高中数学 导数在不等式中的应用(解析版)
(压轴题)高中数学高中数学选修2-2第三章《导数应用》测试(含答案解析)

一、选择题1.已知函数x y a =(1a >)与log ay x =(1a >)的图象有且仅有两个公共点,则实数a 的取值范围是( )A .1e 1e a << B .1e a <<C .1e e e a <<D .e a >2.函数()[)(](),00,sin xf x x x xππ=∈--的图象大致是( )A .B .C .D .3.已知函数322()f x =x ax bx a +++在1x =处的极值为10,则a b -=( ). A .6-B .15-C .15D .6-或154.若函数()2ln f x ax x x =+-存在增区间,则实数a 的取值范围为( ) A .1,4⎛⎫-∞-⎪⎝⎭ B .1,4⎛⎫-+∞ ⎪⎝⎭ C .1,8⎛⎫-+∞ ⎪⎝⎭D .1,8⎛⎫-∞- ⎪⎝⎭5.若1201x x ,则( )A .2121ln ln xxe e x x ->- B .2121ln ln x x e e x x -<-C .1221xxx e x e > D .1221xxx e x e <6.已知可导函数()f x 的定义域为(,0)-∞,其导函数()'f x 满足()2()0xf x f x '->,则不等式2(2020)(2020)(1)0f x x f +-+-<的解集为( ) A .(,2021)-∞- B .(2021,2020)-- C .(2021,0)-D .(2020,0)-7.若实数a ,b 满足0a >,0b >,则“a b >”是“ln ln a a b b +>+”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件8.内接于半径为R 的球且体积最大的圆柱体的高为( ) A 23B 3C 33D 3 9.奇函数()f x 满足0x ≥时,()cos 0f x x '+<,且()3,2f π=-则不等式()cos 22f x x π+>--的解集为( )A .(,0)-∞B .(,)π-∞-C .(,)2π-∞-D .(,)π-∞10.若函数1()21xf x e x =--(e 为自然对数的底数),则()y f x =图像大致为( ) A . B .C .D .11.定义在R 上的函数()f x 的导函数为()'f x ,对任意的实数x ,都有()10f x '+<,且(1)1f =-,则( )A .(0)0f <B .()f e e <-C .()(0)f e f >D .(2)(1)f f >12.已知函数()24ln f x ax ax x =--,则()f x 在()1,3上不单调的一个充分不必要条件是( )A .1,6a ⎛⎫∈-∞ ⎪⎝⎭B .1,2a ⎛⎫∈-+∞ ⎪⎝⎭C .1,2a ⎛⎫∈+∞ ⎪⎝⎭D .11,26a ⎛⎫∈- ⎪⎝⎭二、填空题13.已知函数()2e 2=++xf x ax a ,若不等式()()1≥+f x ax x 对任意[]2,5x ∈恒成立,则实数a 的取值范围是____________.14.已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )+xf '(x )>0,且f (3)=0,则不等式xf (x )>0的解集是_____.15.已知关于x 的方程20--=x e x k 有2个不相等的实数根,则k 的取值范围是___________.16.已知函数()2xe f x ax x =-,()0,x ∈+∞,当21x x >时,不等式()()12210f x f x x x -<恒成立,则实数a 的取值范围为________. 17.321313y x x x =--+的极小值为______. 18.已知函数2()f x x a =+,ln ()2e xg x x x=+,其中e 为自然对数的底数,若函数()y f x =与函数()y g x =的图象有两个交点,则实数a 的取值范围是________.19.设()22,0ln ,0x mx x f x x mx x ⎧-+<=⎨->⎩,若方程()f x x =恰有三个零点,则实数m 的取值范围为______.20.设函数3()32()f x ax x x =-+∈R ,若对于任意[1,1]x ∈-,都有()0f x ≥成立,则实数a 的取值范围是_________.三、解答题21.已知函数()2f x x ax b =++,不等式()0f x ≤的解集为[]1,3-.(1)求函数()f x 的解析式; (2)求方程()4ln f x x x =根的个数. 22.已知函数()()2ln 1f x ax x =-+()0a ≠.(1)讨论()f x 的极值点的个数;(2)当0a >时,设()f x 的极值点为0x ,若()()00121f x x >-+,求a 的取值范围.23.已知函数()212f x x =,()ln g x a x =.设()()()h x f x g x =+ (1)试讨论函数()h x 的单调性. (2)若对任意两个不等的正数12,x x ,都有()()12122h x h x x x ->-恒成立,求实数a 的取值范围;24.已知函数()2(1)xf x x e ax =--,(a R ∈).(1)若12a =,求()f x 的极值; (2)若0x ≥时,()0f x ≥,求实数a 的取值范围. 25.设函数()ln 1x f x x+=, (1)求曲线()y f x =在点()(),e f e 处的切线方程;(2)当1≥x 时,不等式()()211a x f x x x--≥恒成立,求a 的取值范围. 26.已知函数()22x bg x ax +=+,()1,1x ∈-,从下面三个条件中任选一个条件,求出,a b的值,并解答后面的问题.①已知函数()3f x b x a=+-,满足()()220f x f x -++=;②已知函数()()0,1xf x a b a a =+>≠在[]1,2上的值域为[]2,4③已知函数()24f x x ax =-+,若()1f x +在定义域[]1,1b b -+上为偶函数.(1)证明()g x 在()1,1-上的单调性; (2)解不等式()()120g t g t -+<.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】 将问题转化为()1xy a a =>的图象与y x =有两个公共点,即ln ln xa x=有两解,再构造新函数()ln xf x x=,根据()f x 的单调性和取值分析ln a 的取值即可得到结果. 【详解】因为函数()()1,log 1xa y aa y x a =>=>的图象关于直线y x =对称,所以两个图象的公共点在y x =上,所以()1xy a a =>的图象与y x =有两个公共点,即x x a =有两解,即ln ln x x a =有两解,即ln ln xa x=有两解, 令()ln x f x x =,所以()21ln xf x x -'=, 当()0,x e ∈时,()0f x '>,()f x 单调递增,当(),x e ∈+∞时,()0f x '<,()f x 单调递减,()f x 大致图象如下图所示:所以()10ln a f e e<<=,所以11e a e <<, 故选:A. 【点睛】结论点睛:函数图象的交点个数、方程根的数目、函数的零点个数之间的关系: 已知()()()h x f x g x =-,则有()h x 的零点个数⇔方程()()f x g x =根的数目⇔函数()f x 与函数()g x 的图象的交点个数. 2.B解析:B 【分析】首先判断函数的奇偶性,再利用导数研究函数的单调性即可得解; 【详解】 解:因为()[)(](),00,sin xf x x x xππ=∈--,定义域关于原点对称,又()()()sin sin x x f x f x x x x x --===----,所以()[)(](),00,sin x f x x x xππ=∈--为偶函数,函数图象关于y 轴对称,所以排除A 、D ; ()()()()()22sin sin cos sin sin sin x x x x x xx x xf x x x x x ''----'==--令()cos sin g x x x x =-,则()sin g x x x '=-,所以当(]0,x π∈时()0g x '≤,所以()cos sin g x x x x =-在(]0,x π∈上单调递减,又()00g =,所以()0g x <在(]0,x π∈上恒成立,所以()0f x '<在(]0,x π∈上恒成立,即函数()sin xf x x x=-在(]0,π上单调递减,故排除C ,故选:B 【点睛】函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.3.C解析:C 【分析】 由题,可得(1)0(1)10f f '=⎧⎨=⎩,通过求方程组的解,即可得到本题答案,记得要检验.【详解】因为322()f x =x ax bx a +++,所以2()32f x x ax b '=++,由题,得(1)0(1)10f f '=⎧⎨=⎩,即2320110a b a b a ++=⎧⎨+++=⎩,解得411a b =⎧⎨=-⎩或33a b =-⎧⎨=⎩,因为当3,3a b =-=时,2()3(1)0f x x '=-≥恒成立,()f x 在R 上递增,无极值,故舍去,所以4(11)15a b -=--=.故选:C 【点睛】本题主要考查含参函数的极值问题,得到两组解后检验,是解决此题的关键.4.C解析:C 【分析】先假设函数()f x 不存在增区间,则()f x 单调递减,利用()f x 的导数恒小于零列不等式,将不等式分离常数后,利用配方法求得常数a 的取值范围,再取这个取值范围的补集,求得题目所求实数a 的取值范围. 【详解】若函数()f x 不存在增区间,则函数()f x 单调递减, 此时()1210f x ax x'=+-≤在区间()0,∞+恒成立, 可得2112a x x ≤-,则22111111244x x x ⎛⎫-=--≥- ⎪⎝⎭,可得18a ≤-,故函数存在增区间时实数a 的取值范围为1,8⎛⎫-+∞ ⎪⎝⎭.故选C. 【点睛】本小题主要考查利用导数研究函数的单调性,考查不等式恒成立问题的求解策略,属于中档题.5.C解析:C 【分析】令()x e f x x=,(01)x <<,()()ln 01xg x e x x =-<<,求出函数的导数,通过讨论x的范围,求出函数的单调区间,从而判断结论. 【详解】令()x e f x x =,(01)x <<,则2(1)()0x e x f x x-'=<, 故()f x 在(0,1)递减,若1201x x ,则12()()f x f x >,故1212x x e e x x >,即1221x xx e x e >,故C 正确,D 不正确;令()()ln 01xg x e x x =-<<,则11()x xxe g x e x x-'=-=,令()1x h x xe =-,可知()h x 在()0,1单调递增,且(0)10,(1)10h h e =-<=->,则存在()00,1x ∈,使得0()0h x =, 则当()00,x x ∈时,()0h x <,即()0g x '<,()g x 在()00,x 单调递减, 当()0,1x x ∈时,()0h x >,即()0g x '>,()g x 在()0,1x 单调递增, 所以()g x 在()0,1不单调,故A ,B 错误. 故选:C. 【点睛】本题考查了函数的单调性问题,考查导数的应用,是一道中档题.6.B解析:B 【分析】由题可得当(,0)x ∈-∞时,()2()0xf x f x '->,进而构造函数2()()f x g x x =,可判断()g x 在(,0)-∞上的单调性,进而可将不等式转化为(2020)(1)g x g +<-,利用()g x 的单调性,可求出不等式的解集. 【详解】解:构造2()()(0)f x g x x x =<,则243()2()()2()()x f x x f x xf x f x g x x x''⋅-⋅-'==,因为()2()0xf x f x '->,则()0g x '<∴函数()g x 在(,0)-∞上是减函数,∵不等式2(2020)(2020)(1)0f x x f +-+-<,且()2(1)(1)(1)1f g f --==--,等价于()()()()()2220201120201f x f g x +-<=-+-,即为(2020)(1)g x g +<-,所以2020120200x x +>-⎧⎨+<⎩,解得20212020x -<<-.故选:B 【点睛】本题考查函数单调性的应用,构造函数2()()f x g x x =是解决本题的关键,属于中档题. 7.C解析:C 【解析】构造函数1ln ,0,10y x x x y x+='=>+> ,故函数ln y x x =+在0,上单调递增,即由“0a b >>” 可得到“ln ln a a b b +>+”,反之,由“ln ln a a b b +>+”亦可得到“0a b >>” 选C8.A解析:A 【分析】根据圆柱的高,底面半径以及球半径之间的关系,建立圆柱的高与圆柱体积之间的函数关系,利用导数求体积取得最大值时对应的自变量即可. 【详解】根据题意,设圆柱底面半径为r ,圆柱的高为h ,作出示意图如下所示:显然满足2224h r R =-,故圆柱的体积()23214h r h h R h πππ=⨯=-+,故可得()223,(02)4V h h R h R ππ<'=-+<,令()0V h '>,解得2303h R <<,故此时()V h 单调递增, 令()0V h '<232h R <<,故此时()V h 单调递减. 故()23max V h V ⎫=⎪⎪⎝⎭.即当23h =时,圆柱的体积最大.故选:A . 【点睛】本题考查圆柱的外接球以及利用导数求体积的最大值,属综合中档题.9.A解析:A 【分析】构造函数()()sin h x f x x =+,根据其单调性,求解目标不等式即可. 【详解】不妨令()()sin h x f x x =+,因为()()cos 0h x f x x =+'<'在[)0,+∞恒成立, 即()h x 在[)0,+∞单调递减;又()f x 是奇函数,sin y x =是奇函数, 故()h x 是奇函数,且()h x 是R 上的单调减函数. 由()3,2f π=-故可得22h π⎛⎫=-⎪⎝⎭, 又()cos 22f x x π+>--,即22h x h ππ⎛⎫⎛⎫+> ⎪ ⎪⎝⎭⎝⎭, 故22x ππ+<,则0x <.故选:A . 【点睛】本题考查构造函数法,涉及利用导数研究函数单调性以及利用单调性解不等式,属综合中档题.10.C解析:C 【分析】代入特殊值()10f <可判断,A B 选项,记()21x g x e x =--,结合函数单调性可得当x →+∞时,()0f x >,从而可选出正确答案.【详解】记()21x g x e x =--,则有()2x g x e '=-, 当ln 2x <时,()20x g x e -'=<,()g x 是减函数,当ln 2x >时,()20x g x e -'=>,()g x 是增函数,因为()130g e =-<,所以()10f <,排除,A B 选项;()2250g e =->,所以当x →+∞时,()0>g x ,即x →+∞时,()0f x >,则D 错误. 故选:C. 【点睛】本题考查了函数图象的识别,属于中档题.11.B解析:B 【分析】构造()()g x f x x =+,得到函数()g x 在R 上单调递减,由()(1)g e g <即得解. 【详解】构造()()g x f x x =+,则()()1g x f x ''=+, 又()10f x '+<,所以()0g x '<,所以函数()g x 在R 上单调递减,又(1)(1)1110g f =+=-+=, 所以()(1)g e g <,即()0f e e +<, 所以()f e e <-. 故选:B 【点睛】本题主要考查利用导数研究函数的单调性,考查函数单调性的应用,意在考查学生对这些知识的理解掌握水平.12.C解析:C 【分析】本题首先可根据题意得出2241ax ax fxx,令2241g xax ax ,然后根据()f x 在()1,3上不单调得出函数()g x 与x 轴在()1,3上有交点,最后分为0a =、0a ≠两种情况进行讨论,即可得出结果. 【详解】()2124124ax ax f x ax a x x--'=--=, 若()f x 在()1,3上不单调, 令2241g xax ax ,对称轴为1x =,则函数2241g xax ax 与x 轴在()1,3上有交点,当0a =时,显然不成立;当0a ≠时,则()()21680130a a g g ⎧∆=+>⎪⎨⋅<⎪⎩,解得16a >或12a <-,易知()f x 在()1,3上不单调的一个充分不必要条件是1,2a ⎛⎫∈+∞ ⎪⎝⎭, 故选:C. 【点睛】关键点点睛:本题考查函数单调性问题,若函数在否个区间内不单调,则函数的导函数在这个区间内有零点且穿过x 轴,考查二次函数性质的应用,考查充分条件与必要条件的判定,是中档题.二、填空题13.【分析】原不等式可化为当时该不等式恒成立当时不等式可化为从而构造函数求导并判断单调性可求出令即可【详解】由题意不等式可化为当时恒成立;当时不等式可化为令则求导得所以在上单调递减在上单调递增所以则综上 解析:(3,e ⎤-∞⎦【分析】原不等式可化为()e 2xa x ≥-,当2x =时,该不等式恒成立,当(]2,5x ∈时,不等式可化为e 2x a x ≥-,从而构造函数()e 2xg x x =-,求导并判断单调性,可求出()min g x ,令()min g x a ≥即可.【详解】由题意,不等式()2e 21x ax a ax x ++≥+可化为()e 2xa x ≥-,当2x =时,()e 2xa x ≥-恒成立;当(]2,5x ∈时,不等式可化为e 2xa x ≥-, 令()e 2xg x x =-,(]2,5x ∈,则()min g x a ≥,求导得()()()2e 32x x g x x -'=-,所以()g x 在()2,3上单调递减,在[]3,5上单调递增,所以()()3min 3e g x g ==,则3e a ≤,综上所述,实数a 的取值范围是(3,e ⎤-∞⎦. 故答案为:(3,e ⎤-∞⎦.【点睛】关键点点睛:本题考查不等式恒成立问题,解题关键是将原不等式转化为e 2xa x ≥-,通过构造函数()e 2xg x x =-,令()min g x a ≥,可求出a 的取值范围.考查学生的逻辑推理能力,计算求解能力,属于中档题.14.(﹣∞﹣3)∪(3+∞)【分析】令当x >0时可得x ∈(0+∞)上函数单调递增由可得由函数是定义在R 上的奇函数可得函数是定义在R 上的偶函数进而得出不等式的解集【详解】解:令当x >0时∴x ∈(0+∞)上解析:(﹣∞,﹣3)∪(3,+∞) 【分析】令()()g x xf x =,()()()g x f x xf x ''+=,当x >0时,()()0f x xf x '+>,可得x ∈(0,+∞)上,函数()g x 单调递增.由()30f =,可得()30g =.由函数()f x 是定义在R 上的奇函数,可得函数()g x 是定义在R 上的偶函数.进而得出不等式的解集. 【详解】解:令()()g x xf x =,()()()g x f x xf x ''+= 当x >0时,()()0f x xf x '+>∴x ∈(0,+∞)上,函数()g x 单调递增.()30f =,∴()30g =.∵函数()f x 是定义在R 上的奇函数, ∴函数()g x 是定义在R 上的偶函数. 由()()03g x g >=,即()()3g x g >, ∴|x |>3,解得x >3,或x <﹣3.∴不等式()0xf x >的解集是()(),33-,-∞⋃+∞. 故答案为:()(),33-,-∞⋃+∞. 【点睛】本题考查了利用导数研究函数的单调性、方程与不等式的解法、等价转化方法,考查了推理能力与计算能力,属于中档题.15.【分析】把关于x 的方程有2个不相等的实数根转化为与函数的图象有两个不同的交点利用导数求得函数的单调性与极值即可求解【详解】由题意关于x 的方程有2个不相等的实数根即函数与函数的图象有两个不同的交点设则 解析:(22ln2,)-+∞【分析】把关于x 的方程20--=x e x k 有2个不相等的实数根,转化为y k =与函数2x y e x =-的图象有两个不同的交点,利用导数求得函数()2x f x e x =-的单调性与极值,即可求解. 【详解】由题意,关于x 的方程20--=x e x k 有2个不相等的实数根, 即函数y k =与函数2x y e x =-的图象有两个不同的交点,设()2x f x e x =-,则()2x f x e '=-,令()20x f x e '=-=,解得ln 2x =, 所以函数的减区间为(,ln 2)-∞,增区间为(ln 2,)+∞, 所以函数()f x 的最小值为(ln 2)22ln 2f =-,且当x →-∞时,()f x →+∞,当x →∞时,()f x →+∞, 要使得2x e x k -=有2个不相等的实数根,所以22ln 2k >-. 即实数k 的取值范围是(22ln2,)-+∞. 故答案为:(22ln2,)-+∞. 【点睛】本题主要考查了利用导数研究方程的根,其中解答中把方程根的个数转化为两个函数的图象的交点的个数,利用导数求得函数的单调性与极值是解答的关键,着重考查转化思想,以及运算与求解能力.16.【分析】由当时不等式恒成立变形得到当时不等式恒成立即在上是增函数然后由在上是恒成立求解【详解】因为当时不等式恒成立即当时不等式恒成立所以在上是增函数所以在上是恒成立即在上是恒成立令所以当时当时所以当解析:2,12e ⎛⎤-∞ ⎥⎝⎦【分析】由当21x x >时,不等式()()12210f x f x x x -<恒成立,变形得到当21x x >时,不等式()()1122x f x x f x <恒成立,即()()g x xf x =,在()0,x ∈+∞上是增函数,然后由()0g x '≥,在()0,x ∈+∞上是恒成立求解.【详解】因为当21x x >时,不等式()()12210f x f x x x -<恒成立,即当21x x >时,不等式()()1122x f x x f x <恒成立, 所以()()g x xf x =,在()0,x ∈+∞上是增函数, 所以()230xg x e ax '=-≥,在()0,x ∈+∞上是恒成立,即23xe a x ≤,在()0,x ∈+∞上是恒成立,令2()3xe h x x=,所以()32()3x e x h x x-'=, 当02x <<时,()0h x '<,当2x >时,()0h x '>,所以当2x =时,()h x 取得最小值,最小值为212e,所以实数a 的取值范围为2,12e ⎛⎤-∞ ⎥⎝⎦.故答案为:2,12e ⎛⎤-∞ ⎥⎝⎦.【点睛】本题主要考查导数与函数的单调性,还考查了转化化归的思想和运算求解的能力,属于中档题.17.【分析】求导根据导数正负得到函数单调区间得到函数的极小值为计算得到答案【详解】则当和时函数单调递增;当时函数单调递减故函数极小值为故答案为:【点睛】本题考查了利用导数求极值意在考查学生的计算能力和应 解析:8-【分析】求导,根据导数正负得到函数单调区间得到函数的极小值为()3f ,计算得到答案. 【详解】()321313y f x x x x ==--+,则()()()2'2331f x x x x x =--=-+, 当()3,x ∈+∞和(),1x ∈-∞-时,()'0f x >,函数单调递增; 当()1,3x ∈-时,()'0f x <,函数单调递减, 故函数极小值为()32313333183f ⨯--⨯+=-=. 故答案为:8-. 【点睛】本题考查了利用导数求极值,意在考查学生的计算能力和应用能力.18.【分析】将已知等价转化为函数与函数的图象有两个交点分别作出图象观察其只需满足二次函数顶点低于函数的顶点从而构建不等式解得答案【详解】函数与函数的图象有两个交点等价于函数与函数的图象有两个交点对函数求解析:21,e e ⎛⎫-∞+ ⎪⎝⎭【分析】将已知等价转化为函数22y x ex a =-+与函数ln xy x=的图象有两个交点,分别作出图象,观察其只需满足二次函数顶点低于函数ln xy x=的顶点,从而构建不等式,解得答案. 【详解】函数()y f x =与函数()y g x =的图象有两个交点, 等价于函数22y x ex a =-+与函数ln xy x=的图象有两个交点, 对函数ln x y x =求导,得21ln xy x-'=,()0,x e ∈,0y '>, 函数ln xy x=单调递增;(),x e ∈+∞,0y '<, 函数ln xy x =单调递减,在x e =处取得极大值,也是最大值为1e, 对二次函数22y x ex a =-+,其对称轴为x e =,顶点坐标为()2,e a e -分别作出图象,其若要有两个交点,则2211a e a e e e-<⇒<+故答案为:21,e e ⎛⎫-∞+ ⎪⎝⎭【点睛】本题考查由函数图象的交点个数求参数的取值范围,属于中档题.19.【分析】将问题转化为与图像交点个数有3个的问题利用导数研究函数单调性和最值数形结合即可求得结果【详解】当时等价于;当时等价于;令则方程恰有三个零点等价于与直线有三个交点当时则令解得故该函数在区间单调 解析:221m <-【分析】将问题转化为()2,0,0x x xh x lnx x x⎧+<⎪⎪=⎨⎪>⎪⎩与1y m =+图像交点个数有3个的问题,利用导数研究函数单调性和最值,数形结合即可求得结果. 【详解】当0x <时,22y x mx x =-+=,等价于21x m x+=+; 当0x >时,y lnx mx x =-=,等价于1lnxm x=+; 令()2,0,0x x xh x lnx x x ⎧+<⎪⎪=⎨⎪>⎪⎩,则方程()f x x =恰有三个零点,等价于()y h x =与直线1y m =+有三个交点. 当lnx y x =时,则21lnx y x-=',令0y '=,解得x e =, 故该函数在区间()0,e 单调递增,在(),e +∞单调递减. 且x e =时,1y e=;又x e >时,0y >; 而当2y x x=+时,由对勾函数性质,容易知: 当2x =-时,函数取得最大值22y =-. 故()h x 的图像如下所示:数形结合可知,要满足题意,只需122m +<-, 解得221m <-. 故答案为:221m <-. 【点睛】本题考查由方程根的个数求参数范围,涉及利用导数研究函数单调性,对勾函数,属综合中档题.20.【分析】求出时的值讨论函数的增减性得到的最小值让最小值大于等于0即可求出的范围【详解】解:由可得当时令解得且①当时为递增函数②当时为递减函数③当时为递增函数所以即解得故答案为:【点睛】考查学生理解函 解析:15a ≤≤【分析】求出()0f x '=时x 的值,讨论函数的增减性得到()f x 的最小值,让最小值大于等于0即可求出a 的范围. 【详解】解:由(1)0f ≥可得1a ≥,2'()33f x ax =-, 当1a ≥时,令2'()330f x ax =-=解得x =,且1>-<①当1x -<<()0,()f x f x '>为递增函数, ②当x <<()0,()f x f x '<为递减函数, ③1x <<时,()f x 为递增函数.所以()010f f ⎧≥⎪⎨⎝⎭⎪-≥⎩,即3320320a a ⎧⎪-+≥⎨⎝⎭⎝⎭⎪-++≥⎩, 解得15a ≤≤. 故答案为:15a ≤≤. 【点睛】考查学生理解函数恒成立时取条件的能力,以及利用导数求函数最值的能力.三、解答题21.(1)()223f x x x =--;(2)有且只有一个根.【分析】(1)根据不等式的解集与方程根的对应关系,列出关于,a b 的方程组,从而求解出,a b 的值,则()f x 的解析式可求; (2)将问题转化为求方程34ln 20x x x---=根的数目,构造新函数()34ln 2g x x x x=---,利用导数分析()g x 的单调性和极值,由此判断出()g x 的零点个数,从而方程()4ln f x x x =根的个数可确定.【详解】解:(1)∵不等式()0f x ≤的解集为[]1,3-, ∴20x ax b ++=的两个根分别为1-和3. ∴()()1313a b ⎧-=-+⎪⎨=-⨯⎪⎩.即2a =-,3b =-,故函数()f x 的解析式为()223f x x x =--.(2)由(1),设()22334ln 4ln 2x x g x x x x x x--=-=---,∴()g x 的定义域为()0,∞+,()()()2213341x x g x x x x--'=+-=, 令()0g x '=,得11x =,23x =.当x 变化时,()g x ',()g x 的取值变化情况如下表:当03x <≤时,140g x g ≤=-<, 当3x >时,()55553ee202212290eg =--->--=>. 又因为()g x 在()3,+∞上单调递增,因而()g x 在()3,+∞上只有1个零点, 故()g x 仅有1个零点.即方程()4ln f x x x =有且只有一个根. 【点睛】思路点睛:利用导数分析方程根的个数的思路: (1)将方程根的个数问题转化为函数零点的个数问题;(2)将原方程变形,构造新函数,分析新函数的单调性、极值、最值;(3)根据新函数的单调性、极值、最值得到新函数的零点个数,则方程根的个数可确定.22.(1)答案见解析;(2)⎛⎫⎪+∞⎪⎭. 【分析】(1)()21221211ax ax f x ax x x +-'=-=++,令()2221g x ax ax =+-,分两种情况讨论,判断方程()0g x =根的个数即可;(2)由(1)知()00g x =,即202210ax ax +-=,()20012a x x =+,先求得01x ,进而可得答案即可.【详解】(1)()21221211ax ax f x ax x x +-'=-=++,令()2221g x ax ax =+- 当0a >时,由()10g -<知,()g x 在()1,-+∞有唯一零点, 故()f x 在()1,-+∞有一个极值点;当0a <时,()10g -<,()g x 的对称轴为12x =-,若方程()0g x =的0∆>,即2480a a +>,2a <-时,()g x 在()1,-+∞有两个零点,()f x 在()1,-+∞有两个极值点;若方程()0g x =的0∆≤,即2480a a +≤,20a -≤<时,()0g x ≤,()f x 在()1,-+∞上单减,无极值点.(2)由(1)知()00g x =,即2002210ax ax +-=,()20012a x x =+……(*) 由0a >且010x +>得00x >,又∵()()00121f x x >-+,∴()()20001ln 121ax x x -+>-+代入(*)式,()()()00001ln 12121x x x x -+>-++, 即()01ln 102x -+>解得01x <,∴001x <<, ∴.()20012a x x ⎛⎫⎪=∈+∞⎪+⎭. 【点睛】求函数()f x 极值的步骤:(1) 确定函数的定义域;(2) 求导数fx ;(3) 解方程()0,f x '=求出函数定义域内的所有根;(4) 列表检查fx 在0fx的根0x 左右两侧值的符号,如果左正右负(左增右减),那么()f x 在0x 处取极大值,如果左负右正(左减右增),那么()f x 在0x 处取极小值. 23.(1)答案见解析;(2)[)1,+∞. 【分析】(1)求导后,分别在0a ≥和0a <两种情况下讨论导函数的正负即可得到结果; (2)将恒成立的不等式转化为()()112222h x x h x x ->-对于任意的12x x >恒成立,从而只需构造函数()()2t x h x x =-,证明()t x 在()0,∞+上单调递增即可,从而将问题进一步转化为()0t x '≥在()0,∞+上恒成立,进而利用分离变量的方法可求得结果. 【详解】(1)()()21ln 02h x x a x x =+>,则()()20a x ah x x x x x+'=+=>, 当0a ≥时,()0h x '>恒成立,()h x ∴在()0,∞+上单调递增;当0a <时,若(x ∈,()0h x '<;若)x ∈+∞,()0h x '>;()h x ∴在(上单调递减,在)+∞上单调递增.(2)设12x x >,则()()12122h x h x x x ->-等价于()()112222h x x h x x ->-, 即()()112222h x x h x x ->-对于任意的12x x >恒成立. 令()()212ln 22t x h x x x a x x =-=+-,则只需()t x 在()0,∞+上单调递增, ()2at x x x'=+-,∴只需()0t x '≥在()0,∞+上恒成立即可. 令()200ax x x+-≥>,则()220a x x x ≥-+>, 当1x =时,()2max21x x -+=,1a ∴≥,即实数a 的取值范围为[)1,+∞.【点睛】关键点点睛:本题主要考查导数在函数中的应用,以及不等式的证明,着重考查了转化与化归思想、逻辑推理能力与计算能力,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,求解曲线在某点处的切线方程;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题,同时注意数形结合思想的应用. 24.(1)极大值是112e-,()f x 的极小值是0(2)1a ≤ 【分析】(1)()()2112xx f x e x =--,求导()()()110x f x x e '=+-=,判断()f x ',()f x 变化求得极值;(2)解法一:分离a,求最值得a 的范围,解法二: ()xf x e a '=-,讨论a 的范围得解 【详解】 (1)当12a =时,()()2112xx f x e x =-- ()()()110x f x x e '=+-=时,则1x =-,0x =.当x 变化时,()f x ',()f x 变化状态如下表:所以()f x 的极大值是()12f e-=-,()f x 的极小值是()00f = (2))等价于当0x ≥时,()()10xf x x e ax =--≥恒成立解法一: 当0x =,等号成立,当x>0,()10x e f x a x -≥⇔≤,设()1x e g x x-=()min a g x ≤,由经典不等式1x e x >+ ∴1a ≤或者()21x x xe e g x x-+'=,()1x x x xe e ϕ=-+,()0x x x xx e xe e xe ϕ='+-=> ()x ϕ↑,()()00ϕϕ>=x ∴()0g x '>,()g x ↑,又()0,1x g x →→ ∴1a ≤解法二: ()xf x e a '=-,0x ≥,1x e ≥若1a ≤,则()0xf x e a ='-≥,()f x ↑,∴()()00f x f ≥=,即不等式恒成立.(充分性)若1a >,()0xf x e a '=-= ∴0ln 0x a =>()00,x x ∈,()0f x '<,()f x ↓,()()00f x f ≤=,这与当0x ≥时,()10xf x e ax =--≥恒成立相矛盾(必要性)【点睛】本题考查函数与导数的极值,考查不等式恒成立,考查转化化归能力,考查计算能力,是中档题25.(1)230x e y e +-=(2)(,0]-∞ 【详解】试题分析:(1)先求函数导数,再根据导数几何意义得切线斜率为()'f e ,最后根据点斜式求切线方程(2)构造函数()()2ln 1g x x a x =--,利用导数并按0a ≤,10<2a <,12a ≥进行分类讨论,通过函数的单调性以及最值进行与0比较,可得结果. 试题(1)根据题意可得,()2f e e=, ()2ln 'xf x x -=,所以()22ln 1'e f e e e -==-,即21k e =-, 所以在点()(),e f e 处的切线方程为()221y x e e e-=--,即230x e y e +-=. (2)根据题意可得,()()()221ln 110a x x a x f x x x x-----=≥在1≥x 恒成立,令()()2ln 1g x x a x =--,()1x ≥,所以()12g x ax x-'=, 当0a ≤时,()0g x '>,所以函数()y g x =在[)1,+∞上是单调递增, 所以()()10g x g ≥=, 所以不等式()()21a x f x x->成立,即0a ≤符合题意;当0a >时,令120ax x-=,解得x =1=,解得12a =,当10<2a <1,所以()g x '在⎛ ⎝上()0g x '>,在+⎫∞⎪⎪⎭上()0g x '<,所以函数()y g x =在⎛ ⎝上单调递增,在+⎫∞⎪⎪⎭上单调递减,21111ln 1ln g a a a a a a a ⎛⎫⎛⎫⎛⎫=--=--+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,令()1ln h a a a a =--+,()222111'10a a h a a a a-+=-++=>恒成立,则()h a 在10,2⎛⎫ ⎪⎝⎭单调递增 所以()1111ln 2ln2202222h a h ⎛⎫<=--+=+-<⎪⎝⎭,所以存在10g a ⎛⎫< ⎪⎝⎭, 所以102a <<不符合题意; ②当12a ≥1≤ ()0g x '≤在[)1,+∞上恒成立,所以函数()y g x =在[)1,+∞上是单调递减,所以()()10g x g ≤= 显然12a ≥不符合题意; 综上所述,a 的取值范围为{}|0a a ≤26.选法见解析;2a =,0b =;(1)证明见解析;(2)103t <<. 【分析】(1)根据函数的对称性,定义域和值域,奇偶性计算得到2a =,0b =,再求导证明单调性.(2)利用函数的奇偶性和单调性解不等式得到答案. 【详解】(1)①由()()220f x f x -++=得()f x 对称中心为()2,0即得2a =,0b =; ②(i )当1a >时,()xf x a b =+在[]1,2上单调递增,则有224a b a b +=⎧⎨+=⎩得220a a --=, 得2a =,0b =;(ii )当01a <<时,()xf x a b =+在[]1,2上单调递减,则242a b a b +=⎧⎨+=⎩得220a a -+=,无解,所以2a =,0b =;③由()24f x x ax =-+得()()2125f x x a x a +=+-+-,因为()1f x +在[]1,1b b -+上是偶函数,则202a -=,且()()110b b -++=, 所以2a =,0b =; 由①或②或③得()222xg x x =+,()1,1x ∈-,()()222121x g x x -'=+, 由11x -<<得()0g x '>,则()g x 在()1,1-上单调递增. (2)因为()()222xg x g x x --==-+,则()g x 为奇函数.由()()120g t g t -+<即()()21g t g t <-又因为()g x 在()1,1-上单调递增,则121,111,21,t t t t -<<⎧⎪-<-<⎨⎪<-⎩解得103t <<.【点睛】本题考查了函数对称性,奇偶性,单调性,函数的定义域和值域,解不等式,意在考查学生对于函数知识的综合应用.。
利用导数证明不等式-高中数学(理)黄金100题---精校解析 Word版

第27题 利用导数证明不等式I .题源探究·黄金母题【例1】利用函数的单调性,证明下列不等式:(1)sin x x <,()0,x ∈π; (2)20x x ->,(0,1)x ∈; (3)1x e x >+,0x ≠;(4)ln xx x e <<,0x >.【解析】(1)证明:设()sin f x x x =-,()0,x ∈π.因为()cos 10f x x '=-<,()0,x ∈π,所以()sin f x x x =-在()0,π内单调递减,因此()sin (0)0f x x x f =-<=,()0,x ∈π,即sin x x <,()0,x ∈π.(2)证明:设2()f x x x =-,(0,1)x ∈.因为()12f x x '=-,(0,1)x ∈所以当1(0,)2x ∈时,()120f x x '=->,()f x 单调递增,2()(0)0f x x x f =->=;当1(,1)2x ∈时,()120f x x '=-<,()f x 单调递减,2()(1)0f x x x f =->=;又11()024f =>.因此,20x x ->,(0,1)x ∈.(3)证明:设()1x f x e x =--,0x ≠.因为()1x f x e '=-,0x ≠,所以,当0x >时,()10x f x e '=->,()f x 单调递增,()1(0)0x f x e x f =-->=; 当0x <时,()10x f x e '=-<,()f x 单调递减,精彩解读【试题来源】人教版A 版选修2-2P 31习题1.3B 组第1题 【母题评析】不等式证明是高中数中常见的一类典型问题,本题考查了如何通过构造函数结合函数的单调性去证明不等式.【思路方法】不等式证明常用的基本方法有:综合法、比较法(作差法、作商法)、分析法,本题之后又添一法——构造函数法,要注意所构造函数的定义域.()1(0)0x f x e x f =-->=;综上,1x e x ->,0x ≠.(4)证明:设()ln f x x x =-,0x >. 因为1()1f x x '=-,0x ≠,所以当01x <<时,1()10f x x'=->,()f x 单调递增,()ln (1)10f x x x f =-<=-<;当1x >时,1()10f x x'=-<,()f x 单调递减,()ln (1)10f x x x f =-<=-<;当1x =时,显然ln11<. 因此,ln x x <. 由(3)可知,1x e x x >+>,0x >. 综上,ln x x x e <<,0x >.II .考场精彩·真题回放【例1】【2017全国III 】已知函数()()2ln 21f x x ax a x =+++.(I )讨论()f x 的单调性; (II )当0a <时,证明3()24f x a≤--. 【答案】(I )当0≥a 时,)(x f 在),0(+∞单调递增;当0<a 时,则)(x f 在)21,0(a -单调递增,在),21(+∞-a 单调递减;(II )详见解析 【解析】试题分析:(I )先求函数导数(21)(1)'()(0)ax x f x x x++=>,再根据导函数符号变化情况讨论单调性:当0≥a 时,0)('≥x f ,则)(x f 在),0(+∞单调递增,当0<a 时,则)(x f 在)21,0(a -单调递增,在),21(+∞-a单调递减.(II )证明3()24f x a ≤--,即证max 3()24f x a ≤--,而)21()(max af x f -=,所以目标函数为121)21ln()243()21(++-=+---a a a a f ,即t t y -+=1ln【命题意图】本类题通常主要考查利用导数求单调性,利用导数证不等式.【考试方向】这类试题在考查题型上,主要是解答题,难度中等;若为压轴题,则难度大. 作为压轴题,基本上含有参数.含有参数的函数导数试题,主要有两个方面:一是根据给出的某些条件求出这些参数值,基本思想方法为方程的思想;二是在确定参数的范围(或取值)使得函数具有某些性质,基本解题思想是函数与方程的思想、分类讨论的思想.含有参数的函数导数试题是高考考查函数方程思想、分类讨论思想的主要题(021>-=at ),利用导数易得0)1(max ==y y ,即得证. 试题解析:(I ))0()1)(12(1)12(2)('2>++=+++=x xx ax x x a ax x f ,当0≥a 时,0)('≥x f ,则)(x f 在),0(+∞单调递增,当0<a 时,则)(x f 在)21,0(a -单调递增,在),21(+∞-a单调递减. (II )由(I )知,当0<a 时,)21()(max af x f -=, 121)21ln()243()21(++-=+---aa a a f ,令t t y -+=1ln (021>-=a t ),则011'=-=ty ,解得1=t ,∴y 在)1,0(单调递增,在),1(+∞单调递减,∴0)1(max ==y y ,∴0≤y ,即)243()(max +-≤a x f ,∴243)(--≤ax f .【例2】【2017全国II 理】已知函数()2ln f x ax ax x x =--,且()0f x ≥.(I )求a ;(II )证明:()f x 存在唯一的极大值点0x ,且()2202e f x --<<.【答案】(I )1a =;(II )证明略. 【解析】试题分析:(I )利用题意结合导函数与原函数的关系可求得1a =,注意验证结果的正确性;(II )结合(I )的结论构造函数()22ln h x x x =--,结合()h x 的单调性和()f x 的解析式即可证得题中的不等式()2202ef x --<<.试题解析:(I )()f x 的定义域为()0,+∞.设()ln g x ax a x =--,则()()f x xg x =,()0f x ≥等价于()0g x ≥.因为()()10,0g g x =≥,因()'10g =,而()()1','11g x a g a x =-=-,得1a =.若1a =,则()1'1g x x=-.当01x <<时,()'0g x <,()g x 单调递减;当1x >时,()'0g x >,()g x 单调递增.所以1x =是()g x 的极小值点,故()()10g x g ≥=.型之一.【难点中心】利用导数证明不等式常见类型及解题策略: (1)构造差函数()()()h x f x g x =-. 根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式;(2)根据条件,寻找目标函数.一般思路为利用条件将求和问题转化为对应项之间大小关系,或利用放缩、等量代换将多元函数转化为一元函数.综上,1a =.(II )由(I )知 ()2ln f x x x x x =--,()'22ln f x x x =--.设()22ln h x x x =--,则()1'2h x x=-.当10,2x ⎛⎫∈ ⎪⎝⎭ 时,()'0h x <;当1,2x ⎛⎫∈+∞⎪⎝⎭时,()'0h x >, 所以()h x 在10,2⎛⎫ ⎪⎝⎭ 单调递减,在1,2⎛⎫+∞⎪⎝⎭单调递增. 又()20h e ->,102h ⎛⎫< ⎪⎝⎭,()10h =,所以()h x 在10,2⎛⎫ ⎪⎝⎭有唯一零点0x ,在1,2⎡⎫+∞⎪⎢⎣⎭有唯一零点1,且当()00,x x ∈ 时,()0h x >;当()0,1x x ∈ 时,()0h x <,当()1,x ∈+∞ 时,()0h x >.因为()()'f x h x =,所以0x x =是()f x 的唯一极大值点. 由()0'0f x =得()00ln 21x x =-,故()()0001f x x x =-. 由()00,1x ∈ 得 ()014f x <. 因为0x x =是()f x 在(0,1)的最大值点,由()10,1e -∈,()1'0f e -≠ 得()()120f x f e e -->=,所以()2202e f x --<<.【例3】【2017天津理20】设a ∈Z ,已知定义在R 上的函数432()2336f x x x x x a =+--+在区间(1,2)内有一个零点0x ,()g x 为()f x 的导函数.(Ⅰ)求()g x 的单调区间; (Ⅱ)设00[1,)(,2]m x x ∈,函数0()()()()h x g x m x f m =--,求证:0()()0h m h x <;(Ⅲ)求证:存在大于0的常数A ,使得对于任意的正整数,p q ,且00[1,)(,2],p x x q ∈ 满足041||p x q Aq-≥. 【答案】(I )增区间是(,1)-∞-,1(,)4+∞,减区间是1(1,)4-;(II )(III )证明见解析.【解析】试题分析:由于()g x 为()f x ',所以判断()g x 的单调性,需要对()f x 二次求导,根据()g x '的导数的符号判断函数的单调性,给出单调区间;由0()()()()h x g x m x f m =--,得()()()00()h m g x m x f m =--,令函数10()()()()H x g x x x f x =--,200()()()()H x g x x x f x =--分别求导证明.有关零点问题,利用函数的单调性了解函数的图像情况,对极值作出相应的要求可控制零点的个数.试题解析:(Ⅰ)由432()2336f x x x x x a =+--+,可得32()()8966g x f x x x x '==+--,进而可得2()24186g x x x '=+-.令()0g x '=,解得1x =-,或14x =. 当x 变化时,(),()g x g x '的变化情况如下表:所以()g x 的单调递增区间是(,1)-∞-和(,)4+∞,单调递减区间是1(1,)4-.(Ⅱ)证明:由0()()()()h x g x m x f m =--,得0()()()()h m g m m x f m =--,000()()()()h x g x m x f m =--.令函数10()()()()H x g x x x f x =--,则10()()()H x g x x x ''=-.由(Ⅰ)知,当[1,2]x ∈时,()0g x '>,故当0[1,)x x ∈时,1()0H x '<,1()H x 单调递减;当0(,2]x x ∈时,1()0H x '>,1()H x 单调递增.因此,当00[1,)(,2]x x x ∈时,1100()()()0H x H x f x >=-=,可得1()0,()0H m h m >>即.令函数200()()()()H x g x x x f x =--,则20()()()H x g x g x '=-.由(Ⅰ)知,()g x 在[1,2]上单调递增,故当0[1,)x x ∈时,2()0H x '>,2()H x 单调递增;当0(,2]x x ∈时,2()0H x '<,2()H x 单调递减.因此,当00[1,)(,2]x x x ∈时,220()()0H x H x <=,可得20()0,()0H m h x <<即.所以,0()()0h m h x <.(III )证明:对于任意的正整数p ,q ,且00[1)(,],2px x q∈, 令pm q=,函数0()()()()h g m x x x m f =--. 由(II )知,当0[1),m x ∈时,()h x 在区间0(,)m x 内有零点; 当0(,2]m x ∈时,()h x 在区间0(),x m 内有零点.所以()h x 在(1,2)内至少有一个零点,不妨设为1x ,则110()()()()0p ph g x f q x qx =--=.由(I )知()g x 在[1,2]上单调递增,故10()()12()g x g g <<<,于是432234041()|()||2336|||||()()(2)2p p f f p p p q p q pq aq q q x q g x g g q+--+-=≥=. 因为当[12],x ∈时,()0g x >,故()f x 在[1,2]上单调递增,所以()f x 在区间[1,2]上除0x 外没有其他的零点,而0p x q≠,故()0pf q ≠.又因为p ,q ,a 均为整数,所以432234|2336|p p q p q pq aq +--+是正整数,从而432234|2336|1p p q p q pq aq +--+≥.所以041|2|()p x q g q -≥.所以,只要取()2A g =,就有041||p x q Aq -≥. III .理论基础·解题原理考点 利用导数解决不等式恒成立问题、证明不等式导数研究不等式,涉及不等式的证明、不等式的恒成立等问题,主要考查通过转化使用导数研究函数性质并把函数性质用来分析不等式和方程等问题的能力,该点和第二个点一般是解答题中的两个设问,考查的核心是导数研究函数性质的方法和函数性质的应用IV .题型攻略·深度挖掘【考试方向】含有参数的函数导数试题,主要有两个方面:一是根据给出的某些条件求出这些参数值,基本思想方法为方程的思想;二是在确定参数的范围(或取值)使得函数具有某些性质,基本解题思想是函数与方程的思想、分类讨论的思想.含有参数的函数导数试题是高考考查函数方程思想、分类讨论思想的主要题型之一.这类试题在考查题型上,通常以解答题的形式出现,难度中等. 【技能方法】利用导数证明不等式常见类型及解题策略: (1)构造差函数()()()h x f x g x =-.根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式;(2)根据条件,寻找目标函数.一般思路为利用条件将求和问题转化为对应项之间大小关系,或利用放缩、等量代换将多元函数转化为一元函数. 【易错指导】等于含参数的问题,最后结果区间端点到底取不取(即能否取等号),是个难点,易出错.注意要验证参数取等号时,函数是否满足题设条件,若满足把取等号的情况加上,否则不加.V .举一反三·触类旁通考向1 利用函数的单调性证明不等式【例1】【2016高考新课标Ⅲ】设函数()ln 1f x x x =-+. (I )讨论()f x 的单调性; (II )证明当(1,)x ∈+∞时,11ln x x x-<<; (III )设1c >,证明当(0,1)x ∈时,1(1)xc x c +->.(Ⅲ)由题设1c >,设()1(1)x g x c x c =+--,则'()1ln x g x c c c =--.令'()0g x =,解得01lnln ln c c x c-=. 当0x x <时,'()0g x >,()g x 单调递增;当0x x >时,'()0g x <,()g x 单调递减. 由(Ⅱ)知,11ln c c c-<<,故001x <<.又(0)(1)0g g ==,故当01x <<时,()0g x >, 所以当(0,1)x ∈时,1(1)x c x c +->.考点:1、利用导数研究函数的单调性;2、不等式的证明与解法.【思路点拨】求解导数中的不等式证明问题可考虑:(1)首先通过利用研究函数的单调性,再利用单调性进行证明;(2)根据不等式结构构造新函数,通过求导研究新函数的单调性或最值来证明【例2】【2018河南豫北豫南名校高三上学期精英联考】已知函数()ln f x x ax b =-+(a ,b R ∈)有两个不同的零点1x ,2x . (I )求()f x 的最值; (II )证明:1221x x a<. 【答案】(I )见解析;(II )见解析【解析】试题分析:(I )求出导函数,由函数()f x 有两个不同的零点,则()f x 在()0,+∞内必不单调,得0a >,进而得到函数的单调性,即可求出函数的最值.(II )由题意转化为证明()212211221221ln 2x x x x x x x x x x -<=-+,不妨设12x x <,令()120,1xt x =∈,只需证明21ln 2t t t <-+,设()12ln h t t t t=-+,根据函数的单调性,即可作出证明.试题解析:(I )()1'f x a x=-,()f x 有两个不同的零点,∴()f x 在()0,+∞内必不单调,故0a >,此时()'0f x >,解得1x a <,∴()f x 在10,a ⎛⎫ ⎪⎝⎭上单增,1,a ⎛⎫+∞ ⎪⎝⎭上单减, ∴()max 1ln 1f x f a b a ⎛⎫==--+⎪⎝⎭,无最小值. (II )由题知11220,{ 0,lnx ax b lnx ax b -+=-+=两式相减得()1122ln 0xa x x x --=,即1212lnx x a x x =-, 故要证1221x x a <,即证()21212212ln x x x x x x -<,即证()212211221221ln 2x x x x x x x x x x -<=-+,不妨设12x x <,令()120,1x t x =∈,则只需证21ln 2t t t <-+,设()21l n 2g t t t t =--+,则()212l n 11'2ln 1t t t g t t t t t-+=-+=,设()12ln h t t t t =-+,则()()221'0t h t t -=-<,∴()h t 在()0,1上单减,∴()()10h t h >=,∴()g t 在()0,1上单增,∴()()10g t g <=,即21ln 2t t t<-+在()0,1t ∈时恒成立,原不等式得证.点睛:本题主要考查导数在函数中的应用,不等式的证明,考查了转化与化归思想、逻辑推理能力与计算能力.导数是研究函数的单调性、极值(最值)最有效的工具,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题;(4)考查数形结合思想的应用. 【跟踪练习】1.【2018北京朝阳区高三一模】已知函数()()ln 1x f x ax a R x-=-∈. (Ⅰ)若0a =,求曲线()y f x =在点()()1,1f 处的切线方程; (Ⅱ)若1a <-,求函数()f x 的单调区间; (Ⅲ)若12a <<,求证:()1f x <-.【答案】(Ⅰ)230x y --=;(Ⅱ) ()0,+∞;(Ⅲ)证明见解析.求得x 的范围,可得函数()f x 增区间,()'0f x <求得x 的范围,可得函数()f x 的减区间;(Ⅲ) ()0,1x f x ><-,等价于ln 11x ax x--<-,等价于21ln 0ax x x -+->,设()21ln h x ax x x =-+-,只须证()0h x >成立,利用导数研究函数的单调性,利用单调性求出()h x 的最小值,证明最小值大于零即可得结论.试题解析:(Ⅰ)若0a =,则()11f =-,()()22ln ,12xf x f x''-==, 所以()f x 在点()1,1-处的切线方程为230x y --=.(Ⅱ)()()222ln 0,,.ax x x f x x --∞'∈+=令()22ln g x ax x =--,则()221ax g x x-='-.令()0g x '=,得x =(依题意102a ->).由()0g x '>,得x >()0g x '<,得0x <<所以()g x 在区间⎛⎝上单调递减,在区间⎫+∞⎪⎪⎭上单调递增,所以,()min 52g x g ==-因为1a <-,所以110,022a <-<<,所以()0g x >,即()0f x '>.所以函数()f x 的单调递增区间为()0,+∞.(Ⅲ)由()0,1x f x ><-,等价于ln 11x ax x--<-,等价于21ln 0ax x x -+->. 设()21ln h x ax x x =-+-,只须证()0h x >成立.因为()212121,12,a x x h x a xa x x--='--=<<由()0h x '=,得2210ax x --=有异号两根.令其正根为0x ,则200210ax x --=.在()00,x 上()0h x '<,在()0,x +∞上()0h x '>,则()h x 的最小值为()200001ln h x ax x x =-+-又()131220,230,222a h a h a ⎛⎫⎛⎫=->=-=-<⎪ ⎪⎝⎭'⎝⎭'所以01 1.2x <<则0030,ln 0.2x x ->->因此03ln 0,2x x -->即()00.h x >所以()0h x >.所以()1f x <-. 【方法点晴】本题主要考查利用导数求曲线切线方程以及利用导数研究函数的单调性、证明不等式,属于难题.求曲线切线方程的一般步骤是:(1)求出()y f x =在0x x =处的导数,即()y f x =在点P ()()00,x f x 出的切线斜率(当曲线()y f x =在P 处的切线与y 轴平行时,在 处导数不存在,切线方程为0x x =);(2)由点斜式求得切线方程()()00•y y f x x x '-=-.2.【2018河南郑州高三毕业年级第二次质量预测】已知函数()2xf x e x =-.(I )求曲线()f x 在1x =处的切线方程;(II )求证:当0x >时,()21ln 1x e e x x x+--≥+.【答案】(Ⅰ)()2 1.y e x =-+;(II )见解析.试题解析:(Ⅰ) ()'2xf x e x =-, 由题设得()'12f e =-,()11f e =-,()f x 在1x =处的切线方程为()2 1.y e x =-+(II ) ()'2xf x e x =-,()''2xf x e =-,∴()'f x 在()0,ln2上单调递减,在()ln2,+∞上单调递增,所以()()''ln222ln20f x f ≥=->,所以()f x 在[]0,1上单调递增,所以()()[]m a x 11,0,1fx f e x ==-∈.()f x 过点()1,1e -,且()y f x =在1x =处的切线方程为()21y e x =-+,故可猜测:当0,1x x >≠时,()f x 的图象恒在切线()21y e x =-+的上方.下证:当0x >时,()()21,f x e x ≥-+设()()()21,0g x f x e x x =--->,则()()()'22,''2xxg x e x e g x e =---=-,()'g x 在()0,ln2上单调递减,在()ln 2,+∞上单调递增,又()()'030,'10,0ln 21g e g =->=<<,∴()'ln20g <,所以,存在()00,12x n ∈,使得()0'0g x =,所以,当()()00,1,x x ∈⋃+∞时,()'0g x >;当()0,1x x ∈时,()'0g x <,故()g x 在()00,x 上单调递增,在()0,1x 上单调递减,在()1,+∞上单调递增,又()()010g g ==,∴()()2210xg x e x e x =----≥,当且仅当1x =时取等号,故()21,0x e e x x x x+--≥>.又ln 1x x ≥+,即()21ln 1x e e x x x+--≥+,当1x =时,等号成立.【点睛】解本题的关键是第(I )结论对第(II )问的证明铺平了路,只需证明()21x e e x x+--≥x ln 1x ≥+.所以利用导数证明不等式时,要进行适当的变形,特别是变形成第(I )问相似或相同形式时,将有利于快速证明. 3.【2018山东烟台高三下学期高考诊断性测试】已知()()21ln 2f x x a x a R =-∈有两个零点 (I )求a 的取值范围(II )设x 1、x 2是f (x )的两个零点,求证证:x 1+x 2>【答案】(I )(),e +∞;(II )见解析试题解析:(I )()()20a x af x x x x x-=-=>',当0a ≤时,()0f x '>,此时()f x 在()0,+∞单调递增,()f x 至多有一个零点.当0a >时,令()0f x '=,解得x =当(x ∈时,()0f x '<,()f x 单调递减,当)x ∈+∞,()0f x '>,()f x 单调递增,故当x =时函数取最小值()1ln .2afa =-当0a e <≤时,1ln 0a -≥,即0f≥,所以()f x 至多有一个零点.当a e >时,1ln 0a -≤,即()1ln 0.2a fa =-<因为()1102f =>,所以()f x 在(x ∈有一个零点;因为ln 1a a ≤-,所以ln221a a ≤-,()()2222ln22210f a a a a a a a a =-≥--=>,由于2a >()f x 在)x ∈+∞有一个零点.综上,a 的取值范围是(),e +∞.(II )不妨设12x x <,由(I )知,(1x ∈,)2x ∈+∞.构造函数()))(0g x fx fx x =-≤<,则()))ln ln.g x a x a x =-+()g x =='因为0x <<()0g x '<,()g x 在(单调递减.所以当(x ∈时,恒有()()00g x g <=,即)).f x fx <因为(1x ∈(1x ∈,于是()()))()21111.f x f x f x f x f x ⎤⎤==>=⎦⎦又))21,x x ∈+∞∈+∞,且()f x 在)+∞单调递增,所以21x x >,即12x x +>点睛:本题主要考查导数在函数中的应用,不等式的证明和不等式的恒成立问题,考查了转化与化归思想、逻辑推理能力与计算能力,导数是研究函数的单调性、极值(最值)最有效的工具,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、圆等知识联系;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题;(4)考查数形结合思想的应用.考向2 构造函数证明不等式【例3】【2018江西五校联考】已知函数()y f x =对任意的(,)22x ππ∈-满足()cos ()sin 0f x x f x x '+> (其中()f x '是函数()f x 的导函数),则下列不等式成立的是A ()()34f ππ-<-B ()()34f ππ< C .(0)2()3f f π> D .(0)()4f π>【答案】A【例4】【2018江苏南通高三上学期第一次调研】已知函数()32g x x ax bx =++ (),a b R ∈有极值,且函数()()x f x x a e =+的极值点是()g x 的极值点,其中e 是自然对数的底数.(极值点是指函数取得极值时对应的自变量的值)(I )求b 关于a 的函数关系式;(II )当0a >时,若函数()()()F x f x g x =-的最小值为()M a ,证明:()73M a <-. 【答案】(I )243b a a =---,32a ⎛⎫≠-⎪⎝⎭;(II )见解析. 【解析】试题分析:(I )先分别求两函数极值点,再根据条件得b 关于a 的函数关系式;最后求自变量取值范围;(II )先研究()F x 导函数零点情况,仅有一个零点,再根据导函数符号变化规律确定最小值,最后再利用导数求最小值函数单调性,根据单调性证明不等式试题解析:(I )因为()()'xxf x e x a e =++ ()1xx a e =++,令()'0f x =,解得1x a =--.列表如下.所以1x a =--时,()f x 取得极小值. 因为()2'32g x x ax b =++,由题意可知()'10g a --=,且24120a b ∆=-> 所以()()231210a a a b --+--+=, 化简得243b a a =---,由2412a b ∆=- ()()2412130a a a =+++>,得32a ≠-. 所以243b a a =---,32a ⎛⎫≠-⎪⎝⎭. (II )因为()()()F x f x g x =- ()()32x x a e x ax bx =+-++,所以()()()'''F x f x g x =- ()()()213213x x a e x ax a a ⎡⎤=++-+-++⎣⎦ ()()()1133xx a e x a x a =++-++--()()133xx a e x a =++-++记()33xh x e x a =-++,则()'3xh x e =-,令()'0h x =,解得ln3x =.列表如下.所以ln3x =时,()h x 取得极小值,也是最小值,此时,()ln3ln33ln33h e a =-++ 63ln3a =-+ ()32ln3a =-+ 23ln 03e a a ⎛⎫=+>> ⎪⎝⎭.令()'0F x =,解得1x a =--. 列表如下.所以1x a =--时,()F x 取得极小值,也是最小值.所以()()1M a F a =--=()()()()()3211111a a e a a a b a -------+--+--()()2112a e a a --=--++.令1t a =--,则1t <-,记()()21t m t e t t =--- 32t e t t =-+-,1t <-,则()2'32tm t e t t =-+-,1t <-.因为10t e e --<-<,2325t t ->,所以()'0m t >,所以()m t 单调递增.所以()172233tm t e -<--<--=-,所以()73M a <-. 点睛:利用导数证明不等式常见类型及解题策略(1) 构造差函数()()()h x f x g x =-.根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式.(2)根据条件,寻找目标函数.一般思路为利用条件将求和问题转化为对应项之间大小关系,或利用放缩、等量代换将多元函数转化为一元函数.【例5】【2018云南昆明高三教学质量检查第二次统考】已知函数()()234cos 1xf x ex x x x α=+++,()()1x g x e m x =-+.(I )当1m ≥时,求函数()g x 的极值; (II )若72a ≥-,证明:当()0,1x ∈时,()1f x x >+. 【答案】(I )见解析;(II )见解析.(II )不等式等价于3214cos 1xx x ax x x e++++>,由(I )得:1xe x ≥+, 所以()221xex ≥+,所以2111x x e x +<+,()0,1x ∈, ()3214cos 1x x x ax x x e ++++-> ()314cos 11x ax x x x +++-+34cos 1x x ax x x x =++++ 214cos 1x x x a x ⎛⎫=+++ ⎪+⎝⎭ 令()214cos 1h x x x a x =++++,则()()21'24sin 1h x x x x =--+, 令()24sin I x x x =-,则()()'24cos 212cos I x x x =-=-, 当()0,1x ∈时,1cos cos1cos32x π>>=,所以12cos 0x -<,所以()'0I x <,所以()I x 在()0,1上为减函数,所以()()00I x I <=,则()'0h x <,所以()h x 在()0,1上为减函数, 因此,()()314cos12h x h a >=++,因为4cos14cos 23π>=,而72a ≥-, 所以34cos102a ++>,所以()0h x >,而()0,1x ∈,所以()1f x x >+. 【点睛】利用导数证明不等式恒成立问题,不能强制多次求导,要考虑对不等式进行变形,特别题目有第(I )问是要考虑利用第(I )的结果,对不等式进行变形,特别注意常见函数不等式的切线放缩的几个常见式子.如本题就是利用了1xe x ≥+进行放缩变形.【跟踪练习】1.【2018山东济南高三一模】已知函数()()2ln 21f x a x x a x =-+- ()a R ∈有两个不同的零点.(I )求a 的取值范围;(II )设1x ,2x 是()f x 的两个零点,证明:122x x a +>. 【答案】(I ) ()1,+∞ (II )见解析试题解析:(I )【解法一】函数()f x 的定义域为:()0,+∞.()'221af x x a x =-+- ()()21x a x x+-=,①当0a ≤时,易得()'0f x <,则()f x 在()0,+∞上单调递增, 则()f x 至多只有一个零点,不符合题意,舍去. ②当0a >时,令()'0f x =得:x a =,则∴()()max f x f x =极大 ()()ln 1f a a a a ==+-. 设()ln 1g x x x =+-,∵()1'10g x x=+>,则()g x 在()0,+∞上单调递增. 又∵()10g =,∴1x <时,()0g x <;1x >时,()0g x >.因此:(i )当01a <≤时,()()max 0f x a g a =⋅≤,则()f x 无零点,不符合题意,舍去. (ii )当1a >时,()()max 0f x a g a =⋅>, ∵121f a e e ⎛⎫⎛⎫=- ⎪⎪⎝⎭⎝⎭ 2110e e --<,∴()f x 在区间1,a e ⎛⎫⎪⎝⎭上有一个零点,∵()()31ln 31f a a a -=- ()()()2312131a a a --+-- ()()ln 3131a a a ⎡⎤=---⎣⎦, 设()ln h x x x =-,(1)x >,∵()1'10h x x=-<,∴()h x 在()1,+∞上单调递减,则()()312ln220h a h -<=-<,∴()()31310f a a h a -=⋅-<,∴()f x 在区间(),31a a -上有一个零点,那么,()f x 恰有两个零点.综上所述,当()f x 有两个不同零点时,a 的取值范围是()1,+∞. (I )【解法二】函数的定义域为:()0,+∞.()'221af x x a x =-+- ()()21x a x x+-=, ①当0a ≤时,易得()'0f x <,则()f x 在()0,+∞上单调递增,则()f x 至多只有一个零点,不符合题意,舍去. ②当0a >时,令()'0f x =得:x a =,则∴()()maxf x f x =极大 ()()ln 1f a a a a ==+-. ∴要使函数()f x 有两个零点,则必有()()ln 10f a a a a =+->,即ln 10a a +->, 设()ln 1g a a a =+-,∵()1'10g a a=+>,则()g a 在()0,+∞上单调递增, 又∵()10g =,∴1a >; 当1a >时:∵121f a e e ⎛⎫⎛⎫=- ⎪⎪⎝⎭⎝⎭ 2110e e --<,∴()f x 在区间1,a e ⎛⎫⎪⎝⎭上有一个零点;设()ln h x x x =-,∵()11'1x h x x x-=-=,∴()h x 在()0,1上单调递增,在()1,+∞上单调递减, ∴()()110h x h ≤=-<,∴ln x x <,∴()()2ln 21f x a x x a x =-+- ()22213ax x a x ax x x ≤-+-=-- ()233ax x x a x ≤-=-,则()40f a <,∴()f x 在区间(),4a a 上有一个零点,那么,此时()f x 恰有两个零点. 综上所述,当()f x 有两个不同零点时,a 的取值范围是()1,+∞.(II )【证法一】由(I )可知,∵()f x 有两个不同零点,∴1a >,且当()0,x a ∈时,()f x 是增函数;当(),x a ∈+∞时,()f x 是减函数;不妨设:12x x <,则:120x a x <<<; 设()()()2F x f x f a x =--,()0,2x a ∈,则:()()()'''2F x f x f a x =-- ()2212a ax a x a x=-+-+- ()()2221a x a --+- ()()22222x a a ax a x x a x -=+-=--.当()0,x a ∈时,()'0F x >,∴()F x 单调递增,又∵()0F a =,∴()0F x <,∴()()2f x f a x <-, ∵()10,x a ∈,∴()()112f x f a x <-,∵()()12f x f x =,∴()()212f x f a x <-,∵()2,x a ∈+∞,()12,a x a -∈+∞,()f x 在(),a +∞上单调递减,∴212x a x >-,∴122x x a +>. (II )【证法二】由(I )可知,∵()f x 有两个不同零点,∴1a >,且当()0,x a ∈时,()f x 是增函数;当(),x a ∈+∞时,()f x 是减函数;不妨设:12x x <,则:120x a x <<<; 设()()()F x f a x f a x =+--,()0,x a ∈, 则()()()'''F x f a x f a x =++- ()()221a aa x a a x a x=-++-++- ()()221a x a --+- ()()222a a x a x a x a x a x =+-=+-+-. 当()0,x a ∈时,()'0F x >,∴()F x 单调递增,又∵()00F =,∴()0F x >,∴()()f a x f a x +>-,∵()10,a x a -∈,∴()()12f x f x = ()()()()11f a a x f a a x =--<+- ()12f a x =-,∵()2,x a ∈+∞,()12,a x a -∈+∞,()f x 在(),a +∞上单调递减,∴212x a x >-,∴122x x a +>.2.【2018山西平遥中学高三3月高考适应性调研考试】已知函数()()ln f x x ax x a R =+∈ (I )讨论函数()f x 的单调性;(II )若函数()ln f x x ax x =+存在极大值,且极大值点为1,证明:()2xf x e x -≤+.【答案】(I )见解析(II )见解析试题解析:(I )由题意0x >,()'1ln f x a a x =++. ①当0a =时,()f x x =,函数()f x 在()0,+∞上单调递增;②当0a >时,函数()'1l n f x a a x =++单调递增,()'1ln f x a a x =++ 1100ax e--=⇒=>,故当110,a x e --⎛⎫∈ ⎪⎝⎭时,()'0f x <,当11,a x e --⎛⎫∈+∞ ⎪⎝⎭时,()'0f x >,所以函数()f x 在110,a x e --⎛⎫∈ ⎪⎝⎭上单调递减,函数()f x 在11,a x e --⎛⎫∈+∞ ⎪⎝⎭上单调递增;③当0a <,函数()'1ln f x a a x =++单调递减,()'1ln f x a a x =++ 1100ax e--=⇒=>,故当110,a x e --⎛⎫∈ ⎪⎝⎭时,()'0f x >,当11,a x e --⎛⎫∈+∞ ⎪⎝⎭时,()'0f x <,所以函数()f x 在110,a x e --⎛⎫∈ ⎪⎝⎭上单调递增,函数()f x 在11,a x e --⎛⎫∈+∞ ⎪⎝⎭上单调递减.(II)由()10f '=得1a =-,令()2ln x h x e x x x x-=+-+,则()()()()()000112ln ,20,1,0x x h x e x x h x e x h x h x h x x e --⎛⎫=-++=++>∴∃∈=∴≥ ⎭'⎪⎝''' 当00ln 0x x +<时,000000ln 0x x x x x e e x --<-⇒<⇒-+< 所以0000ln 0x e x x x --+++<与0002ln 0x e x x --++=矛盾; 当00ln 0x x +>时,000000ln 0x x x x x e e x -->-⇒>⇒-+> 所以0000ln 0x e x x x --+++>与0002ln 0x e x x --++=矛盾; 当00ln 0x x +=时,000000ln 0x x x x x e e x --=-⇒=⇒-+= 得0002ln 0x e x x --++=,故00ln 0x x +=成立,得()()()00001ln 0h x x x x =++=,所以()0h x ≥,即()2xf x e x -≤+.点睛:利用导数证明不等式常见类型及解题策略(1)构造差函数()()()h x f x g x =-.根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式;(2)根据条件,寻找目标函数.一般思路为利用条件将求和问题转化为对应项之间大小关系,或利用放缩、等量代换将多元函数转化为一元函数.3.【2018河北衡水中学高三第十次模拟考试】已知函数()()ln 11x f x ax +=+.(I )当1a =,求函数()y f x =的图象在0x =处的切线方程;(II )若函数()f x 在()0,1上单调递增,求实数a 的取值范围;(III )已知x ,y ,z 均为正实数,且1x y z ++=,求证()()()()31l n 131l n 111x x y y x y -+-++--()()31ln 101z z z -++≤-.【答案】(I ) y x = (II ) 11,2ln21⎡⎤-⎢⎥-⎣⎦(3)见解析试题解析:(I )当1a =时,()()ln 11x f x x +=+则()00f =,()()()21ln 1'1x f x x -+=+则()'01f =,∴函数()y f x =的图象在0x =时的切线方程为y x =.(II )∵函数()f x 在()0,1上单调递增,∴10ax +=在()0,1上无解,当0a ≥时,10ax +=在()0,1上无解满足,当0a <时,只需1010a a +≥⇒-≤<,∴1a ≥-①()()()21ln 11'1ax a x x f x ax +-++=+, ∵函数()f x 在()0,1上单调递增,∴()'0f x ≥在()0,1上恒成立,即()()1ln 11a x x x ⎡⎤++-≤⎣⎦在()0,1上恒成立.设()()()11x x ln x ϕ=++ ()()()'ln 11x x x x ϕ-=+++,()11ln 11x x ⋅-=++, ∵()0,1x ∈,∴()'0x ϕ>,则()x ϕ在()0,1上单调递增,∴()x ϕ在()0,1上的值域为()0,2ln21-. ∴()()11ln 1a x x x≤++-在()0,1上恒成立,则12ln21a ≤-②综合①②得实数a 的取值范围为11,2ln21⎡⎤-⎢⎥-⎣⎦. (III )由(II )知,当1a =-时,()()ln 11x f x x+=-在()0,1上单调递增,于是当103x <≤时,()()ln 11x f x x+=- 134ln 323f ⎛⎫≤= ⎪⎝⎭,当113x ≤<时,()()ln 11x f x x +=- 134ln 323f ⎛⎫≥= ⎪⎝⎭, ∴()()31x f x - ()3431ln 23x ≥-⋅,即()()31ln 11x x x -+- ()3331ln 24x ≤-⋅,同理有()()31ln 11y y y -+- ()3331ln 24y ≤-⋅,()()31ln 11z z z -+- ()3331ln 24z ≤-⋅, 三式相加得()()31ln 11x x x -+- ()()31ln 11y y y -++- ()()31ln 101z z z -++≤-.考向3 不等式恒成立问题【例6】【2018皖江名校高三12月份大联考】设函数()f x 在R 上存在导函数()f x ',对任意的实数x 都有()()24f x x f x =--,当(),0x ∈-∞时,()142f x x +'<.若()()3132f m f m m +≤-++,则实数m 的取值范围是( ) A .1,2⎡⎫-+∞⎪⎢⎣⎭ B .3,2⎡⎫-+∞⎪⎢⎣⎭C .[)1,-+∞D .[)2,-+∞ 【答案】A【解析】(构造函数法)令()()22F x f x x =-,则()()1402F x f x x '-<-'=<,函数()F x 在(),0-∞上为减函数,因为()()()()240F x F x f x f x x -+=-+-=,即()()F x F x -=-,故()F x 为奇函数,于是()F x 在(),-∞+∞上为减函数,而不等式()()3132f m f m m +≤-++可化为()()1F m F m +≤-,则1m m +≥-,即12m ≥-.选A . 【例7】【2018陕西省高三第一次模拟】已知函数()ln f x x =,()1g x x =-. (I )求函数()y f x =的图像在1x =处的切线方程; (II )证明:()()f x g x ≤;(III )若不等式()()f x ag x ≤对任意的()1,x ∈+∞均成立,求实数a 的取值范围.【答案】(1) 1y x =-;(II )见解析;(III )1a ≥.试题解析:(I )∵()1'f x x=,∴()'11f =. 又由()10f =,得所求切线l :()()()1'11y f f x -=-,即所求切线为1y x =-. (II )设()()()ln 1h x f x g x x x =-=-+,则()1'1h x =-,令()'0h x =,得1x =,得下表:∴()()()max 10h x h x h ≤==,即()()f x g x ≤. (III )()1,+x ∀∈∞,()0f x >,()0g x > (i )当1a ≥时,()()()f x g x ag x ≤≤; (ii )当0a ≤时,()0f x >,()0g x <;(iii )当01a <<时,设()()()()ln 1e x f x ag x x a x =-=--,()1'e x a x=-, 令()'0e x =,得下表:∴()()max 110e x e e a ⎛⎫=>= ⎪⎝⎭,即不满足等式. 综上,1a ≥.点睛:导数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若()0f x >就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为()min 0f x >,若()0f x <恒成立,转化为()max 0f x <;(3)若()()f xg x >恒成立,可转化为()()min max f x g x >.【例8】【2018广东华南师大附中高三综合测试(三)】函数()()2ln 1f x x m x =++.(I )讨论()f x 的单调性;(II )若函数()f x 有两个极值点1x 、2x ,且12x x <,求证:()21122ln2f x x x >-+. 【答案】(I )见解析;(II )见解析.(I )由题设知,10x +>,令()222g x x x m =++,这是开口向上,以12x =-为对称轴的抛物线,1122g m ⎛⎫-=-+ ⎪⎝⎭,①当102g ⎛⎫-≥ ⎪⎝⎭,即12m ≥时,()0g x ≥,即()'0f x ≥在()1,-+∞上恒成立.②当102g ⎛⎫-< ⎪⎝⎭,即12m <时,由()2220g x x x m =++=得12x =-,令112x =-,2122x =-+,则112x <-,212x >-. 1)当()10g -≤即0m ≤时,11x <-,故在()21,x -上,()0g x <,即()'0f x <,在()2,x +∞上,()0g x >,即()'0f x >.2)当()10g ->时,即1m <<时,综上:0m ≤时,()f x 在11,2⎛-- ⎝⎭上单调递减,在12⎛⎫-++∞ ⎪ ⎪⎝⎭上单调递增; 102m <<时,()f x 在1122⎛--- ⎝⎭上单调递减,在11,2⎛--- ⎝⎭和12⎛⎫-++∞ ⎪ ⎪⎝⎭上单调递增;12m ≥时,()f x 在()1,-+∞上单调递增. (II )若函数()f x 有两个极值点1x 、2x ,且12x x <,则必是102m <<,()00g >,则121102x x -<<-<<,且()f x 在()12,x x 上单减,在()11,x -和()2,x +∞上单增,则()()200f x f <=,∵1x 、2x 是()2220g x x x m =++=的二根,∴12121{ 2x x m x x +=-=,即121x x =--,122m x x =,∴若证()21122ln2f x x x >-+成立,只需证()()2222222ln 1f x x m x =++()2212224ln 1x x x x =++()()22222241ln 1x x x x =-++ ()()22121ln2x x >---+--()22121ln2x x =+-+.即证()()22222241ln 1x x x x -++()()2112ln20x -+->对2102x -<<恒成立, 设()()()2241ln 1x x x x x ϕ=-++()()1112ln202x x ⎛⎫-+--<< ⎪⎝⎭,()()()4'412ln 1ln x x x eϕ=-+++,当102x -<<时,120x +>,()ln 10x +<,4ln 0e >,故()'0x ϕ>,故()x ϕ在1,02⎛⎫- ⎪⎝⎭上单增, 故()1111242422x ϕϕ⎛⎫⎛⎫>-=⨯-⨯⨯- ⎪ ⎪⎝⎭⎝⎭()11ln 12ln2022⨯-⨯-=, ∴()()22222241ln 1x x x x -++()()2112ln20x -+->对2102x -<<恒成立,∴()21122ln2f x x x >-+. 点睛:本题考查了导数的综合运用,难度较大;在求函数单调性时还要注意对其进行分类讨论,在证明不等式成立时结合根与系数之间的关系,将其中一个量用另一个量表示,然后转化为新函数,证明得出结果,有一定难度,注意将两个未知量转化为一个未知量. 【跟踪练习】1.【2018四川凉山州高中毕业班第二次诊断性检测】设函数()2f x x ax =+,()()ln 1g x b x =-(I )若3a =-,()()()F x f x g x =+在()1+∞,上单调递增.求b 的取值范围;(II )若()21g '=-,且()()()h x f x g x =-有两个极值点1x ,2x.求证:22123x x +>+【答案】(I ) 18b ≥;(II )见解析.解析:(I ) 2{1y x ax y x =+=--得()2110x a x +++=,()2140a =+-=,∴3a =-或1a =(舍). ()()23ln 1F x x x b x =-+-其中(1x >),∴()231bF x x x =-+-' 225301x x b x -++=≥-, 在()1+∞,恒成立,分子中,514x =>对,∴()25830b =-+≤,∴18b ≥. (II )∵()1b g x x '=-,()21g '=-得1b =-,()()2ln 1h x x ax x =++-,( 1x >) ()1201h x x a x +'=+=-有两根11x >,21x >,即:()22210x a x a +--+=,()0{1 10x ϕ>>>对,得22a <--又1212a x x +=-,1212a x x -+=,∴()2222121212234a x x x x x x +=+-=>+. 点睛:本题考查了导数的综合运用,在求函数单调递增时只需求导,令导函数大于或者等于零,结合题目求出范围,在证明不等式时,本题结合韦达定理,转化为两根之和与两根之积的问题,从而证明结果.2.【2018新疆乌鲁木齐高三下学期第二次诊断性测验】已知函数()()ln xf x e ex a =-+(其中 2.71828e =,是自然对数的底数).(Ⅰ)当a e =时,求()f x 的最小值; (Ⅱ)若()f x e >恒成立,求证1a e <-. 【答案】(Ⅰ)0;(Ⅱ)证明见解析.试题解析:(Ⅰ)当a e =时,()()1ln 1xf x e x =--+,()1(1)1xf x e x x +'=->-,设()()g x f x ='. ∵()()2101x g x e x +'=+>∴()g x 是增函数 又∵()00f '=,∴当10x -<<时,()0f x '<,()f x 递减;当0x >时,()0f x '>,()f x 递增; ∴()()min 00f x f ==.(Ⅱ)∵()xe af x e x ex a e ⎛'⎫=->- ⎪+⎝⎭,()()2'20xe f x e ex a =+'+> ∴()f x '是增函数∵axee e ->,由a aee e a ex e ex a e->⇒>-+ ∴当a ea x e e >-时()0f x '>;若11a x e a x e e e -+<-+⇒<,由11a ae e e a ex e ex a e-+-<⇒<-+.。
高中数学:利用导数证明不等式的常见题型

利用导数证明不等式的常见题型题型一构造函数法把不等式的证明转化为利用导数研究函数的单调性或求最值的问题,从而证明不等式,而如何根据不等式的结构特征构造一个可导函数是利用导数证明不等式的关键.这四道题比较简单,证明过程略.概括而言,这四道题证明的过程分三个步骤:一是构造函数;二是对函数求导,判断函数的单调性;三是求此函数的最值,得出结论.【启示】证明分三个步骤:一是构造函数;二是对函数求导,判断函数的单调性;三是求此函数的最值,得出结论。
题型二通过对函数的变形,利用分析法,证明不等式【启示】解答第一问用的是分离参数法,解答第二问用的是分析法、构造函数,对函数的变形能力要求较高,大家应记住下面的变形:题型三求最值解决任意、存在性变量问题解决此类问题,关键是将问题转化为求函数的最值问题,常见的有下面四种形式:题型四分拆成两个函数研究【注意】(2)如果按题型一的方法构造函数求导,会发现做不下去,只好半途而废,所以我们在做题时需要及时调整思路,改变思考方向.【启示】掌握下列八个函数的图像和性质,对我们解决不等式的证明问题很有帮助,这八个函数分别为要求会画它们的图像,以后见到这种类型的函数,就能想到它们的性质题型五设而不求当函数的极值点(最值点)不确定时,可以先设出来,只设不解,把极值点代入,求出最值的表达式而证明.【启示】设而不求,整体代换是一种常用的方法,在解析几何中体现很多.在本例第(2)问中,只设出了零点而没有求出零点,这是一种非常好的方法,同学们一定要认真体会,灵活应用.题型六估值法题型七利用图象的特点,证明不等式题型八证明数列不等式题型九利用放缩法证明不等式【注意】在解决第(2)问时,用构造函数法证不出来,又试着分开两个函数仍然不行,正当我一筹莫展时,忽然想到与第一问题的切线联系,如果左边的函数的图像在切线的上方,右边函数的图像在切线的下方,这样问题不就得证了吗?心里非常高兴,马上付诸行动。
【高中数学】 利用导数研究不等式的恒成立问题 学案

第4课时 利用导数研究不等式的恒成立问题策略一:分离参数法(2020·南昌质检)已知f (x )=x ln x ,g (x )=x 3+ax 2-x +2. (1)求函数f (x )的单调区间;(2)若对任意x ∈(0,+∞),2f (x )≤g ′(x )+2恒成立,求实数a 的取值范围. 【解】 (1)因为函数f (x )=x ln x 的定义域为(0,+∞),所以f ′(x )=ln x +1.令f ′(x )<0,得ln x +1<0,解得0<x <1e,所以f (x )的减区间是⎝⎛⎭⎪⎫0,1e.令f ′(x )>0,得ln x+1>0,解得x >1e ,所以f (x )的增区间是⎝ ⎛⎭⎪⎫1e ,+∞.综上,f (x )的减区间是⎝ ⎛⎭⎪⎫0,1e ,增区间是⎝ ⎛⎭⎪⎫1e ,+∞.(2)因为g ′(x )=3x 2+2ax -1,由题意得2x ln x ≤3x 2+2ax +1恒成立.因为x >0,所以a ≥ln x -32x -12x 在x ∈(0,+∞)上恒成立.设h (x )=ln x -32x -12x (x >0),则h ′(x )=1x -32+12x 2=-(x -1)(3x +1)2x 2.令h ′(x )=0,得x 1=1,x 2=-13(舍). 当x 变化时,h ′(x ),h (x )的变化情况如下表:x (0,1) 1 (1,+∞)h ′(x ) +0 -h (x )极大值所以当x =1max ,所以若a ≥h (x )在x ∈(0,+∞)上恒成立,则a ≥h (x )max =-2,即a ≥-2,故实数a 的取值范围是[-2,+∞).(1)分离参数法解含参不等式恒成立问题的思路用分离参数法解含参不等式恒成立问题是指在能够判断出参数的系数正负的情况下,可以根据不等式的性质将参数分离出来,得到一个一端是参数,另一端是变量表达式的不等式,只要研究变量表达式的最值就可以解决问题.(2)求解含参不等式恒成立问题的关键是过好“双关” 转化关通过分离参数法,先转化为f (a )≥g (x )(或f (a )≤g (x ))对任意的x ∈D 恒成立,再转化为f (a )≥g (x )max (或f (a )≤g (x )min )求最值关 求函数g (x )在区间D 上的最大值(或最小值)问题(2020·石家庄质量检测)已知函数f (x )=ax e x-(a +1)(2x -1).(1)若a =1,求函数f (x )的图象在点(0,f (0))处的切线方程; (2)当x >0时,函数f (x )≥0恒成立,求实数a 的取值范围. 解:(1)若a =1,则f (x )=x e x-2(2x -1). 即f ′(x )=x e x+e x-4, 则f ′(0)=-3,f (0)=2, 所以所求切线方程为3x +y -2=0. (2)由f (1)≥0,得a ≥1e -1>0,则f (x )≥0对任意的x >0恒成立可转化为aa +1≥2x -1x e x对任意的x >0恒成立. 设函数F (x )=2x -1x e x(x >0),则F ′(x )=-(2x +1)(x -1)x 2e x .当0<x <1时,F ′(x )>0; 当x >1时,F ′(x )<0,所以函数F (x )在(0,1)上是增加的,在(1,+∞)上是减少的, 所以F (x )max =F (1)=1e .于是aa +1≥1e ,解得a ≥1e -1. 故实数a 的取值范围是⎣⎢⎡⎭⎪⎫1e -1,+∞. 策略二:等价转化法设f (x )=a x+x ln x ,g (x )=x 3-x 2-3.(1)如果存在x 1,x 2∈[0,2]使得g (x 1)-g (x 2)≥M 成立,求满足上述条件的最大整数M ;(2)如果对于任意的s ,t ∈⎣⎢⎡⎦⎥⎤12,2,都有f (s )≥g (t )成立,求实数a 的取值范围. 【解】 (1)存在x 1,x 2∈[0,2]使得g (x 1)-g (x 2)≥M 成立,等价于[g (x 1)-g (x 2)]max≥M .由g (x )=x 3-x 2-3,得g ′(x )=3x 2-2x =3x ⎝ ⎛⎭⎪⎫x -23.令g ′(x )>0得x <0或x >23,令g ′(x )<0得0<x <23,又x ∈[0,2],所以g (x )在区间⎣⎢⎡⎭⎪⎫0,23上是减少的,在区间⎝ ⎛⎦⎥⎤23,2上是增加的, 所以g (x )min =g ⎝ ⎛⎭⎪⎫23=-8527,又g (0)=-3,g (2)=1, 所以g (x )max =g (2)=1.故[g (x 1)-g (x 2)]max =g (x )max -g (x )min =11227≥M ,则满足条件的最大整数M =4.(2)对于任意的s ,t ∈⎣⎢⎡⎦⎥⎤12,2,都有f (s )≥g (t )成立,等价于在区间⎣⎢⎡⎦⎥⎤12,2上,函数f (x )min≥g (x )max ,由(1)可知在区间⎣⎢⎡⎦⎥⎤12,2上,g (x )的最大值为g (2)=1. 在区间⎣⎢⎡⎦⎥⎤12,2上,f (x )=a x +x ln x ≥1恒成立等价于a ≥x -x 2ln x 恒成立.设h (x )=x -x 2ln x ,h ′(x )=1-2x ln x -x ,令m (x )=x ln x ,由m ′(x )=ln x +1>0得x >1e.即m (x )=x ln x 在⎝ ⎛⎭⎪⎫1e ,+∞上是增函数, 可知h ′(x )在区间⎣⎢⎡⎦⎥⎤12,2上是减函数, 又h ′(1)=0,所以当1<x ≤2时,h ′(x )<0; 当12≤x <1时,h ′(x )>0. 即函数h (x )=x -x 2ln x 在区间⎣⎢⎡⎭⎪⎫12,1上是增加的,在区间(1,2]上是减少的,所以h (x )max =h (1)=1, 所以a ≥1,即实数a 的取值范围是[1,+∞).(1)“恒成立”“存在性”问题一定要正确理解其实质,深刻挖掘内含条件,进行等价转化.(2)构造函数是求范围问题中的一种常用方法,解题过程中尽量采用分离参数的方法,转化为求函数的最值问题.已知函数f (x )=a x+x 2-x ln a (a >0,a ≠1).(1)求函数f (x )的极小值;(2)若存在x 1,x 2∈[-1,1],使得|f (x 1)-f (x 2)|≥e -1(e 是自然对数的底数),求实数a 的取值范围.解:(1)f ′(x )=a xln a +2x -ln a =2x +(a x-1)ln a .因为当a >1时,ln a >0,函数y =(a x-1)ln a 在R 上是增函数, 当0<a <1时,ln a <0,函数y =(a x-1)ln a 在R 上也是增函数, 所以当a >1或0<a <1时,f ′(x )在R 上是增函数,又因为f ′(0)=0,所以f ′(x )>0的解集为(0,+∞),f ′(x )<0的解集为(-∞,0),故函数f (x )的增区间为(0,+∞),减区间为(-∞,0),所以函数f (x )在x =0处取得极小值1.(2)因为存在x 1,x 2∈[-1,1],使得|f (x 1)-f (x 2)|≥e -1成立, 所以只需f (x )max -f (x )min ≥e -1即可.由(1)可知,当x ∈[-1,1]时,f (x )在[-1,0]上是减函数,在(0,1]上是增函数, 所以当x ∈[-1,1]时,f (x )min =f (0)=1,f (x )max 为f (-1)和f (1)中的较大者.f (1)-f (-1)=(a +1-ln a )-⎝ ⎛⎭⎪⎫1a +1+ln a =a -1a -2ln a ,令g (a )=a -1a-2ln a (a >0),因为g ′(a )=1+1a2-2a =⎝ ⎛⎭⎪⎫1-1a 2>0,所以g (a )=a -1a-2ln a 在(0,+∞)上是增函数.而g (1)=0,故当a >1时,g (a )>0,即f (1)>f (-1); 当0<a <1时,g (a )<0,即f (1)<f (-1). 所以当a >1时,f (1)-f (0)≥e -1, 即a -ln a ≥e -1.由函数y =a -ln a 在(1,+∞)上是增函数,解得a ≥e ; 当0<a <1时,f (-1)-f (0)≥e -1,即1a+ln a ≥e -1,由函数y =1a +ln a 在(0,1)上是减函数,解得0<a ≤1e.综上可知,所求实数a 的取值范围为⎝ ⎛⎦⎥⎤0,1e ∪[e ,+∞). [基础题组练]1.已知函数f (x )=x +4x ,g (x )=2x+a ,若对任意的x 1∈⎣⎢⎡⎦⎥⎤12,1,存在x 2∈[2,3],使得f (x 1)≥g (x 2),则实数a 的取值范围是( )A .a ≤1B .a ≥1C .a ≤2D .a ≥2解析:选A.由题意知f (x )min ⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤12,1≥g (x )min (x ∈[2,3]),因为f (x )min =5,g (x )min=4+a ,所以5≥4+a ,即a ≤1,故选A.2.(2020·吉林白山联考)设函数f (x )=e x ⎝⎛⎭⎪⎫x +3x-3-a x,若不等式f (x )≤0有正实数解,则实数a 的最小值为________.解析:原问题等价于存在x ∈(0,+∞),使得a ≥e x(x 2-3x +3),令g (x )=e x (x 2-3x +3),x ∈(0,+∞),则a ≥g (x )min ,而g ′(x )=e x(x 2-x ).由g ′(x )>0可得x ∈(1,+∞),由g ′(x )<0可得x ∈(0,1).据此可知,函数g (x )在区间(0,+∞)上的最小值为g (1)=e.综上可得,实数a 的最小值为e.答案:e3.(2020·西安质检)已知函数f (x )=ln x ,g (x )=x -1. (1)求函数y =f (x )的图象在x =1处的切线方程;(2)若不等式f (x )≤ag (x )对任意的x ∈(1,+∞)均成立,求实数a 的取值范围. 解:(1)因为f ′(x )=1x,所以f ′(1)=1.又f (1)=0,所以切线的方程为y -f (1)=f ′(1)(x -1), 即所求切线的方程为y =x -1.(2)易知对任意的x ∈(1,+∞),f (x )>0,g (x )>0. ①当a ≥1时,f (x )≤g (x )≤ag (x );②当a ≤0时,f (x )>0,ag (x )≤0,所以不满足不等式f (x )≤ag (x );③当0<a <1时,设φ(x )=f (x )-ag (x )=ln x -a (x -1),则φ′(x )=1x-a ,令φ′(x )=0,得x =1a,当x 变化时,φ′(x ),φ(x )的变化情况下表:所以φ(x )max =φ⎝ ⎛⎭⎪⎫a >φ(1)=0,不满足不等式.综上,实数a 的取值范围为[1,+∞). 4.已知函数f (x )=ax -e x(a ∈R ),g (x )=ln x x.(1)求函数f (x )的单调区间;(2)存在x ∈(0,+∞),使不等式f (x )≤g (x )-e x成立,求a 的取值范围. 解:(1)因为f ′(x )=a -e x,x ∈R .当a ≤0时,f ′(x )<0,f (x )在R 上是减少的; 当a >0时,令f ′(x )=0得x =ln a .由f ′(x )>0得f (x )的增区间为(-∞,ln a ); 由f ′(x )<0得f (x )的减区间为(ln a ,+∞). (2)因为存在x ∈(0,+∞),使不等式f (x )≤g (x )-e x, 则ax ≤ln x x ,即a ≤ln x x2.设h (x )=ln x x2,则问题转化为a ≤⎝ ⎛⎭⎪⎫ln x x 2max,由h ′(x )=1-2ln xx3,令h ′(x )=0,则x = e. 当x 在区间(0,+∞)内变化时,h ′(x ),h (x )的变化情况如下表:由上表可知,当x =e 时,函数h (x )有极大值,即最大值为2e .所以a ≤2e .5.(2020·河南郑州质检)已知函数f (x )=ln x -a (x +1),a ∈R ,在(1,f (1))处的切线与x 轴平行.(1)求f (x )的单调区间;(2)若存在x 0>1,当x ∈(1,x 0)时,恒有f (x )-x 22+2x +12>k (x -1)成立,求k 的取值范围.解:(1)由已知可得f (x )的定义域为(0,+∞).因为f ′(x )=1x-a ,所以f ′(1)=1-a =0,所以a =1,所以f ′(x )=1x -1=1-xx,令f ′(x )>0得0<x <1,令f ′(x )<0得x >1,所以f (x )的 增区间为(0,1),减区间为(1,+∞).(2)不等式f (x )-x 22+2x +12>k (x -1)可化为ln x -x 22+x -12>k (x -1).令g (x )=ln x-x 22+x -12-k (x -1)(x >1),则g ′(x )=1x -x +1-k =-x 2+(1-k )x +1x ,令h (x )=-x 2+(1-k )x +1,x >1,h (x )的对称轴为x =1-k 2.①当1-k 2≤1时,即k ≥-1,易知h (x )在(1,x 0)上是减少的,所以h (x )<h (1)=1-k ,若k ≥1,则h (x )≤0,所以g ′(x )≤0,所以g (x )在(1,x 0)上是减少的,所以g (x )<g (1)=0,不合题意.若-1≤k <1,则h (1)>0,所以必存在x 0使得x ∈(1,x 0)时,g ′(x )>0,所以g (x )在(1,x 0)上是增加的,所以g (x )>g (1)=0恒成立,符合题意.②当1-k 2>1时,即k <-1,易知必存在x 0,使得h (x )在(1,x 0)上是增加的.所以h (x )>h (1)=1-k >0,所以g ′(x )>0,所以g (x )在(1,x 0)上是增加的.所以g (x )>g (1)=0恒成立,符合题意.综上,k 的取值范围是(-∞,1). 6.设f (x )=x e x,g (x )=12x 2+x .(1)令F (x )=f (x )+g (x ),求F (x )的最小值;(2)若任意x 1,x 2∈[-1,+∞),且x 1>x 2,有m [f (x 1)-f (x 2)]>g (x 1)-g (x 2)恒成立,求实数m 的取值范围.解:(1)因为F (x )=f (x )+g (x )=x e x+12x 2+x ,所以F ′(x )=(x +1)(e x+1),令F ′(x )>0,解得x >-1,令F ′(x )<0,解得x <-1,所以F (x )在(-∞,-1)上是减少的,在(-1,+∞)上是增加的. 故F (x )min =F (-1)=-12-1e.(2)因为任意x 1,x 2∈[-1,+∞),且x 1>x 2,有m [f (x 1)-f (x 2)]>g (x 1)-g (x 2)恒成立,所以mf (x 1)-g (x 1)>mf (x 2)-g (x 2)恒成立.令h (x )=mf (x )-g (x )=mx e x-12x 2-x ,x ∈[-1,+∞),即只需证h (x )在[-1,+∞)上是增加的即可.故h ′(x )=(x +1)(m e x-1)≥0在[-1,+∞)上恒成立, 故m ≥1e x ,而1e x ≤e ,故m ≥e ,即实数m 的取值范围是[e ,+∞).。
最新高中数学不等式证明的常用方法经典例题优秀名师资料

关于不等式证明的常用方法重难点归纳(1)比较法证不等式有作差(商)、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述如果作差以后的式子可以整理为关于某一个变量的二次式,则考虑用判别式法证(2)综合法是由因导果,而分析法是执果索因 2 不等式证明还有一些常用的方法换元法、放缩法、反证法、函数单调性法、判别式法、数形结合法等换元法主要有三角代换,均值代换两种,在应用换元法时,要注意代换的等价性放缩性是不等式证明中最重要的变形方法之一.有些不等式,从正面证如果不易说清楚,可以考虑反证法凡是含有“至少”“惟一”或含有其他否定词的命题,适宜用反证法典型题例例1证明不等式n n 2131211<++++ (n ∈N *) 知识依托本题是一个与自然数n 有关的命题,首先想到应用数学归纳法,另外还涉及不等式证明中的放缩法、构造法等例2求使y x+≤a y x +(x >0,y >0)恒成立的a 的最小值知识依托该题实质是给定条件求最值的题目,所求a 的最值蕴含于恒成立的不等式中,因此需利用不等式的有关性质把a 呈现出来,等价转化的思想是解决题目的突破口,然后再利用函数思想和重要不等式等求得最值例3已知a >0,b >0,且a +b =1 求证(a +a 1)(b +b 1)≥425 证法一 (分析综合法) 证法二 (均值代换法) 证法三 (比较法) 证法四 (综合法) 证法五 (三角代换法) 巩固练习 1 已知x 、y 是正变数,a 、b 是正常数,且y b x a +=1,x +y 的最小值为 _ 2 设正数a 、b 、c 、d 满足a +d =b +c ,且|a -d |<|b -c |,则ad 与bc 的大小关系是_________ 3 若m <n ,p <q ,且(p -m )(p -n )<0,(q -m )(q -n )<0,则m 、n 、p 、q 的大小顺序是__________ 4 已知a ,b ,c 为正实数,a +b +c =1 求证(1)a 2+b 2+c 2≥31 (2)232323+++++c b a ≤6 5 已知x ,y ,z ∈R ,且x +y +z =1,x 2+y2+z 2=21,证明x ,y ,z ∈[0,32] 6 证明下列不等式 (1)若x ,y ,z∈R ,a ,b ,c ∈R +,则cb a y b ac x a c b +++++22z 2≥2(xy +yz +zx ) (2)若x ,y ,z ∈R +,且x +y +z =xyz ,则z y x y x z x z y +++++≥2(z y x 111++) 7 已知i ,m 、n 是正整数,且1<i ≤m <n(1)证明 n i A im <m i A in (2)证明 (1+m )n >(1+n )m8 若a >0,b >0,a 3+b 3=2,求证 a +b ≤2,ab ≤1不等式知识的综合应用典型题例例1用一块钢锭烧铸一个厚度均匀,且表面积为2平方米的正四棱锥形有盖容器(如右图)设容器高为h 米,盖子边长为a 米,(1)求a 关于h 的解析式;(2)设容器的容积为V 立方米,则当h 为何值时,V 最大?求出V 的最大值(求解本题时,不计容器厚度)知识依托本题求得体积V 的关系式后,应用均值定理可求得最值例2已知a ,b ,c 是实数,函数f (x )=ax 2+bx +c ,g (x )=ax +b ,当-1≤x ≤1时|f (x )|≤1(1)证明|c |≤1;(2)证明当-1 ≤x ≤1时,|g (x )|≤2;(3)设a >0,有-1≤x ≤1时, g (x )的最大值为2,求f (x )知识依托二次函数的有关性质、函数的单调性,绝对值不等式例3设二次函数f (x )=ax 2+bx +c (a >0),方程f (x )-x =0的两个根x 1、x 2满足0<x 1<x 2<a1 (1)当x ∈[0,x 1)时,证明x <f (x )<x 1;(2)设函数f (x )的图象关于直线x =x 0对称,证明 x 0<21x 巩固练习1 定义在R 上的奇函数f (x )为增函数,偶函数g (x )在区间[0,+∞)的图象与f (x )的图象重合,设a >b >0,给出下列不等式,其中正确不等式的序号是( )①f (b )-f (-a )>g (a )-g (-b ) ②f (b )-f (-a )<g (a )-g (-b ) ③f(a )-f (-b )>g (b )-g (-a ) ④f (a )-f (-b )<g (b )-g (-a ) A ①③B ②④C ①④D ②③2 下列四个命题中①a +b ≥2ab ②sin 2x +x2sin 4≥4 ③设x ,y 都是正数,若y x 91+=1,则x +y 的最小值是12 ④若|x -2|<ε,|y -2|<ε,则|x -y |<2ε,其中所有真命题的序号是__________4 已知二次函数 f (x )=ax 2+bx +1(a ,b ∈R ,a >0),设方程f (x )=x 的两实数根为x 1,x 2(1)如果x 1<2<x 2<4,设函数f (x )的对称轴为x =x 0,求证x 0>-1; (2)如果|x 1|<2,|x 2-x 1|=2,求b 的取值范围6 设函数f (x )定义在R 上,对任意m 、n 恒有f (m +n )=f (m )·f (n ),且当x >0时,0<f (x )<1(1)求证 f (0)=1,且当x <0时,f (x )>1;(2)求证 f (x )在R 上单调递减;(3)设集合A ={ (x ,y )|f (x 2)·f (y 2)>f (1)},集合B ={(x ,y )|f (ax -g +2)=1,a ∈R },若A ∩B =?,求a 的取值范围7 已知函数f (x )=1222+++x cbx x (b <0)的值域是[1,3], (1)求b 、c 的值;(2)判断函数F (x )=lg f (x ),当x ∈[-1,1]时的单调性,并证明你的结论;(3)若t ∈R ,求证 lg57≤F (|t -61|-|t +61|)≤lg 513 数列与不等式的交汇题型分析及解题策略【命题趋向】数列与不等式交汇主要以压轴题的形式出现,试题还可能涉及到与导数、函数等知识综合一起考查.主要考查知识数列的通项公式、前n 项和公式以及二者之间的关系、等差数列和等比数列、归纳与猜想、数归纳法、比较大小、不等式证明、参数取值范围的探求,在不等式的证明中要注意放缩法的应用. 【典例分析】题型一求有数列参与的不等式恒成立条件下参数问题求得数列与不等式结合恒成立条件下的参数问题主要两种策略:(1)若函数f(x)在定义域为D ,则当x ∈D 时,有f(x)≥M 恒成立?f(x)min ≥M ;f(x)≤M 恒成立?f(x)max ≤M ;(2)利用等差数列与等比数列等数列知识化简不等式,再通过解不等式解得. 【例1】等比数列{a n }的公比q >1,第17项的平方等于第24项,求使a 1+a 2+…+a n >1a 1+1a 2+…+1a n 恒成立的正整数n 的取值范围.【例2】(08·全国Ⅱ)设数列{a n }的前n 项和为S n .已知a 1=a ,an+1=S n +3n ,n ∈N*.(Ⅰ)设b n =S n -3n ,求数列{b n }的通项公式;(Ⅱ)若a n+1≥a n ,n∈N*,求a 的取值范围.【点评】一般地,如果求条件与前nABCDS项和相关的数列的通项公式,则可考虑S n 与a n 的关系求解题型二数列参与的不等式的证明问题此类不等式的证明常用的方法:(1)比较法,特别是差值比较法是最根本的方法;(2)分析法与综合法,一般是利用分析法分析,再利用综合法分析;(3)放缩法,主要是通过分母分子的扩大或缩小、项数的增加与减少等手段达到证明的目的.【例3】已知数列{a n }是等差数列,其前n 项和为S n ,a 3=7,S4=24.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设p 、q 都是正整数,且p ≠q ,证明:S p+q <12(S 2p +S 2q ).【点评】利用差值比较法比较大小的关键是对作差后的式子进行变形,途径主要有:(1)因式分解;(2)化平方和的形式;(3)如果涉及分式,则利用通分;(4)如果涉及根式,则利用分子或分母有理化.【例4】(08·安徽高考)设数列{a n }满足a 1=0,a n+1=ca n 3+1-c ,c∈N*,其中c 为实数.(Ⅰ)证明:a n ∈[0,1]对任意n ∈N*成立的充分必要条件是c ∈[0,1];(Ⅱ)设0<c <13,证明:a n ≥1-(3c)n -1,n ∈N*;(Ⅲ)设0<c <13,证明:a 12+a 22+…+a n 2>n +1-21-3c,n ∈N*.题型三求数列中的最大值问题求解数列中的某些最值问题,有时须结合不等式来解决,其具体解法有:(1)建立目标函数,通过不等式确定变量范围,进而求得最值;(2)首先利用不等式判断数列的单调性,然后确定最值;(3)利用条件中的不等式关系确定最值.【例5】(08·四川)设等差数列{a n }的前n 项和为S n ,若S 4≥10,S5≤15,则a 4的最大值为______.【例6】等比数列{a n }的首项为a 1=2002,公比q =-12.(Ⅰ)设f(n)表示该数列的前n 项的积,求f(n)的表达式;(Ⅱ)当n取何值时,f(n)有最大值.题型四求解探索性问题数列与不等式中的探索性问题主要表现为存在型,解答的一般策略:先假设所探求对象存在或结论成立,以此假设为前提条件进行运算或逻辑推理,若由此推出矛盾,则假设不成立,从而得到“否定”的结论,即不存在.若推理不出现矛盾,能求得在范围内的数值或图形,就得到肯定的结论,即得到存在的结果.【例7】已知{a n }的前n 项和为S n ,且a n +S n =4.(Ⅰ)求证:数列{a n }是等比数列;(Ⅱ)是否存在正整数k ,使S k+1-2S k -2>2成立. 【点评】在导出矛盾时须注意条件“k ∈N *”,这是在解答数列问题中易忽视的一个陷阱.【例8】(08·湖北)已知数列{a n }和{b n }满足:a 1=λ,a n+1=23a n +n -4,b n =(-1)n (a n -3n +21),其中λ为实数,n 为正整数. (Ⅰ)对任意实数λ,证明数列{a n }不是等比数列;(Ⅱ)试判断数列{b n }是否为等比数列,并证明你的结论;(Ⅲ)设0<a <b,S n 为数列{b n }的前n 项和.是否存在实数λ,使得对任意正整数n ,都有a <S n <b?若存在,求λ的取值范围;若不存在,说明理由.数列与不等式命题新亮点例1 把数列一次按第一个括号一个数,按第二个括号两个数,按第三个括号三个数,按第四个括号一个数…,循环分为(1),(3,5),(7,9,11),(13),(15,17),(19,21,23),(23) …,则第50个括号内各数之和为_____.点评:恰当的分组,找到各数之间的内在联系是解决之道.此外,这种题对观察能力有较高的要求. 例2 设{}n a 是由正数构成的等比数列, 12n n n b a a++=+,3n n n c a a +=+,则( )A. nn b c > B. n n b c < C. n n b c ≥ D. n n b c ≤点评:此题较易入手,利用作差法即可比较大小,考察数列的递推关系. 例3 若对(,1]x ∈-∞-,不等式21()2()12x x mm --<恒成立,则实数m 的取值范围( )A. (2,3)-B. (3,3)-C. (2,2)-D. (3,4)-例4四棱锥S-ABCD 的所有棱长均为1米,一只小虫从S 点出发沿四棱锥的棱爬行,若在每一顶点处选择不同的棱都是等可能的.设小虫爬行n 米后恰好回到S 点的概率为n P (1)求2P 、3P 的值; (2)求证: 131(2,)n nP P n n N ++=≥∈(3)求证: 2365>(2,)24n n P P P n n N -+++≥∈…例5 已知函数()2f x x x =+.(1)数列{}n a 满足: 10a >,()1n n a f a +'=,若11112ni ia =<+∑对任意的n N ∈恒成立,试求1a 的取值范围; (2)数列{}n b 满足: 11b =,()1n n b f b +=()n N ∈,记11n nc b =+,k S 为数列{}n c 的前k 项和, k T 为数列{}n c 的前k 项积,求证1710nk k k kT S T =<+∑. 例6 (1)证明: ()ln1(0)x x x +<> (2)数列{}n a 中. 11a =,且()11211122n n n a a n n --??=++≥ ???; ①证明: ()724n a n ≥≥ ②()21n a e n <≥ 【专题训练】1.已知无穷数列{a n }是各项均为正数的等差数列,则有( )A .a 4a 6<a 6a 8B .a 4a 6≤a 6a 8C .a 4a 6>a 6a 8D .a 4a 6≥a 6a 82.设{a n }是由正数构成的等比数列,b n =a n+1+a n+2,c n =a n +a n+3,则( ) A .b n >c nB .b n <c nC .b n ≥c nD .b n ≤c n3.已知{a n }为等差数列,{b n }为正项等比数列,公比q≠1,若a 1=b 1,a 11=b 11,则( )A .a 6=b 6B .a 6>b 6C .a 6<b 6D .a 6>b 6或a 6<b 6 4.已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k =( ) A .9 B .8 C .7 D .6 5.已知等比数列{a n }的公比q >0,其前n 项的和为S n ,则S 4a 5与S 5a 4的大小关系是( )A .S 4a 5<S 5a 4B .S 4a 5>S 5a 4C .S 4a 5=S 5a 4D .不确定 6.设S n =1+2+3+…+n ,n ∈N*,则函数f(n)=S n(n +32)S n+1的最大值为( )A .120B .130C .140D .1507.已知y 是x 的函数,且lg3,lg(sinx -12),lg(1-y)顺次成等差数列,则( )A .y 有最大值1,无最小值B .y 有最小值1112,无最大值C .y 有最小值1112,最大值1D .y 有最小值-1,最大值1 8.已知等比数列{a n }中a 2=1,则其前3项的和S 3的取值范围是( )A.(-∞,-1]B.(-∞,-1)∪(1,+∞)C.[3,+∞)D.(-∞,-1]∪[3,+∞)9.设3b 是1-a 和1+a 的等比中项,则a +3b 的最大值为( )A .1B .2C .3D .410.设等比数列{a n }的首相为a 1,公比为q ,则“a 1<0,且0<q <1”是“对于任意n ∈N*都有a n+1>a n ”的( )A .充分不必要条件B .必要不充分条件C .充分比要条件D .既不充分又不必要条件11.{a n }为等差数列,若a 11a 10<-1,且它的前n 项和S n 有最小值,那么当S n 取得最小正值时,n =( )A .11B .17C .19D .2112.设f(x)是定义在R 上恒不为零的函数,对任意实数x 、y ∈R ,都有f(x)f(y)=f(x +y),若a 1=12,a n =f(n)(n ∈N*),则数列{a n }的前n 项和S n 的取值范围是 ( ) A .[12,2)B .[12,2]C .[12,1)D .[12,1]13.等差数列{a n }的前n 项和为S n ,且a 4-a 2=8,a 3+a 5=26,记T n =S nn2,如果存在正整数M ,使得对一切正整数n ,T n ≤M 都成立.则M 的最小值是__________.14.无穷等比数列{a n }中,a 1>1,|q|<1,且除a 1外其余各项之和不大于a 1的一半,则q 的取值范围是________. 15.已知x >0,y >0,x ,a ,b ,y 成等差数列,x ,c ,d ,y 成等比数列,则(a +b)2cd的最小值是________.A.0B.1C.2D.416.等差数列{a n }的公差d 不为零,S n 是其前n 项和,给出下列四个命题:①A .若d <0,且S 3=S 8,则{S n }中,S 5和S 6都是{S n }中的最大项;②给定n ,对于一定k ∈N*(k <n),都有a n -k +a n+k =2a n ;③若d >0,则{S n }中一定有最小的项;④存在k ∈N*,使a k -a k+1和a k -a k -1同号其中真命题的序号是____________.17.已知{a n }是一个等差数列,且a 2=1,a 5=-5.(Ⅰ)求{a n }的通项na ;(Ⅱ)求{a n }前n 项和S n 的最大值.18.已知{a n }是正数组成的数列,a 1=1,且点(a n ,a n +1)(n ∈N *)在函数y =x 2+1的图象上.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)若列数{b n}满足b 1=1,b n +1=b n+2a n ,求证:b n·b n +2<b 2n +1.19.设数列{a n }的首项a 1∈(0,1),a n =3-a n -12,n =2,3,4,…. (Ⅰ)求{a n }的通项公式;(Ⅱ)设b n =a n 3-2a n ,证明b n <b n+1,其中n 为正整数. 20.已知数列{a n }中a 1=2,a n+1=(2-1)( a n+2),n =1,2,3,….(Ⅰ)求{a n }的通项公式;(Ⅱ)若数列{a n }中b 1=2,b n+1=3b n +42b n +3,n =1,2,3,….证明:2<b n ≤a 4n -3,n =1,2,3,… 21.已知二次函数y=f(x)的图像经过坐标原点,其导函数为f '(x)=6x -2,数列{a n }的前n 项和为S n ,点(n ,S n )(n ∈N*)均在函数y =f(x)的图像上.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设b n =1a n a n +1,T n 是数列{b n }的前n 项和,求使得T n <m20对所有n ∈N*都成立的最小正整数m22.数列{}n a 满足11a =,21()n n a n n a λ+=+-(12n = ,,),λ是常数.(Ⅰ)当21a =-时,求λ及3a 的值;(Ⅱ)数列{}n a 是否可能为等差数列?若可能,求出它的通项公式;若不可能,说明理由;(Ⅲ)求λ的取值范围,使得存在正整数m ,当n m >时总有0n a <.利用导数处理与不等式有关的问题一、利用导数证明不等式(一)、利用导数得出函数单调性来证明不等式。
导数在处理不等式的恒成立问题(一轮复习教案)

学习过程一、复习预习考纲要求:1.理解导数和切线方程的概念。
2.能在具体的数学环境中,会求导,会求切线方程。
3.特别是没有具体点处的切线方程,如何去设点,如何利用点线式建立直线方程。
4.灵活应用建立切线方程与其它数学知识之间的内在联系。
5. 灵活应用导数研究函数的单调性问题二、知识讲解1.导数的计算公式和运算法那么几种常见函数的导数:0'=C (C 为常数);1)'(-=n n nx x (Q n ∈);x x cos )'(sin =; x x sin )'(cos -=;1(ln )x x '=; 1(log )log a a x e x'=, ()x x e e '= ; ()ln x x a a a '= 求导法那么:法那么1 [()()]()()u x v x u x v x ±'='±'.法那么2 [()()]()()()()u x v x u x v x u x v x '='+', [()]'()Cu x Cu x '=法那么3: '2''(0)u u v uv v v v -⎛⎫=≠ ⎪⎝⎭复合函数的导数:设函数()u x ϕ=在点x 处有导数()x u x ϕ'=',函数()y f u =在点x 的对应点u 处有导数()u y f u '=',那么复合函数(())y f x ϕ=在点x 处也有导数,且x u x u y y '''⋅= 或(())()()x f x f u x ϕϕ'='⋅'2.求直线斜率的方法〔高中范围内三种〕(1) tan k α=〔α为倾斜角〕; (2) 1212()()f x f x k x x -=-,两点1122(,()),(,())x f x x f x ; (3)0()k f x '= 〔在0x x =处的切线的斜率〕;3.求切线的方程的步骤:〔三步走〕〔1〕求函数()f x 的导函数()f x ';〔2〕0()k f x '= 〔在0x x =处的切线的斜率〕;〔3〕点斜式求切线方程00()()y f x k x x -=-;4.用导数求函数的单调性:〔1〕求函数()f x 的导函数()f x ';〔2〕()0f x '>,求单调递增区间;〔3〕()0f x '<,求单调递减区间;〔4〕()0f x '=,是极值点。
导数在不等式证明中的应用

导数在不等式证明中的应用齐雨萱高中数学学习中,不等式是研究各项数学问题的基础工具,不等式证明是一种常见数学题型,也是同学们较为头疼的数学题型之一,要想提高自身的不等式证明准确率和效率,就必须充分掌握运用导数理论展开科学解题,导数理论证明不等式是最为高效和基本的一种解题方法,合理利用导数工具进行不等式实践证明,能够有效将不等式证明过程从困难转化为简单,帮助自身建立起更好的数学自信心,并提高数学解题综合能力。
本文将对导数在不等式证明中的应用展开分析与探讨,为不等式证明过程提供一定借鉴与参考。
1 合理运用导数单调性证明不等式在实践计算函数某个区间导数最大值或者小于0时,可以通过合理运用导数单调性展开科学高效证明。
首先,必须准确计算出该函数在此区间中表现出来的递减或者递增过程,这样才能够顺利证明不等式问题。
在日常证明数学不等式过程中,要学会结合不等式的不同特点,合理运用不同形式构造出对应的函数,同时科学采用导数工具去证明出实际构造出函数的单调性,这样一来就能够根据函数单调性特征去完成对该不等式的有效证明,提高整个证明解题过程的效率。
通过去科学准确判断出函数单调性,就可以比较出区间大小,同时在该区间中融入不等式,有效将不等式与函数结合在一起,除此之外,要正确认识到利用导数单调性进行证明不等式能够为自身提供极为实用的解题思路,无论是多复杂的曲线,往往只需要经过两个步骤就可以实现对不等式题目的高效准确证明。
这两个解题步骤是先将不等式与函数有机结合起来,接着准确判断出该函数在对应区间的单调性。
比如,当遇到这个问题时,已知X〉0,证明X-X2/2-1N (1+X)〈0,我们在证明这个不等式的时候,可以合理利用导数单调性去进行有效证明。
在相应单调区间内,通过判断函数是递减还是递增去得出该不等式是否成立。
证明解题步骤如下所示:假设函数f(X)=X-X2/2-1N(1+X)(X〉0),则f (X)=X-X2/2,当X〉0时,f(X)〈0,这样我们就能够准确判定出f(X)在X〉0区间中该函数是一种递减的发展趋势,X=0可以去除函数的最大值,通过f(X)〈f(0)有效证明出f(X)〈0成立,并且也能够准确证明出X-X2/2-1N(1+X)〈0是成立的。
高中数学导数及应用-不等式恒成立问题课件

利用数形结合来解决。
方法1:分离变量法(优先)
方法2:构造函数
,转化为 零点问题
方法3:构造两个函数的图象判断交点个数
方法4:转化为二次函数零点问题
方法5:转化为一次函数零点问题
类型五:利用导数研究函数与不等式问题
1、利用导数证明不等式的方法:证明
构造函数
。如果
,则F(x) 在
函数,同时若
,则由减函数的定义可知,
的值,要注意验证 左右的导数值的符号是否符 合取极值的条件。
(3)已知含参函数的极值点讨论 ①分类讨论根据 解(判断为极值点)
的存在性和解与区间的位置关系分为:“无、左、 中、右”,对四种分类标准进行取舍(或合并);
②注意数形结合。
注意:(1)在函数的整个定义域内,函数的极 值不一定唯一,在整个定义域内可能有多个极大
(2)切点的三个作用:①求切线斜率; ②切点在切线上; ③切点在曲线上。
类型二:利用导数研究函数的单调性 (1)求函数的单调区间
方法:判断导函数的符号 步骤:①求函数定义域;
②求函数的导函数; ③解不等式f '(x) 0 (或 f '(x) 0),求出 递增区间(或递减区间)。
注意:求单调区间前先求定义域(定义域优 先原则);单调区间是局部概念,故不能用“∪” 连接,只能用“,”或“和”。
'( x) mi n
0;
函数f (x)在区间D单调递减 在f ' (x) 0在x D
恒成立 对x D, f ' (x) 0; max
试题研究:
例1、已知函数f (x) x ln x.
(1)若函数g(x) f (x) ax在区间e2, 上的增函数,
求a的取值范围;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第15讲-导数在不等式中的应用一、经典例题考点一 构造函数证明不等式 【例1】 已知函数f (x )=1-x -1ex,g (x )=x -ln x . (1)证明:g (x )≥1;(2)证明:(x -ln x )f (x )>1-1e2.证明 (1)由题意得g ′(x )=x -1x(x >0),当0<x <1时,g ′(x )<0;当x >1时,g ′(x )>0, 即g (x )在(0,1)上是减函数,在(1,+∞)上是增函数. 所以g (x )≥g (1)=1,得证. (2)由f (x )=1-x -1ex ,得f ′(x )=x -2ex, 所以当0<x <2时,f ′(x )<0,当x >2时,f ′(x )>0, 即f (x )在(0,2)上是减函数,在(2,+∞)上是增函数, 所以f (x )≥f (2)=1-1e2(当且仅当x =2时取等号).① 又由(1)知x -ln x ≥1(当且仅当x =1时取等号),② 且①②等号不同时取得, 所以(x -ln x )f (x )>1-1e2.规律方法 1.证明不等式的基本方法:(1)利用单调性:若f (x )在[a ,b ]上是增函数,则①∀x ∈[a ,b ],有f (a )≤f (x )≤f (b ),②∀x 1,x 2∈[a ,b ],且x 1<x 2,有f (x 1)<f (x 2).对于减函数有类似结论.(2)利用最值:若f (x )在某个范围D 内有最大值M (或最小值m ),则∀x ∈D ,有f (x )≤M (或f (x )≥m ). 2.证明f (x )<g (x ),可构造函数F (x )=f (x )-g (x ),证明F (x )<0.先通过化简、变形,再移项构造不等式就减少运算量,使得问题顺利解决.考点二 利用“若f (x )min >g (x )max ,则f (x )>g (x )”证明不等式 【例2】 已知函数f (x )=x ln x -ax .(1)当a =-1时,求函数f (x )在(0,+∞)上的最值; (2)证明:对一切x ∈(0,+∞),都有ln x +1>1ex +1-2e2x成立.(1)解 函数f (x )=x ln x -ax 的定义域为(0,+∞). 当a =-1时,f (x )=x ln x +x ,f ′(x )=ln x +2. 由f ′(x )=0,得x =1e2.当x ∈⎝⎛⎭⎪⎫0,1e2时,f ′(x )<0;当x >1e2时,f ′(x )>0. 所以f (x )在⎝ ⎛⎭⎪⎫0,1e2上单调递减,在⎝ ⎛⎭⎪⎫1e2,+∞上单调递增.因此f (x )在x =1e2处取得最小值,即f (x )min =f ⎝ ⎛⎭⎪⎫1e2=-1e2,但f (x )在(0,+∞)上无最大值.(2)证明 当x >0时,ln x +1>1ex +1-2e2x 等价于x (ln x +1)>x ex +1-2e2.由(1)知a =-1时,f (x )=x ln x +x 的最小值是-1e2,当且仅当x =1e2时取等号.设G (x )=x ex +1-2e2,x ∈(0,+∞),则G ′(x )=1-x ex +1,易知G (x )max =G (1)=-1e2,当且仅当x =1时取到,从而可知对一切x ∈(0,+∞),都有f (x )>G (x ),即ln x +1>1ex +1-2e2x.规律方法 1.在证明不等式中,若无法转化为一个函数的最值问题,则可考虑转化为两个函数的最值问题.2.在证明过程中,等价转化是关键,此处f (x )min >g (x )max 恒成立.从而f (x )>g (x ),但此处f (x )与g (x )取到最值的条件不是同一个“x 的值”.考点三 不等式恒成立或有解问题 角度1 不等式恒成立求参数【例3-1】 已知函数f (x )=sin xx(x ≠0). (1)判断函数f (x )在区间⎝⎛⎭⎪⎫0,π2上的单调性;(2)若f (x )<a 在区间⎝ ⎛⎭⎪⎫0,π2上恒成立,求实数a 的最小值.解 (1)f ′(x )=xcos x -sin xx2,令g (x )=x cos x -sin x ,x ∈⎝⎛⎭⎪⎫0,π2,则g ′(x )=-x sin x ,显然,当x ∈⎝ ⎛⎭⎪⎫0,π2时,g ′(x )=-x sin x <0,即函数g (x )在区间⎝⎛⎭⎪⎫0,π2上单调递减,且g (0)=0.从而g (x )在区间⎝ ⎛⎭⎪⎫0,π2上恒小于零,所以f ′(x )在区间⎝⎛⎭⎪⎫0,π2上恒小于零,所以函数f (x )在区间⎝⎛⎭⎪⎫0,π2上单调递减.(2)不等式f (x )<a ,x ∈⎝⎛⎭⎪⎫0,π2恒成立,即sin x -ax <0恒成立.令φ(x )=sin x -ax ,x ∈⎝⎛⎭⎪⎫0,π2,则φ′(x )=cos x -a ,且φ(0)=0.当a ≥1时,在区间⎝⎛⎭⎪⎫0,π2上φ′(x )<0,即函数φ(x )单调递减, 所以φ(x )<φ(0)=0,故sin x -ax <0恒成立.当0<a <1时,φ′(x )=cos x -a =0在区间⎝⎛⎭⎪⎫0,π2上存在唯一解x 0,当x ∈(0,x 0)时,φ′(x )>0,故φ(x )在区间(0,x 0)上单调递增,且φ(0)=0, 从而φ(x )在区间(0,x 0)上大于零,这与sin x -ax <0恒成立相矛盾.当a ≤0时,在区间⎝ ⎛⎭⎪⎫0,π2上φ′(x )>0,即函数φ(x )单调递增,且φ(0)=0,得sin x -ax >0恒成立,这与sin x -ax <0恒成立相矛盾. 故实数a 的最小值为1.规律方法 1.破解此类题需“一形一分类”,“一形”是指会结合函数的图象,对函数进行求导,然后判断其极值,从而得到含有参数的方程组,解方程组,即可求出参数的值;“一分类”是指对不等式恒成立问题,常需对参数进行分类讨论,求出参数的取值范围.2.利用导数研究含参数的不等式问题,若能够分离参数,则常将问题转化为形如a ≥f (x )(或a ≤f (x ))的形式,通过求函数y =f (x )的最值求得参数范围.角度2 不等式能成立求参数的取值范围【例3-2】 已知函数f (x )=x 2-(2a +1)x +a ln x (a ∈R ). (1)若f (x )在区间[1,2]上是单调函数,求实数a 的取值范围;(2)函数g (x )=(1-a )x ,若∃x 0∈[1,e]使得f (x 0)≥g (x 0)成立,求实数a 的取值范围. 解 (1)f ′(x )=(2x -1)(x -a )x,当导函数f ′(x )的零点x =a 落在区间(1,2)内时,函数f (x )在区间[1,2]上就不是单调函数,即a ∉(1,2),所以实数a 的取值范围是(-∞,1]∪[2,+∞). (2)由题意知,不等式f (x )≥g (x )在区间[1,e]上有解,即x 2-2x +a (ln x -x )≥0在区间[1,e]上有解.因为当x ∈[1,e]时,ln x ≤1≤x (不同时取等号),x -ln x >0,所以a ≤x2-2xx -ln x在区间[1,e]上有解. 令h (x )=x2-2x x -ln x ,则h ′(x )=(x -1)(x +2-2ln x )(x -ln x )2.因为x ∈[1,e],所以x +2>2≥2ln x , 所以h ′(x )≥0,h (x )在[1,e]上单调递增, 所以x ∈[1,e]时,h (x )max =h (e)=e(e -2)e -1, 所以a ≤e(e -2)e -1, 所以实数a 的取值范围是⎝ ⎛⎦⎥⎤-∞,e(e -2)e -1.规律方法 1.含参数的能成立(存在型)问题的解题方法a ≥f (x )在x ∈D 上能成立,则a ≥f (x )min ; a ≤f (x )在x ∈D 上能成立,则a ≤f (x )max .2.含全称、存在量词不等式能成立问题(1)存在x 1∈A ,任意x 2∈B 使f (x 1)≥g (x 2)成立,则f (x )max ≥g (x )max ;(2)任意x 1∈A ,存在x 2∈B ,使f (x 1)≥g (x 2)成立,则f (x )min ≥g (x )min . [方法技巧]1.证明不等式的关键是构造函数,将问题转化为研究函数的单调性、最值问题.2.恒(能)成立问题的转化策略.若f (x )在区间D 上有最值,则 (1)恒成立:∀x ∈D ,f (x )>0⇔f (x )min >0; ∀x ∈D ,f (x )<0⇔f (x )max <0.(2)能成立:∃x ∈D ,f (x )>0⇔f (x )max >0; ∃x ∈D ,f (x )<0⇔f (x )min <0.3.证明不等式,特别是含两个变量的不等式时,要注意合理的构造函数.4.恒成立与能成立问题,要注意理解“任意”与“存在”的不同含义,要注意区分转化成的最值问题的异同.二、 课时作业1.函数f (x )的定义域为,,对任意,,则的解集为( )A.B.C.D.【答案】C【解析】设,则,所以为减函数,又,所以根据单调性可知,即的解集是.2.下列三个数:,大小顺序正确的是()A.B.C.D.【答案】A【解析】构造函数,因为对一切恒成立,所以函数在上是减函数,从而有,即,故选A.3.设函数在R上存在导数,对任意的有,且在上. 若,则实数的范围是()A.B.C.D.【答案】A【解析】令,则,故为偶函数,在,上,,且,故在,上单调递增,根据偶函数的对称性可知,在上单调递减,由,可得,即,则,可转化为,解可得,,4.若关于x的不等式恒成立,则实数a的取值范围为()A.B.C.D.【答案】D【解析】因为关于x的不等式恒成立,所以恒成立,令,,当时,,当时,,所以当时,取得最大值2.又因为,所以故实数a的取值范围为.5.已知定义域为的函数满足(为函数的导函数),则不等式的解集为()A.B.C.D.【答案】D【解析】令,则,定义域为的函数满足,,函数在上单调递增,当时,由,知,当时,显然不等式成立.当时,则,所以,整理得,即,所以,,得,则;当时,则,所以,整理得,即,所以,,得,则.综上所述,原不等式的解集为.6.定义在上的函数,则满足的取值范围是()A.B.C.D.【答案】D【解析】因为为偶函数,且在上恒成立,所以在上单调递增,在上单调递减,且图象关轴对称,则由)得,解得;故选D.7.已知函数,若存在,使得,则实数的取值范围是()A.B.C.(﹣∞,3)D.【答案】B【解析】∵,,∴,∴,∵存在,使得,即∴,设,∴∴,当时,解得:,当时,即时,函数单调递增,当时,即时,函数单调递减,因为,所以∴,8.已知是可导的函数,且对于恒成立,则()A.,B.,C.,D.,【答案】D【解析】构造函数,则,所以,函数为上的减函数.对于A选项,,,则,,所以,,,A选项错误;对于B选项,,则,所以,,B选项错误;对于C选项,,则,所以,,C选项错误;对于D选项,,则,所以,,D选项正确.9.已知函数是定义在上的奇函数.当时,,则不等式的解集为()A.B.C.D.【答案】C【解析】令,,当,时,,,即函数单调递增.又,时,,是定义在,上的奇函数,是定义在,上的偶函数.不等式,即,即,,①,又,故②,由①②得不等式的解集是.10.关于函数,有下述四个结论:①是周期函数.②在上单调递增.③的值域为.④若函数有且仅有两个不同的零点,则.其中所有正确结论的序号是()A.①②B.②③C.②④D.③④【答案】C【解析】当时,,所以,令得:或,所以当时,,递增,当时,,递减,且,则的图象如图所示:由图可知:不是周期函数,故①错误;在上单调递增,故②正确;的值域为,故③错误;若函数有且仅有两个不同的零点,即函数与函数有两个交点,所以由图可知:,故④正确.综上,②④正确.11.已知函数,且,则实数的取值范围是()A.B.C.D.【答案】C【解析】构造函数,则函数的定义域为.当时,,,函数在区间上单调递增,则,所以,函数在区间上单调递减;当时,,则,所以,函数在区间上单调递减.,所以,函数在定义域上单调递减.由,得,即,所以,,解得.因此,实数的取值范围是.12.如果关于的不等式在上恒成立,则实数的取值范围为()A.B.C.D.【答案】D【解析】当时,不等式成立.当时,不等式在上恒成立等价于恒成立.令则.又,令,解得所以在上单调递增,在上单调递减, 单调递增.又因为.所以.所以.13.函数,若存在唯一整数使得,则的取值范围是().A.B.C.D.【答案】B【解析】,令,则,当;当,在单调递增,在单调递减,且,如图所示:恒过定点,且,,,,存在唯一整数使得,当时,存在唯一的整数使得命题成立,14.若对于任意的,都有,则的最大值为()A.B.C.1 D.【答案】C【解析】由已知有,两边同时除以,化简有,而,构造函数,令令,所以函数在上为增函数,在上为减函数,由对于恒成立,即在为增函数,则,故的最大值为1,选C. 15.已知为常数,函数有两个极值点,(),则()A.,B.,C.,D.,【答案】C【解析】因为,令,由题意可得有两个解,即函数有且只有两个零点,即在上的唯一极值不等于0,又由,①当时,单调递增,因此至多有一个零点,不符合题意;②当时,令,解得,因为,,函数单调递增;,,函数单调递减,所以是函数的极大值点,则,即,所以,所以,即,故当时,的两个根,且,又,所以,从而可知函数在区间上递减,在区间上递增,在区间上递减,所以,故选C.16.对于任意正实数,都有,则实数的取值范围为()A.B.C.D.【答案】A【解析】,则,设,,,则,,恒成立,导函数单调递减,故时,,函数单调递增;当时,,函数单调递减.故,故,故.17.(多选题)已知是可导的函数,且,对于恒成立,则下列不等关系正确的是()A.,B.,C.,D.,【答案】AC【解析】设,所以,因为,所以,所以在R上是减函数,所以,,,即,,,18.(多选题)若满足,对任意正实数,下面不等式恒成立的是()A.B.C.D.【答案】BD【解析】设,,因为,所以,在R上是增函数,因为是正实数,所以,所以,因为,大小不确定,故A错误,因为,所以,即,故B正确.因为,所以,因为,大小不确定.故C错误.,因为,所以,故D正确.19.(多选题)设定义在上的函数满足,且当时,.己知存在,且为函数(为自然对数的底数)的一个零点,则实数的取值可能是()A.B.C.D.【答案】BCD【解析】令函数,因为,,为奇函数,当时,,在上单调递减,在上单调递减.存在,得,,即,;,为函数的一个零点;当时,,函数在时单调递减,由选项知,取,又,要使在时有一个零点,只需使,解得,的取值范围为,20.定义在上的函数满足,,则不等式的解集为______.【答案】【解析】由,设,则.故函数在上单调递增,又,故的解集为,即的解集为.21.已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)+xf'(x)>0,且f(3)=0,则不等式xf(x)>0的解集是_____.【答案】(﹣∞,﹣3)∪(3,+∞)【解析】令,当x>0时,∴x∈(0,+∞)上,函数单调递增.,∴.∵函数是定义在R上的奇函数,∴函数是定义在R上的偶函数.由,即,∴|x|>3,解得x>3,或x<﹣3.∴不等式的解集是.故答案为:.22.函数f(x)的定义域为R,f(-1)=2,对任意x∈R,,则f(x)>2x+4的解集为____.【答案】(-1,+∞)【解析】构造函数F(x)=f(x)-2x,,所以即求F(x)>4=F(-1)的解集,而F(x)在R上是单调递增函数,所以x>-1,填.23.设函数,.(1)当时,判断函数的单调性;(2)当时,恒成立,求实数的取值范围.【解析】(1)当时,所以.令,,由,可得.当时,,单调递减,当时,,单调递增,当时,,即,,则在是增函数;(2)解:设,所以.令,则.①当时,,在上单调递增,.,在上单调递增,则,结论成立;②当时,由,可得,当时,,单调递减,又,时,恒成立,即.时,单调递减,此时,结论不成立.综上,即为所求.24.已知函数.(1)若函数在上恰有两个零点,求实数的取值范围.(2)记函数,设是函数的两个极值点,若,且恒成立,求实数的最大值.【解析】(1)因为,∴函数,令,则,令得,,列表得:12单调递减极小值单调递增∴当时,的极小值为,又,.∵函数在上恰有两个零点,∴即,解得.(2),∴,令得,∵,是的极值点,∴,,∴,∵,∴解得:,.∴,.令,则,∴在上单调递减;∴当时,,根据恒成立,可得,∴的最大值为.25.已知函数,,曲线在点处的切线与轴垂直;(1)求的值;(2)求证:【解析】(1)曲线在点处的切线与轴垂直,该切线的斜率(2)由(1)可得只需证设令,得当时,,当时,即函数在上单调递减,在上单调递增。