为233R a==,故这个球的体积34π3V R==4279ππ382⨯=.11.【2017·江苏卷】如图,在圆柱12O O内有一个球O,该球与圆柱的上、下底面及母线均相切.记圆柱12O O的体积为1V,球O的体积为2V,则12VV的值是.【解析】设球半径为r,则213223423V r rV rπ⨯==π.故答案为32.12.【2017·全国Ⅲ卷】a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:①当直线AB与a成60°角时,AB与b成30°角;②当直线AB与a成60°角时,AB与b成60°角;③直线AB与a所成角的最小值为45°;④直线AB与a所成角的最大值为60°.其中正确的是________.(填写所有正确结论的编号)【解析】设1AC BC ==.由题意,AB 是以AC 为轴,BC 为底面半径的圆锥的母线,由,AC a AC b ⊥⊥,又AC ⊥圆锥底面,所以在底面内可以过点B ,作BD a ∥,交底面圆C 于点D ,如图所示,连接DE ,则DE ⊥BD ,DE b ∴∥,连接AD ,等腰ABD △中,2AB AD ==,当直线AB 与a 成60°角时,60ABD ∠=,故2BD =,又在Rt BDE △中,2,2BE DE =∴=,过点B 作BF ∥DE ,交圆C 于点F ,连接AF ,由圆的对称性可知2BF DE ==,ABF ∴△为等边三角形,60ABF ∴∠=,即AB 与b 成60°角,②正确,①错误.由图可知③正确;很明显,可以满足平面ABC ⊥直线a ,则直线AB 与a 所成角的最大值为90°,④错误.故正确的是②③.【2016年】1. 【2016高考新课标1卷】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是( ) (A )17π (B )18π (C )20π (D )28π【解析】该几何体直观图如图所示:是一个球被切掉左上角的18,设球的半径为R ,则37428V R 833ππ=⨯=,解得R 2=,所以它的表面积是78的球面面积和三个扇形面积之和2271=42+32=1784S πππ⨯⨯⨯⨯故选A . 2.【2016高考新课标2理数】下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )(A )20π (B )24π (C )28π (D )32π【解析】由题意可知,圆柱的侧面积为12π2416πS =⋅⋅=,圆锥的侧面积为2π248πS =⋅⋅=,圆柱的底面面积为23π24πS =⋅=,故该几何体的表面积为12328πS S S S =++=,故选C.3.【2016年高考北京理数】某三棱锥的三视图如图所示,则该三棱锥的体积为()A.16B.13C.12D.1 【解析】分析三视图可知,该几何体为一三棱锥P ABC -,其体积111111326V =⋅⋅⋅⋅=,故选A. 4.【2016高考新课标3理数】如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为( )(A )18365+(B )54185+(C )90 (D )81【解析】由三视图该几何体是以侧视图为底面的斜四棱柱,所以该几何体的表面积236233233554185S =⨯⨯+⨯⨯+⨯⨯=+,故选B .5.【2016高考山东理数】一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为( )(A )1233+π (B )1233+π (C )1236+π (D )216+π 【解析】由三视图可知,2的半球,体积为31142223V =⨯π⨯=),下面是底面积为1,高为1的四棱锥,体积2111133V =⨯⨯=,故选C. 6.【2016高考浙江理数】已知互相垂直的平面αβ,交于直线l .若直线m ,n 满足,m n αβ∥⊥, 则( )A .m ∥lB .m ∥nC .n ⊥lD .m ⊥n【解析】由题意知,l l αββ=∴⊂,,n n l β⊥∴⊥.故选C . 7.【2016年高考四川理数】已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是 .正视图331【解析】由三棱锥的正视图知,三棱锥的高为1,底面边长为232,2,所以,该三棱锥的体积为113322132V =⨯⨯⨯=.8.【2016高考浙江理数】某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是 cm 2,体积是 cm 3.【解析】几何体为两个相同长方体组合,长方体的长宽高分别为4,2,2,所以体积为2(224)32⨯⨯⨯=,由于两个长方体重叠部分为一个边长为2的正方形,所以表面积为2(222244)2(22)72⨯⨯+⨯⨯-⨯=9.【2016高考新课标2理数】 ,αβ是两个平面,,m n 是两条直线,有下列四个命题:(1)如果,,//m n m n αβ⊥⊥,那么αβ⊥.(2)如果,//m n αα⊥,那么m n ⊥.(3)如果//,m αβα⊂,那么//m β.(4)如果//,//m n αβ,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题有 . (填写所有正确命题的编号)【解析】对于①,,,//m n m n αβ⊥⊥,则,αβ的位置关系无法确定,故错误;对于②,因为//n α,所以过直线n 作平面γ与平面β相交于直线c ,则//n c ,因为,,m m c m n α⊥∴⊥∴⊥,故②正确;对于③,由两个平面平行的性质可知正确;对于④,由线面所成角的定义和等角定理可知其正确,正确的有②③④.10.【2016高考浙江理数】如图,在△ABC 中,AB =BC =2,∠ABC =120°.若平面ABC 外的点P 和线段AC 上的点D ,满足PD =DA ,PB =BA ,则四面体PBCD 的体积的最大值是 .【解析】ABC △中,因为2,120AB BC ABC ==∠=,所以30BAD BCA ∠=∠=.由余弦定理可得2222cos AC AB BC AB BC B =+-⋅2222222cos12012=+-⨯⨯=,所以AC =设AD x =,则0x <<DC x =.在ABD ∆中,由余弦定理可得2222cos BD AD AB AD AB A =+-⋅22222cos30x x =+-⋅24x =-+.故BD =在PBD ∆中,PD AD x ==,2PB BA ==.由余弦定理可得222cos 2PD PB BD BPD PD PB +-∠===⋅,所以30BPD ∠=. 由此可得,将△ABD 沿BD 翻折后可与△PBD 重合,无论点D 在任何位置,只要点D 的位置确定,当平面PBD ⊥平面BDC 时,四面体PBCD 的体积最大(欲求最大值可不考虑不垂直的情况).EDC B A P过P 作直线BD 的垂线,垂足为O .设PO d =,则11sin 22PBD S BD d PD PB BPD =⨯=⋅∠△,12sin 302d x =⋅,解得d = 而△BCD的面积111sin )2sin 30(2)222S CD BC BCD x x=⋅∠=⋅=.当平面PBD ⊥平面BDC 时:四面体PBCD 的体积111)332BCD V S d x=⨯=⨯△=.观察上式,易得)2x x x x +≤,当且仅当x x -,即x 时取等号,同时我们可以发现当x x PBCD 的体积最大,为1.211.【2016高考新课标1卷】平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α//平面CB 1D 1,α平面ABCD =m ,α平面AB B 1A 1=n ,则m 、n 所成角的正弦值为 (A)2(B )2(C)3 (D)13【解析】设平面11CB D 平面ABCD ='m ,平面11CB D 平面11ABB A ='n ,因为α∥平面11CB D ,所以','m m n n ∥∥,则,m n 所成的角等于','m n 所成的角.过1D 作11D E B C ∥,交AD 的延长线于点E,连接CE ,则CE 为'm .连接1A B ,过B 1作111B F A B ∥,交1AA 的延长线于点1F ,则11B F 为'n .连接BD ,则111,BD CE B F A B ∥∥,则','m n 所成的角即为1,A B BD 所成的角,为60︒,故,m n 所成角的正弦值为32,选A.12.【2016高考新课标3理数】在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是( )(A )4π (B )92π (C )6π (D )323π 【解析】要使球的体积V 最大,必须球的半径R 最大.由题意知球的与直三棱柱的上下底面都相切时,球的半径取得最大值32,此时球的体积为334439()3322R πππ==,故选B . 13.【2016高考天津理数】已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m ),则该四棱锥的体积为_______m 3.【解析】由三视图知四棱锥高为3,底面平行四边形的一边长为2,其对应的高为1,因此所求四棱锥的体积1(21)323V =⨯⨯⨯=.故答案为2.。
精编新版2020高考数学《立体几何初步》专题完整版考核题(含参考答案)

2019年高中数学单元测试卷立体几何初步学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.设三棱柱ABC-A 1B 1C 1的体积是V ,P .Q 分别是侧棱AA 1上的点,且PA=QC 1,则四棱锥B-APQC 的体积为( )A.V 61 B.V 41 C.V 31 D.V 21 (2005全国3理)2.α、β是两个不同的平面,m 、n 是平面α及β之外的两条不同直线, 给出四个论断:① m ⊥ n ②α⊥β ③ m ⊥β ④ n ⊥α以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题:___________________.二、填空题3.已知圆柱的底面半径为1,母线长与底面的直径相等,则该圆柱的表面积为 ▲ . 4. 如图,已知一个多面体的平面展开图由一边长为1的正方体和4个边长为1的正三角形组成,则该多面体的体积是 .5.如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,底面各边都相等,M 是PC 上的一动点,当点M 满足 时,平面MBD ⊥平面PCD .(只需写出一种情形)6.在正方体1111D C B A ABCD -中,与1AD 平行的表面的对角线有 条7.设a b 、是两条不同的直线,α、β是两个不同的平面,则下列四个命题 ①若,a b a α⊥⊥,则//b α, ②若,a βαβ⊥⊥,则//a α, ③若βαβα⊥⊥则,,//a a ④若,,a b a b αβ⊥⊥⊥,则αβ⊥,其中正确的命题序号是 ▲ .ABCD PM8.在矩形ABCD中,AB = 4,BC = 3,沿AC将矩形ABCD折成一个直二面角B-AC-D,则折后BD=.9.在直四棱柱ABCD-A1B1C1D1中,当底面四边形ABCD满足条件时,有A1C⊥B1D1(注:填上你认为正确的一种即可,不必考虑所有可能的情形).10.如果a,b是异面直线,P是不在a,b上的任意一点,下列四个结论:(1)过P一定可作直线L与a , b都相交;(2)过P一定可作直线L与a , b都垂直;(3)过P一定可作平面α与a , b都平行;(4)过P一定可作直线L与a , b都平行,其中正确的结论有个11.下列命题中:(1)、平行于同一直线的两个平面平行;(2)、平行于同一平面的两个平面平行;(3)、垂直于同一直线的两直线平行;(4)、垂直于同一平面的两直线平行.其中正确的个数有三、解答题12.如图,在长方体ABCD-A1B1C1D1中,AB=2,AD=1,A1A=1,证明直线BC1平行于平面DA1C,并求直线BC1到平面D1AC的距离.(2013年高考上海卷(理))C11A13.如图,以长方体ABCD-A1B1C1D1的顶点A、C及另两个顶点为顶点构造四面体.(1)若该四面体的四个面都是直角三角形,试写出一个这样的四面体(不要求证明);(2)我们将四面体中两条无公共端点的棱叫做对棱,若该四面体的任一对对棱垂直,试写出一个这样的四面体(不要求证明);(3)若该四面体的任一对对棱相等,试写出一个这样的四面体(不要求证明),并计算它的体积与长方体的体积的比.A BC DD1A1C1B114.如图,在长方体1111D C B A ABCD -中,11==AD AA ,2=AB ,E 、F 分别 为11C D 、11D A 的中点.(1)求证:⊥DE 平面BCE ; (2)求证://AF 平面BDE .(3)能否在面C C BB 11内找一点G,使AF DG ⊥若能,请找出所有可能的位置并证明,若不能,请说明理由.15.如图,ABC ∆的AB 边交平面α于D ,BC 边交平面α于E 。
精编新版2020高考数学《立体几何初步》专题完整题(含参考答案)

2019年高中数学单元测试卷立体几何初步学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.如图,AB 是平面α的斜线段...,A 为斜足,若点P 在平面α内运动,使得ABP △的面积为定值,则动点P 的轨迹是( )A .圆B .椭圆C .一条直线D .两条平行直线(2008浙江理)2.给出下列四个命题:①垂直于同一直线的两条直线互相平行 ②垂直于同一平面的两个平面互相平行③若直线12l l ,与同一平面所成的角相等,则12l l ,互相平行 ④若直线12l l ,是异面直线,则与12l l ,都相交的两条直线是异面直线 其中假命题的个数是(D ) A.1 B.2C.3D.4(2006辽宁文)3.设m 、n 是两条不同的直线,,,αβγ是三个不同的平面,给出下列四个命题: ①若,,则 ②若,,,则③若,,则 ④若αγ⊥,βγ⊥,则//αβ其中正确命题的序号是 A ①和② B ②和③ C ③和④D ①和④AB Pα(第10题)4.已知平面βα,和直线,给出条件:①α//m ;②α⊥m ;③α⊂m ;④βα⊥;⑤βα//.(i )当满足条件 时,有β//m ;(ii )当满足条件 时,有β⊥m . (填所选条件的序号)(2005湖南文15)5.下列四个结论:⑴两条直线都和同一个平面平行,则这两条直线平行。
⑵两条直线没有公共点,则这两条直线平行。
⑶两条直线都和第三条直线垂直,则这两条直线平行。
⑷一条直线和一个平面内无数条直线没有公共点,则这条直线和这个平面平行。
其中正确的个数为A 0B 1C 2D 36.在ABC ∆中,︒=∠90ACB ,AB=8,︒=∠60BAC ,PC ⊥面ABC ,PC =4,M 是AB 边上的一动点,则PM 的最小值为( ) A .72 B .7 C .19 D .57.线a 、b 和平面α,下面推论错误的是 A.b a ⊥⇒⎭⎬⎫⊆⊥ααb a B αα⊥⇒⎭⎬⎫⊥b b // a aC ααα⊆⇒⎭⎬⎫⊥⊥a //a b b a 或D b //a b //a ⇒⎭⎬⎫⊆αα8.平面α与平面β平行的一个充分条件是----------------------------------------------------------( ) (A)α内有两条直线与β平行 (B)α内有无数条直线与β平行 (C)α内任一直线与β平行 (D)αβ、都平行于同一直线 二、填空题9.已知l 、m 、n 是直线,a 、b 、g 是平面,下列命题中为真命题是 ① 若//m l ,且m a ⊥,则l a ⊥; ② 若//m l ,且//m a ,则//l a ; ③ 若l a b =,m b g =,n g a =,则////l m n ;④ 若m a g =,l bg =,且//a b ,则//m l .10.线段AB 在平面α内,则直线AB 与平面α的位置关系是_________. 11.如图,在正方体ABCD -A 1B 1C 1D 1中,M 是DD 1的中点, 则下列结论正确的是 ▲ (填序号) ①线段A 1M 与B 1C 所在直线为异面直线; ②对角线BD 1⊥平面AB 1C ; ③平面AMC ⊥平面AB 1C ; ④直线A 1M//平面AB 1C.12.设直线n 和平面α,不管直线n 和平面α的位置关系如何,在平面α内总存在直线m ,使得它与直线n ▲ ;(在“平行”、 “相交”、 “异面”、 “垂直”中选择一个填空)13.设m ,n 是两条不同的直线,α,β是两个不同的平面,给出下列命题: (1)若βα//,β⊂m ,α⊂n ,则n m //; (2)若βα//,β⊥m ,α//n ,则n m ⊥; (3)若βα⊥,α⊥m ,β//n ,则n m //; (4)若βα⊥,α⊥m ,β⊥n ,则n m ⊥. 上面命题中,所有真命题的序号为 .14.如图,在棱长为2的正方体ABCD —A 1B 1C 1D 1中,E ,F 分别是棱AB ,BC 中点,则三棱锥B —B 1EF 的体积为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年高考数学大题专题练习——立体几何(一)1.如图所示,四棱锥P ABCD -中,底面ABCD 为正方形,⊥PD 平面ABCD ,2PD AB ==,点,,E F G 分别为,,PC PD BC 的中点.(1)求证:EF PA ⊥;(2)求二面角D FG E --的余弦值.2.如图所示,该几何体是由一个直角三棱柱ADE BCF -和一个正四棱锥P ABCD -组合而成,AF AD ⊥,2AE AD ==. (1)证明:平面⊥PAD 平面ABFE ;(2)求正四棱锥P ABCD -的高h ,使得二面角C AF P --的余弦值是22.3.四棱锥P ABCD-中,侧面PDC是边长为2的正三角形,且与底面垂直,底面ABCD是面积为ADC∠为锐角,M为PB的中点.(Ⅰ)求证:PD∥面ACM.(Ⅱ)求证:PA⊥CD.(Ⅲ)求三棱锥P ABCD-的体积.4.如图,四棱锥S ABCD-满足SA⊥面ABCD,90DAB ABC∠=∠=︒.SA AB BC a===,2AD a=.(Ⅰ)求证:面SAB⊥面SAD.(Ⅱ)求证:CD⊥面SAC.SB A DMC BAPD5.在四棱锥P ABCD -中,底面ABCD 为矩形,测棱PD ⊥底面ABCD ,PD DC =,点E 是BC 的中点,作EF PB ⊥交PB 于F . (Ⅰ)求证:平面PCD ⊥平面PBC . (Ⅱ)求证:PB ⊥平面EFD .6.在直棱柱111ABC A B C -中,已知AB AC ⊥,设1AB 中点为D ,1A C 中点为E . (Ⅰ)求证:DE ∥平面11BCC B . (Ⅱ)求证:平面11ABB A ⊥平面11ACC A .E DABC C 1B 1A 1DAB CEF P7.在四棱锥P ABCD -中,PA ⊥平面ABCD ,//AB CD ,AB AD ⊥,PA PB =,::2:2:1AB AD CD =.(1)证明BD PC ⊥;(2)求二面角A PC D --的余弦值;(3)设点Q 为线段PD 上一点,且直线AQ 平面PAC 所成角的正弦值为23,求PQ PD的值.8.在正方体1111ABCD A B C D -中,O 是AC 的中点,E 是线段D 1O 上一点,且D 1E =λEO . (1)若λ=1,求异面直线DE 与CD 1所成角的余弦值; (2)若λ=2,求证:平面CDE ⊥平面CD 1O .9.如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,135BCD =︒∠,侧面PAB ⊥底面ABCD ,90BAP =︒∠,2AB AC PA ===,E ,F 分别为BC ,AD 的中点,点M 在线段PD 上.(Ⅰ)求证:EF ⊥平面PAC .(Ⅱ)若M 为PD 的中点,求证:ME ∥平面PAB . (Ⅲ)如果直线ME 与平面PBC 所成的角和直线ME 与平面ABCD 所在的角相等,求PMPD的值.10.如图,在三棱柱111ABC A B C -,1AA ⊥底面ABC ,AB AC ⊥,1AC AB AA ==,E ,F 分别是棱BC ,1A A 的中点,G 为棱1CC 上的一点,且1C F ∥平面AEG . (1)求1CGCC 的值. (2)求证:1EG AC ⊥. (3)求二面角1A AG E --的余弦值.A 1B 1C 1G F AB CEM F E CBAPD11.如图,在四棱锥P ABCD -中,PB ⊥底面ABCD ,底面ABCD 为梯形,AD BC ∥,AD AB ⊥,且3PB AB AD ===,1BC =.(Ⅰ)若点F 为PD 上一点且13PF PD =,证明:CF ∥平面PAB .(Ⅱ)求二面角B PD A --的大小. (Ⅲ)在线段PD 上是否存在一点M ,使得CM PA ⊥?若存在,求出PM 的长;若不存在,说明理由.12.如图,在四棱锥E ABCD -中,平面EAD ⊥平面ABCD ,CD AB ∥,BC CD ⊥,EA ED ⊥,4AB =,2BC CD EA ED ====.Ⅰ证明:BD AE ⊥.Ⅱ求平面ADE 和平面CDE 所成角(锐角)的余弦值.DACEPF DBCA13.己知四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是菱形,且2PA AB ==.60ABC ∠=︒,BC 、PD 的中点分别为E ,F .(Ⅰ)求证BC PE ⊥.(Ⅱ)求二面角F AC D --的余弦值.(Ⅲ)在线段AB 上是否存在一点G ,使得AF 平行于平面PCG ?若存在,指出G 在AB 上的位置并给予证明,若不存在,请说明理由.14.如图,ABCD 是边长为3的正方形,DE ⊥平面ABCD ,AF DE ∥,3DE AF =,BE 与平面ABCD 所成角为60︒.(Ⅰ)求证:AC ⊥平面BDE . (Ⅱ)求二面角F BE D --的余弦值.(Ⅲ)设点M 线段BD 上一个动点,试确定点M 的位置,使得AM ∥平面BEF ,并证明你的结论.DDABCEF15.如图,PA⊥面ABC,AB BC⊥,22AB PA BC===,M为PB的中点.(Ⅰ)求证:AM⊥平面PBC.(Ⅱ)求二面角A PC B--的余弦值.(Ⅲ)在线段PC上是否存在点D,使得BD AC⊥,若存在,求出PD PC的值,若不存在,说明理由.16.如图所示,在四棱锥P-ABCD中,AB⊥平面,//,PAD AB CD E是PB的中点, 2,5,3,2AHPD PA AB ADHD===== .(1)证明:PH⊥平面ABCD;(2)若F是CD上的点,且23FC FD==,求二面角B EF C--的正弦值.MDABCP17.如图,DC ⊥平面ABC ,//EB DC ,22AC BC EB DC ====,120ACB ∠=︒,Q为AB 的中点.(Ⅰ)证明:CQ ⊥平面ABE ; (Ⅱ)求多面体ACED 的体积; (Ⅲ)求二面角A -DE -B 的正切值.18.如图1 ,在△ABC 中,AB =BC =2, ∠B =90°,D 为BC 边上一点,以边AC 为对角线做平行四边形ADCE ,沿AC 将△ACE 折起,使得平面ACE ⊥平面ABC ,如图2.(1)在图 2中,设M 为AC 的中点,求证:BM 丄AE ; (2)在图2中,当DE 最小时,求二面角A -DE -C 的平面角.19.如图所示,在已知三棱柱ABF -DCE 中,90ADE ∠=︒,60ABC ∠=︒,2AB AD AF ==,平面ABCD ⊥平面ADEF ,点M在线段BE 上,点G 是线段AD 的中点.(1)试确定点M 的位置,使得AF ∥平面GMC ; (2)求直线BG 与平面GCE 所成角的正弦值.20.已知在四棱锥P -ABCD 中,底面ABCD 是菱形,AC =AB ,P A ⊥平面ABCD ,E ,F 分别是AB ,PD 的中点.(Ⅰ)求证:AF ∥平面PCE ;(Ⅱ)若22AB AP ==,求平面P AD 与平面PCE 所成锐二面角的余弦值.21.如图,五面体P ABCD 中,CD ⊥平面P AD ,ABCD 为直角梯形,,2BCD PD BC CD π∠===1,2AD AP PD =⊥. (1)若E 为AP 的中点,求证:BE ∥平面PCD ; (2)求二面角P -AB-C 的余弦值.22.如图(1)所示,已知四边形SBCD 是由Rt △SAB 和直角梯形ABCD 拼接而成的,其中90SAB SDC ∠=∠=︒.且点A 为线段SD 的中点,21AD DC ==,2AB =.现将△SAB沿AB 进行翻折,使得二面角S -AB -C 的大小为90°,得到图形如图(2)所示,连接SC ,点E ,F 分别在线段SB ,SC 上. (Ⅰ)证明:BD AF ⊥;(Ⅱ)若三棱锥B -AEC 的体积为四棱锥S -ABCD 体积的25,求点E 到平面ABCD 的距离.23.四棱锥S-ABCD中,AD∥BC,,BC CD⊥060SDA SDC∠=∠=,AD DC=1122BC SD==,E为SD的中点.(1)求证:平面AEC⊥平面ABCD;(2)求BC与平面CDE所成角的余弦值.24.已知三棱锥P-ABC,底面ABC是以B为直角顶点的等腰直角三角形,P A⊥AC,BA=BC=P A=2,二面角P-AC-B的大小为120°.(1)求直线PC与平面ABC所成角的大小;(2)求二面角P-BC-A的正切值.25.如图,在四棱锥P -ABCD 中,平面P AD ⊥平面ABCD ,090=∠=∠BCD ABC ,AB CB DC PD PA 21====,E 是PB 的中点, (Ⅰ)求证:EC ∥平面APD ;(Ⅱ)求BP 与平面ABCD 所成的角的正切值; (Ⅲ)求二面角P -AB -D 的余弦值.26.四棱锥P ﹣ABCD 的底面ABCD 为边长为2的正方形,P A =2,PB =PD =22,E ,F ,G ,H 分别为棱P A ,PB ,AD ,CD 的中点.(1)求CD 与平面CFG 所成角的正弦值;(2)探究棱PD 上是否存在点M ,使得平面CFG ⊥平面MEH ,若存在,求出PDPM的值;若不存在,请说明理由.试卷答案1以点D 为坐标原点,建立如图所示的空间直角坐标系D xyz -,则()0,0,0D ,()0,2,0A ,()2,0,0C -,()0,0,2P ,()1,0,1E -,()0,0,1F ,()2,1,0G -. (1)∵()0,2,2PA =-u u u r ,()1,0,0EF =u u u r,则0PA EF ?u u u r u u u r,∴PA EF ^.(2)易知()0,0,1DF =u u u r ,()2,11FG =--u u u r, 设平面DFG 的法向量()111,,m x y z =u r,则00m DF m FG ì?ïíï?îu r u u u r u r u u u r,即1111020z x y z ì=ïí-+-=ïî, 令11x =,则()1,2,0m =是平面DFG 的一个法向量, 同理可得()0,1,1n =r是平面EFG 的一个法向量,∴10cos ,52m n m n m n×<>=´×u r ru r r u r r , 由图可知二面角D FG E --为钝角, ∴二面角D FG E --的余弦值为10-2.(1)证明:直三棱柱ADE BCF -中,AB ^平面ADE , 所以:AB AD ^,又AD AF ^,所以:AD ^平面ABFE ,AD Ì平面PAD , 所以:平面PAD ^平面ABFE .(2)由(1)AD ^平面ABFE ,以A 为原点,,,AB AE AD 方向为,,x y z 轴建立空间直角坐标系A xyz -,设正四棱锥P ABCD -的高h ,2AE AD ==,则()0,0,0A ,()2,2,0F ,()2,0,2C ,()1,,1P h -. ()2,2,0AF =u u u r ,()2,0,2AC =u u u r ,()1,,1AP h =-u u u r. 设平面ACF 的一个法向量()111,,m x y z =u r,则:1111220220m AF x y n AC x z ì?+=ïíï?+=îu r u u u r r u u u r,取11x =,则111y z ==-,所以:()1,1,1m =--u r . 设平面AFP 的一个法向量()222,,n x y z =r ,则222222200n AF x y n AP x hy z ì?+=ïíï?-+=îr u u u r r u u u r, 取21x =,则21y =-,21z h =--,所以:()1,1,1n h =---r,二面角C AF P --的余弦值是22,所以:()222cos ,321m n m n m n h ?<>===++u r ru r r u r r , 解得:1h =.3.E ODPABC M(Ⅰ)证明:连结AC 交BD 于O ,则O 是BD 中点, ∵在PBD △中,O 是BD 的中点,M 是PB 的中点, ∴PD MO ∥,又PD ⊄平面ACM ,MO ⊂平面ACM ,∴PD ∥平面ACM .(Ⅱ)证明:作PE CD ⊥,则E 为CD 中点,连结AE , ∵底面ABCD 是菱形,边长为2,面积为,∴11sin 222sin 222S AD DC ADC ADC =⨯⨯⨯∠⨯=⨯⨯∠⨯=∴sin ADC ∠,60ADC ∠=︒, ∴ACD △是等边三角形, ∴CD AE ⊥, 又∵CD PE ⊥, ∴CD ⊥平面PAE , ∴CD PA ⊥.(Ⅲ)11233P ABCD ABCD V S PE -=⨯=⨯.4.DABCSE(1)证明:∵SA ⊥平面ABCD ,AB ⊂平面ABCD , ∴AB SA ⊥, 又∵90BAD ∠=︒, ∴AB AD ⊥, ∵SA AD A =I , ∴AB ⊥平面SAD , 又AB ⊂平面SAB , ∴平面SAB ⊥平面SAD . (Ⅱ)证明:取AD 中点为E ,∵90DAB ABC ∠=∠=︒,2AD a =,BC a =,E 是AD 中点, ∴ABCE ∠是矩形,CE AB a ==,DE a =,∴CD =,在ACD △中,AC,CD =,2AD a =, ∴222AC CD AD +=, 即CD AC ⊥,又∵SA ⊥平面ABCD ,CD ⊂平面ABCD , ∴CD SA ⊥, ∴CD ⊥平面PAC . 5.P F ECB AD(Ⅰ)证明:∵PD ⊥底面ABCD ,BC ⊂平面ABCD , ∴PD BC ⊥,又∵底面ABCD 为矩形, ∴BC CD ⊥, ∴BC ⊥平面PCD , ∵BC ⊂平面PBC , ∴平面PCD ⊥平面PBC .(Ⅱ)证明:∵PD DC =,E 是PC 中点, ∴DE PC ⊥,又平面PCD ⊥平面PBC ,平面PCD I 平面PBC PC =, ∴DE ⊥平面PBC , ∴DE PB ⊥,又∵EF PB ⊥,EF DE E =I , ∴PB ⊥平面EFD .6.E A 1B 1C 1CBAD(Ⅰ)证明:连结1A B , ∵D 是1AB 的中点, ∴D 是1A B 的中点,∵在1A BC △中,D 是1A B 的中点,E 是1A C 的中点, ∴DE BC ∥,又DE ⊄平面11BCC B ,BC ⊂平面11BCC B , ∴DE ∥平面11BCC B .(Ⅱ)证明:∵111ABC A B C -是直棱柱, ∴1AA ⊥平面ABC , ∴1AA AB ⊥, 又AB AC ⊥, ∴AB ⊥平面11ACC A , ∵AB ⊂平面11ABB A , ∴平面11ABB A ⊥平面11ACC A .7.以A 为坐标原点,建立空间直角坐标系(2,0,0)B,D ,(0,0,2)P,C(1)(BD =-u u u r,2)PC =-u u u r, ∵0BD PC •=u u u r u u u r∴BD PC ⊥(2)AC =u u u r ,(0,0,2)AP =u u u r ,平面PAC的法向量为1,0)m =-u r(0,2)DP =u u u r ,(1,0,0)AP =u u u r ,平面DPC的法向量为(0,1)n =-r.cos ,3m n m n m n•==•u r ru r r u r r ,二面角B PC D --的余弦值为3.(3)∵AQ AP PQ AP tPD =+=+u u u r u u u r u u u r u u u r u u u r,[]0,1t ∈ ∴(0,0,2)(0,2,2)(0,2,22)AQ t t t =+-=-u u u r设θ为直线AQ 与平面PAC 所成的角2sin cos ,3AQ m AQ m AQ mθ•===•u u u r u ru u u r u r u u u r u r 2222223684332(22)tt t t t t =⇒=-++-,解得2t =(舍)或23. 所以,23PQ PD =即为所求.8.解:(1)不妨设正方体的棱长为1,以DA ,DC ,1DD 为单位正交基底建立如图所示的空间直角坐标系D xyz -. 则A (1,0,0),()11022O ,,,()010C ,,,D 1(0,0,1), E ()111442,,, 于是,.由cos==. 所以异面直线AE 与CD 1所成角的余弦值为36. (2)设平面CD 1O 的向量为m =(x 1,y 1,z 1),由m ·CO u u u r=0,m ·1CD u u u u r =0 得 取x 1=1,得y 1=z 1=1,即m =(1,1,1) .由D 1E =λEO ,则E ,.又设平面CDE 的法向量为n =(x 2,y 2,z 2),由n ·CD =0,n ·DE =0. 得取x 2=2,得z 2=-λ,即n =(-2,0,λ) .因为平面CDE ⊥平面CD 1F ,所以m ·n =0,得λ=2.9.(Ⅰ)证明:在平行四边形ABCD 中, ∵AB AC =,135BCD =︒∠,45ABC =︒∠, ∴AB AC ⊥,∵E ,F 分别为BC ,AD 的中点, ∴EF AB ∥,∴EF AC ⊥,∵侧面PAB ⊥底面ABCD ,且90BAP =︒∠, ∴PA ⊥底面ABCD ,∴PA EF ⊥,又∵PA AC A =I ,PA ⊂平面PAC ,AC ⊂平面PAC , ∴EF ⊥平面PAC .(Ⅱ)证明:∵M 为PD 的中点,F 为AD 的中点, ∴MF PA ∥,又∵MF ⊄平面PAB ,PA ⊂平面PAB , ∴MF ∥平面PAB ,同理,得EF ∥平面PAB ,又∵MF EF F =I ,MF ⊂平面M EF ,EF ⊂平面M EF , ∴平面MEF ∥平面PAB ,又∵ME ⊂平面M EF , ∴ME ∥平面PAB .(Ⅲ)解:∵PA ⊥底面ABCD ,AB AC ⊥,∴AP ,AB ,AC 两两垂直,故以AB ,AC ,AP 分别为x 轴,y 轴和z 轴建立如图空间直角坐标系,则(0,0,0)A ,(2,0,0)B ,(0,2,0)C ,(0,0,2)P ,(2,2,0)D -,(1,1,0)E ,所以(2,0,2)PB =-u u u r ,(2,2,2)PD =--u u u r ,(2,2,0)BC =-u u u r , 设([0,1])PMPDλλ=∈,则(2,2,2)PM λλλ=--u u u u r , ∴(2,2,22)M λλλ--,(12,12,22)ME λλλ=+--u u u r,易得平面ABCD 的法向量(0,0,1)m =u r,设平面PBC 的法向量为(,,z)n x y =r,则: 00n BC n PB ⎧⋅=⎪⎨⋅=⎪⎩r u u u r r u u u r ,即220220x y x z -+=⎧⎨-=⎩,令1x =,得(1,1,1)n =r , ∴直线ME 与平面PBC 所成的角和此直线与平面ABCD 所成的角相等,∴|cos ,||cos ,|ME m ME n <>=<>u u u r u r u u u r r ,即||||||||||||ME m ME n ME m ME n ⋅⋅=⋅⋅u u u u r u r u u u u r ru u u r ur u u u r r ,∴|21|λ-=,解得λ=或λ=(舍去),故PM PD .D10.(1)∵1C F ∥平面AEG ,又1C F ⊂平面11ACC A ,平面11ACC A I 平面AEG AG =, ∴1C F AG ∥,∵F 为1AA 的点,且侧面11ACC A 为平行四边形, ∴G 为1CC 中点, ∴112CG CC =. (2)证明:∵1AA ⊥底面ABC ,1AA AB ⊥,1AA AC ⊥, 又AB AC ⊥,如图,以A 为原点建立空间直角坐标系A xyz -,设2AB =,则由1AB AC AA ==可得(2,0,0)C ,(0,2,0)B ,1(2,0,2)C ,1(0,0,2)A , ∵E ,G 分别是BC ,1CC 的中点,∴(1,1,0)E ,(2,0,1)G , ∴1(1,1,1)(2,0,2)0EG CA ⋅=-⋅-=u u u r u u u r, ∴1EG CA u u u r u u u r ⊥, ∴1EG AC ⊥. (3)设平面AEG 的法向量为(,,)n x y z =r,则:0n AE n AG ⎧⋅=⎪⎨⋅=⎪⎩r u u u r r u u ur ,即020x y x z +=⎧⎨+=⎩,令1x =,则1y =-,2z =-, ∴(1,1,2)n =--r,由已知可得平面1A AG 的法向量(0,1,0)m =u r,∴cos ,||||n m n m n m ⋅<>==⋅r u rr u r r u r由题意知二面角1A AG E --为钝角, ∴二面角1A AG E --的余弦值为.111.(Ⅰ)证明:过点F 作FH AD ∥, 交PA 于H ,连结BH ,如图所示,∵13PF PD =,∴13HF AD BC ==,又FH AD ∥,AD BC ∥,HF BC ∥, ∴四边形BCFH 为平行四边形, ∴CF BH ∥,又BH ⊄平面PAB ,CF ⊄平面PAB , ∴CF ∥平面PAB .z D(Ⅱ)解:∵梯形ABCD 中,AD BC ∥,AD AB ⊥, ∴BC AB ⊥, ∵PB ⊥平面ABCD , ∴PB AB ⊥,PB BC ⊥,∴如图,以B 为原点,BC ,BA ,BP 所在直线为x ,y ,z 轴建立空间直角坐标系, 则(1,0,0)C ,(3,0,0)D ,(0,3,0)A ,(0,0,3)P ,设平面BPD 的一个法向量为(,,)n x y z =r, 平面APD 的一个法向量为(,,)m a b c =u r,∵(3,3,3)PD =-u u u r ,(0,0,3)BP =u u u r,∴00PD n BP n ⎧⋅=⎪⎨⋅=⎪⎩u u u r r u u u r r ,即333030x y z z +-=⎧⎨=⎩,令1x =得(1,1,0)n =-r ,同理可得(0,1,1)m =u r,∴1cos ,2||||n m n m n m ⋅<>==-⋅r u rr u r r ur , ∵二面角B PD A --为锐角, ∴二面角B PD A --为π3. (Ⅲ)假设存在点M 满足题意,设(3,3,3)PM PD λλλλ=-u u u u r u u u r, ∴(13,3,33)CM CP PD λλλλ=+=-+-u u u u r u u u r u u u r,∵(0,3,3)PA =-u u u r ,∴93(33)0PA CM λλ⋅=+-=u u u r u u u u r ,解得12λ=,∴PD 上存在点M 使得CM PA ⊥,且12PM PD =.12.Ⅰ∵BC CD ⊥,2BC CD ==,∴BD =, 同理EA ED ⊥,2EA ED ==,∴AD =,又∵4AB =,∴由勾股定理可知222BD AD AB +=,BD AD ⊥,又∵平面EAD ⊥平面ABCD ,平面EAD I 平面ABCD AD =,BD ⊂平面ABCD , ∴BD ⊥平面AED , 又∵AE ⊂平面AED , ∴BD AE ⊥.Ⅱ解:取AD 的中点O ,连结OE ,则OE AD ⊥,∵平面EAD ⊥平面ABCD ,平面EAD I 平面ABCD AD =, ∴OE ⊥平面ABCD ,取AB 的中点F ,连结DF BD ∥,以O 为原点,建立如图所示的空间直角坐标系O xyz -,则(D,(C -,E,(DC =u u u r,DE =u u u r ,设平面CDE 的法向量为(,,)n x y z =r,则00DC n DE n ⎧⋅=⎪⎨⋅=⎪⎩u u u r r u u u r r 即00x z x y +=⎧⎨-+=⎩,令1x =,则1z =-,1y =,∴平面CDE 的法向量(1,1,1)n =-r,又平面ADE 的一个法向量为1(0,1,0)n =r,设平面ADE 和平面CDE 所成角(锐角)为θ,则111cos |cos ,|||||n n n n n n θ⋅=<>==⋅r rr r r r ,∴平面ADE 和平面CDE.C13.(1)证明:连结AE ,PE .∵PA ⊥平面ABCD ,BC ⊂平面ABCD , ∴PA BC ⊥.又∵底面ABCD 是菱形,AB BC =,60ABC ∠=︒, ∴ABC △是正三角形. ∵E 是BC 的中点, ∴AE BC ⊥.又∵PA AE A =I ,PA ⊂平面PAE ,PE ⊂平面PAE , ∴BC ⊥平面PAE , ∴BC PE ⊥.(2)由(1)得AE BC ⊥,由BC AD ∥可得AE AD ⊥. 又∵PA ⊥底面ABCD ,∴PA AE ⊥,PA AD ⊥.∴以A 为原点,分别以AE ,AD ,AP 为x 轴,y 轴,z 轴建立空间直角坐标系A xyz -,如图所示,则(0,0,0)A,E ,(0,2,0)D ,(0,0,2)P,1,0)B -,C ,(0,1,1)F .∵PA ⊥平面ABCD ,∴平面ABCD 的法向量为(0,0,2)AP =u u u r. 又∵AC =u u u r,(0,1,1)AF =u u u r .设平面ACF 的一个法向量(,,)n x y z =r,则:AC n AF n ⎧⋅=⎪⎨⋅=⎪⎩u u u r r u u ur r,即00y y z +==⎪⎩+,令1x =,则y =z ,∴(1,n =r.∴cos ,||||AP n AP n AP n ⋅==u u u r ru u u r r u u u r r .∵二面角F AC D --是锐角,∴二面角F AC D --(3)G 是线段AB 上的一点,设(01)AG t AB t =u u u r u u u r≤≤.∵1,0)AB =-u u u r,∴,,0)G t -.又∵2)PC =-u u u r,,,2)PG t =--u u u r.设平面PCG 的一个法向量为(,,)n x y z =r,则:1100PC n PG n ⎧⋅=⎪⎨⋅=⎪⎩u u u r u ru u u r u r,即1111112020y z ty z -=--=+,∴1()n t t =-u r +,∵AF ∥平面PCG ,∴AF n ⊥u u u r r ,0AF n ⋅=u u u r r1)0t -=,解得12t =. 故线段AB 上存在一点G ,使得AF 平行于平面PCG ,G 是AB 中点.14.(1)证明:∵DE ⊥平面ABCD ,AC ⊂平面ABCD , ∴DE AC ⊥. ∵ABCD 是正方形, ∴AC BD ⊥. 又DE BD D =I , ∴AC ⊥平面BDE .(2)∵DA ,DC ,DE 两两重叠,∴建立空间直角坐标系D xyz -如图所示.∵BE 与平面ABCD 所成角为60︒,即60DBE ∠=︒,∴EDDB. 由3AD =,可知DZ =AF ,则(3,0,0)A,F,E ,(3,3,0)B ,(0,3,0)C .∴(0,BF =-u u u r,(3,0,EF =-u u u r,设平面BEF 的法向量为(,,)n x y z =r,则00n BF n EF ⎧⋅=⎪⎨⋅=⎪⎩r u u u rr u u u r,即3030y x ⎧-=⎪⎨-=⎪⎩,令zn =r . ∵AC ⊥平面BDE ,∴CA u u u r为平面BDE 的一个法向量,(3,3,0)CA =-u u u r ,∴cos ,||||n CA n CA n CA ⋅==r u u u rr u u u r r u u u u r . ∵二面角F BE D --为锐角, ∴二面角F BE D --(3)点M 线段BD 上一个动点,设(,,0)M t t ,则(3,,0)AM t t =-u u u u r.∵AM ∥平面BEF ,∴0AM n ⋅=u u u u r r,即4(3)20t t -+=,解得2t =,此时,点M 坐标为(2,2,0),13BM BD =,符合题意.15.(1)证明:∵PA ⊥平面ABC ,BC ⊂平面ABC , ∴PA BC ⊥.∵BC AB ⊥,PA AB A =I , ∴BC ⊥平面PAB . 又AM ⊂平面PAB , ∴AM BC ⊥.∵PA AB =,M 为PB 的中点, ∴AM PB ⊥. 又∵PB BC B =I , ∴AM ⊥平面PBC .(2)如图,在平面ABC 内作AZ BC ∥,则AP ,AB ,AZ 两两垂直,建立空间直角坐标系A xyz -.则(0,0,0)A ,(2,0,0)P ,(0,2,0)B ,(0,2,1)C ,(1,1,0)M . (2,0,0)AP =u u u r ,(0,2,1)AC =u u u r ,(1,1,0)AM =u u u u r.设平面APC 的法向量为(,,)n x y z =r,则:00n AP n AC ⎧⋅=⎪⎨⋅=⎪⎩r u u u r r u u ur ,即020x y z =⎧⎨+=⎩,令1y =,则2z =-. ∴(0,1,2)n =-r.由(1)可知(1,1,0)AM =u u u u r为平面PBC 的一个法向量,∴cos||||AM nn AMAM n⋅⋅=u u u u r rr u u u u ru u u u r r∵二面角A PC B--为锐角,∴二面角A PC B--.(3)证明:设(,,)D v wμ是线段PC上一点,且PD PCλ=u u u r u u u r,(01)λ≤≤,即(2,,)(2,2,1)v wμλ-=-,∴22μλ=-,2vλ=,wλ=.∴(22,22,)BDλλλ=--u u u r.由0BD AC⋅=u u u r u u u r,得4[0,1]5λ=∈,∴线段PC上存在点D,使得BD AC⊥,此时45PDPCλ==.16.解:(1)证明:因为AB⊥平面PAD,所以PH AB⊥,因为3,2AHADHD==,所以2,1AH HD==,设PH x=,由余弦定可得,22221cos22x HD PH xPHDx HD x+--∠==⋅22221cos24x HA PH xPHAx HA x+--∠==⋅因为cos cosPHD PHA∠=-∠,故1PH x==,所以PH AD⊥,因为AD AB A=I,故PH⊥平面ABCD.(2)以H为原点,以,,HA HP HP所在的直线分别为,,x y z轴,建立空间直角坐标系,则3139(2,3,0),(0,0,1),(1,,),(1,,0),(1,,0)2222B P E F C--,所以可得,3311(3,,0),(1,,),(2,0,),(0,3,0)2222BF BE EF FC=--=--=-=u u u r u u u r u u u r u u u r,设平面BEF的法向量(,,)n x y z=r,则有:33002(1,2,4)30022x yBF nnzBE n x y⎧--=⎪⎧⋅=⎪⎪⇒⇒=-⎨⎨⋅=⎪⎪⎩--+=⎪⎩u u u r rru u u r r,设平面EFC的法向量(,,)m x y z=u r,则有:020(1,0,4)2030z EF m x m FC m y ⎧⎧⋅=--=⎪⎪⇒⇒=-⎨⎨⋅=⎪⎪⎩=⎩u u u r u r ur u u u r u r ,故cos ,n m n m n m⋅===⋅r u rr u r r u r 设二面角B EF C --的平面角为θ,则sin 21θ=.17.解(Ⅰ)证明:∵DC ⊥平面ABC ,//BE DC ∴BE ⊥平面ABC ∴CQ BE ⊥ ①又∵2AC BC ==,点Q 为AB 边中点 ∴CQ AB ⊥ ②AB BE B =I故由①②得CQ ⊥平面ABE(Ⅱ)过点A 作AM BC ⊥交BC 延长线于点M ∵,AM BC AM BE ⊥⊥ ∴AM ⊥平面BEDC ∴13A CED CDE V S AM -∆=gsin3AM AC π==g 11212CDE S ∆=⨯⨯=∴113A CED V -=⨯= (Ⅲ)延长ED 交BC 延长线于S ,过点M 作MQ ES ⊥于Q ,连结AQ 由(Ⅱ)可得:AQM ∠为A DE B --的平面角 ∵1//2CD BC ∴2SC CB ==∴SE ==1MC MS ==∵SQM ∆∽SBE ∆∴QM SM BE SE=∴225QM=即5QM=∴3tan155AMAQMQM∠===18.(1)证明:∵在中,,∴当为的中点时,∵平面平面,平面,平面平面∴平面∵平面∴(2)如图,分别以射线,的方向为,轴的正方向,建立空间直角坐标系设,则,,,∵,,平面平面∴∴当且仅当时,最小,此时,设,平面,则,即∴令,可得,,则有∴∴观察可得二面角的平面角19.(1)取FE 的中点P ,连接CP 交BE 于点M ,M 点即为所求的点. 连接PG ,∵G 是AD 的中点,P 是FE 的中点,∴//PG AF , 又PG ⊂平面MGC ,AF ⊄平面MGC ,所以直线//AF 平面MGC , ∵//PE AD ,//AD BC ,∴//PE BC ,∴2BM BCME PE==, 故点M 为线段BE 上靠近点E 的三等分点. (2)不妨设2AD =,由(1)知PG AD ⊥,又平面ADEF ⊥平面ABCD ,平面ADEF I 平面ABCD AD =,PG ⊂平面ADEF ,∴PG ⊥平面ABCD .故PG GD ⊥,PG GC ⊥,以G 为坐标原点,GC ,GD ,GP 分别为x ,y ,z 轴建立空间直角坐标系G xyz -,∵60ABC ∠=︒,2AB AD AF ==,∴ADC ∆为正三角形,3GC =∴(0,0,0)G ,3,0,0)C ,(0,1,0)D ,(0,1,1)E ,∴(0,1,1)GE =u u u r ,3,0,0)GC =u u u r,设平面CEG 的一个法向量1(,,)n x y z =u r ,则由10n GE ⋅=u r u u u r ,10n GC ⋅=u r u u u r 可得0,30,y z x +=⎧⎪⎨=⎪⎩令1y =,则1(0,1,1)n =-u r, ∵(3,1,0)CD =u u u r BA =u u u r,且(0,1,0)A -,故3,2,0)B -,故(3,2,0)BG =u u u r ,故直线BG 与平面GCE 所成角的正弦值为11||14sin 7||||n BG n BG θ⋅==⋅u r u u u r u r u u u r .20.(Ⅰ)取PC 中点H ,连接、EH FH .∵E 为AB 的中点,ABCD 是菱形,∴//AE CD ,且12AE CD =,又F 为PD 的中点,H 为PC 的中点,∴//FH CD ,且12FH CD =,∴//AE FH ,且AE FH =,则四边形AEHF 是平行四边形,∴//AF EH .又AF ⊄平面PCE ,EH ⊂面PCE ,∴//AF 平面PCE .(Ⅱ)取BC 的中点为O ,∵ABCD 是菱形,AC AB =,∴AO BC ⊥,以A 为原点,,,AO AD AP 所在直线分别为,,z x y 轴,建立空间直角坐标系A xyz -,则)()()3,1,0,3,1,0,0,2,0BCD -,)()313,0,0,0,0,1,,02OP E ⎫-⎪⎪⎝⎭,∴)333,1,1,,,022PC EC ⎛⎫=-= ⎪ ⎪⎝⎭u u u ru u u r ,)3,0,0AO =u u ur ,设平面的法向量为()1,,n x y z =,则1100n PC n EC ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r ,即3033022x y z x y ⎧+-=⎪+=⎪⎩,令1y =-,则3,2x z ==,∴平面PCE 的一个法向量为)13,1,2n =-,又平面PAD 的一个法向量为()21,0,0n =.∴12121236cos ,|n ||n |4314n n n n ⋅<>===⋅++.即平面PAD 与平面PCE 621.解:(1)证明:取PD 的中点F ,连接,EF CF , 因为,E F 分别是,PA PD 的中点,所以//EF AD 且12EF AD =, 因为1,//2BC AB BC AD =,所以//EF BC 且EF BC =,所以//BE CF , 又BE ⊄平面,PCD CF ⊂平面PCD ,所以//BE 平面PCD .(2)以P 为坐标原点,,PD PA 所在直线分别为x 轴和y 轴,建立如图所示的空间直角坐标系,不妨设1BC =,则13(0,0,0),3,0),(1,0,0),(1,0,1),(2P A D C B , 133,0),((1,3,0)2PA AB AD ===u u u r u u u r u u u r ,设平面PAB 的一个法向量为(,,)n x y z =r ,则30013002n PA yn AB x z ⎧=⎧⋅=⎪⎪⇒⎨⎨⋅=+=⎪⎪⎩⎩r u u u r r u u u r , 令2x =,得(2,0,1)n =-r,同理可求平面ABD 的一个法向量为cos,5n mm n mn m⋅=⇒===r u ru r r u rr u r,平面ABD和平面ABC为同一个平面,所以二面角P AB C--.22.解:(Ⅰ)证明:因为二面角S AB C--的大小为90°,则SA AD⊥,又SA AB⊥,故SA⊥平面ABCD,又BD⊂平面ABCD,所以SA BD⊥;在直角梯形ABCD中,90BAD ADC∠=∠=︒,21AD CD==,2AB=,所以1tan tan2ABD CAD∠=∠=,又90DAC BAC∠+∠=︒,所以90ABD BAC∠+∠=︒,即AC BD⊥;又AC SA A=I,故BD⊥平面SAC,因为AF⊂平面SAC,故BD AF⊥.(Ⅱ)设点E到平面ABCD的距离为h,因为B ABC E ABCV V--=,且25E ABCS ABCDVV--=,故511215321122132ABCDS ABCDE ABCABCS SAVV S h h--∆⨯⋅⨯===⋅⨯⨯⨯梯形,故12h=,做点E到平面ABCD的距离为12.23.(1)EQ为SD的中点,01,602AD DC SD SDA SDC==∠=∠=.ED EC AD DC∴===设O为AC的中点,连接,EO DO则EO AC⊥//,AD BC BC CD⊥Q.AD BC∴⊥又OD OA OC==EOC EOD∴∆≅∆从而EO OD⊥AC ABCD=Q DO⊂面ABCD0AC DO=IEO∴⊥面ABCD EO⊂Q面AEC∴面EAC ⊥面ABCD ………………6分(2)设F 为CD 的中点,连接OF EF 、,则OF 平行且等于12AD AD Q ∥BC EF ∴∥BC不难得出CD ⊥面OEF (EO CD ⊥Q FO CD ⊥)∴面ECD ⊥面OEFOF 在面ECD 射影为EF ,EFO ∠的大小为BC 与面ECD 改成角的大小设AD a =,则2aOF =32EF a = 3os OF c EFO EF <== 即BC 与ECD 3(亦可以建系完成) ………………12分24.解(Ⅰ)过点P 作PO ⊥底面ABC ,垂足为O , 连接AO 、CO ,则∠PCO 为所求线面角,,AC PA ⊥Q ,AC PO PA PO P ⊥⋂=且,AC ∴⊥平面PAO .则∠P AO 为二面角P -AC -B 平面角的补角∴∠ο60=PAO ,又23PA =∴,Q ,1sin 2PO PCO CO ∠== 030PCO ∴∠=,直线PC 与面ABC 所成角的大小为30°.(Ⅱ)过O 作OE BC ⊥于点E ,连接PE ,则PEO ∠为二面角P -BC -A 的平面角,AC ⊥Q 平面PAO ,AC OA ⊥045AOE ∠=,设OE 与CA 相交于F 22OE EF FO ∴=+=+在PEO ∆中,3436tan 7222POPEO EO-∠===+则二面角P -BC -A 的正切值为436-.25.解:(Ⅰ)如图,取PA 中点F ,连接FD EF ,,ΘE 是BP 的中点,AB EF //Θ且AB EF 21=,又AB DC AB DC 21,//=Θ ∴∴DC EF //四边形EFDC 是平行四边形,故得//EC FD又⊄EC Θ平面⊂FD PAD ,平面PAD//EC ∴平面ADE(Ⅱ)取AD 中点H ,连接PH ,因为PD PA =,所以AD PH ⊥Θ 平面⊥PAD 平面ABCD 于AD ,⊥∴PH 面ABCD ,HB ∴是PB 在平面ABCD 内的射影 PBH ∠∴是PB 与平面ABCD 所成角Θ 四边形ABCD 中,090=∠=∠BCD ABC ∴四边形ABCD 是直角梯形AB CB DC 21== 设a AB 2=,则a BD 2=在ABD ∆中,易得a AD DBA 2,450=∴=∠.22212222a a a DH PD PH =-=-=又22224AB a AD BD ==+ΘABD ∆∴是等腰直角三角形,090=∠ADBa a a DB DH HB 2102212222=+=+=∴ ∴ 在PHB Rt ∆中,5521022tan ===∠a aHB PH PBH(Ⅲ)在平面ABCD 内过点H 作AB 的垂线交AB 于G 点,连接PG ,则HG 是PG 在平面ABCD 上的射影,故AB PG ⊥,所以PGH ∠是二面角D AB P --的平面角, 由a HA a AB 22,2==,又a HG HAB 21450=∴=∠ 在PHG Rt ∆中,22122tan ===∠a aHG PH PGH ∴ 二面角D AB P --的余弦值大小为.3326.(1)∵四棱锥P ﹣ABCD 的底面ABCD 为边长为2的正方形,PA=2,PB=PD=2,∴PA 2+AB 2=PB 2,PA 2+AD 2=PD 2, ∴PA ⊥AB ,PA ⊥AD ,∴以A 为原点,AB 为x 轴,AD 为y 轴,AP 为z 轴, 建立空间直角坐标系,∵E ,F ,G ,H 分别为棱PA ,PB ,AD ,CD 的中点. ∴C (2,2,0),D (0,2,0),B (2,0,0), P (0,0,2),F (1,0,1),G (0,1,0), =(﹣2,0,0),=(﹣1,﹣2,1),=(﹣2,﹣1,0),设平面CFG 的法向量=(x ,y ,z ), 则,取x=1,得=(1,﹣2,﹣3),设CD与平面CFG所成角为θ,则sinθ=|cos<>|===.∴CD与平面CFG所成角的正弦值为.(2)假设棱PD上是否存在点M(a,b,c),且,(0≤λ≤1),使得平面CFG⊥平面MEH,则(a,b,c﹣2)=(0,2λ,﹣2λ),∴a=0,b=2λ,c=2﹣2λ,即M(0,2λ,2﹣2λ),E(0,0,1),H(1,2,0),=(1,2,﹣1),=(0,2λ,1﹣2λ),设平面MEH的法向量=(x,y,z),则,取y=1,得=(,1,),平面CFG的法向量=(1,﹣2,﹣3),∵平面CFG⊥平面MEH,∴=﹣2﹣=0,解得∈[0,1].∴棱PD上存在点M,使得平面CFG⊥平面MEH,此时=.。