关于小波变换及应用图像压缩课件
合集下载
小波变换课件

景
消失矩性质
消失矩定义:小波变换在高频部分具有快速衰减的特性
消失矩性质与信号处理:在信号处理中,消失矩性质使得小波变换能够有效地提取信号的 高频成分
消失矩与多分辨率分析:消失矩性质是实现多分辨率分析的关键,能够同时获得信号在不 同尺度上的信息
消失矩的应用:在图像处理、语音识别、信号去噪等领域,消失矩性质都有着广泛的应用
图像去噪:小波变换能够将噪声与 图像信号进行分离,从而去除噪声
语音处理
小波变换在语音 信号处理中的应 用
小波变换在语音 识别和合成中的 应用
小波变换在语音 增强和去噪中的 应用
小波变换在语音 编码和压缩中的 应用
其他应用领域
信号处理 图像处理 语音处理 模式识别
小波变换的优缺点分析
小波变换的优点
用的特征信息
图像处理:小波变换在图像 处理中也有广泛的应用,如
图像压缩、去噪、增强等
图像处理
图像压缩:小波变换能够去除图像 中的冗余信息,实现高效的图像压 缩
图像融合:将多个图像的小波系数 进行融合,可以得到一个新的、包 含多个图像信息的图像
添加标题
添加标题
添加标题
添加标题
图像增强:通过调整小波系数,可 以突出图像的某些特征,提高图像 的视觉效果
多维小波变换算法:介绍多维小波变换的基本原理和算法实现,包括多维小波变换 的定义、性质、算法流程等。
多维小波变换在图像处理中的应用:介绍多维小波变换在图像处理中的应用,包括 图像压缩、图像去噪、图像增强等。
多维小波变换的优缺点:介绍多维小波变换的优缺点,包括优点如多尺度分析、方 向性、时频局部化等,以及缺点如计算量大、需要选择合适的小波基等。
数学表达式:对于任意实数a,如果f(t)的小波变换为Wf(s,a),则f(t-a)的小波变换仍为 Wf(s,a)
消失矩性质
消失矩定义:小波变换在高频部分具有快速衰减的特性
消失矩性质与信号处理:在信号处理中,消失矩性质使得小波变换能够有效地提取信号的 高频成分
消失矩与多分辨率分析:消失矩性质是实现多分辨率分析的关键,能够同时获得信号在不 同尺度上的信息
消失矩的应用:在图像处理、语音识别、信号去噪等领域,消失矩性质都有着广泛的应用
图像去噪:小波变换能够将噪声与 图像信号进行分离,从而去除噪声
语音处理
小波变换在语音 信号处理中的应 用
小波变换在语音 识别和合成中的 应用
小波变换在语音 增强和去噪中的 应用
小波变换在语音 编码和压缩中的 应用
其他应用领域
信号处理 图像处理 语音处理 模式识别
小波变换的优缺点分析
小波变换的优点
用的特征信息
图像处理:小波变换在图像 处理中也有广泛的应用,如
图像压缩、去噪、增强等
图像处理
图像压缩:小波变换能够去除图像 中的冗余信息,实现高效的图像压 缩
图像融合:将多个图像的小波系数 进行融合,可以得到一个新的、包 含多个图像信息的图像
添加标题
添加标题
添加标题
添加标题
图像增强:通过调整小波系数,可 以突出图像的某些特征,提高图像 的视觉效果
多维小波变换算法:介绍多维小波变换的基本原理和算法实现,包括多维小波变换 的定义、性质、算法流程等。
多维小波变换在图像处理中的应用:介绍多维小波变换在图像处理中的应用,包括 图像压缩、图像去噪、图像增强等。
多维小波变换的优缺点:介绍多维小波变换的优缺点,包括优点如多尺度分析、方 向性、时频局部化等,以及缺点如计算量大、需要选择合适的小波基等。
数学表达式:对于任意实数a,如果f(t)的小波变换为Wf(s,a),则f(t-a)的小波变换仍为 Wf(s,a)
《小波变换》课件

离散小波变换
定义
离散小波变换是对连续小波变换 的离散化,即将时间和频率轴进 行离散化,使小波变换能够应用 于数字信号处理。
原理
离散小波变换通过将信号进行离 散化,将连续的小波变换转换为 离散的运算,从而能够方便地应 用于数字信号处理系统。
应用
离散小波变换在图像压缩、数字 水印、音频处理等领域有广泛应 用,能够提供较好的压缩效果和 数据隐藏能力。
小波变换的应用拓展
图像处理
研究小波变换在图像压缩、去噪、增强等方面的应用,提高图像 处理的效果和效率。
语音信号处理
将小波变换应用于语音信号的降噪、特征提取等方面,提高语音 识别的准确率。
医学成像
利用小波变换对医学成像数据进行处理,提高医学影像的质量和 诊断准确率。
小波变换的算法优化
快速小波变换算法
《小波变换》ppt课 件 (2)
THE FIRST LESSON OF THE SCHOOL YEAR
目录CONTENTS
• 小波变换概述 • 小波变换的基本原理 • 小波变换的算法实现 • 小波变换在图像处理中的应用 • 小波变换的未来发展与挑战
01
小波变换概述
小波变换的定义
小波变换是一种数学分析方法,它通 过小波基函数的平移和伸缩,将信号 分解成不同频率和时间尺度的分量。
提供较好的特征提取和分类能力。
01
小波变换的算法实 现
常用的小波基函数
Haar小波
Daubechies小波
是最简单的小波,具有快速变换的特性, 但缺乏连续性和平滑性。
具有紧支撑性和良好的数学特性,广泛应 用于信号处理和图像处理。
Morlet小波
具有振荡性,适用于分析非平稳信号。
小波变换课件

小波变换的基本思想是将信号分 解成一系列的小波函数,每个小 波函数都有自己的频率和时间尺
度。
小波变换通过平移和缩放小波函 数,能够适应不同的频率和时间 尺度,从而实现对信号的精细分
析。
小波变换的特点
01
02
03
多尺度分析
小波变换能够同时分析信 号在不同频率和时间尺度 上的特性,提供更全面的 信号信息。
图像去噪
利用小波变换去除图像中的噪声,提高图像的清晰度和质 量。
在小波变换中,噪声通常表现为高频系数较大的值,通过 设置阈值去除这些高频系数,可以达到去噪的效果。去噪 后的图像能够更好地反映原始图像的特征和细节。
图像增强
ቤተ መጻሕፍቲ ባይዱ
利用小波变换增强图像的某些特征,突出显示或改善图像的某些部分。
通过调整小波变换后的系数,可以增强图像的边缘、纹理等特定特征。这种增强 方式能够突出显示图像中的重要信息,提高图像的可读性和识别效果。
在信号处理、图像处理、语音识别等 领域有广泛应用。
特点
能够同时分析信号的时域和频域特性 ,具有灵活的时频窗口和多分辨率分 析能力。
离散小波变换
定义
离散小波变换是对连续小波变换 的离散化,通过对小波函数的离 散化处理,实现对信号的近似和
细节分析。
特点
计算效率高,适合于数字信号处理 和计算机实现。
应用
在信号处理、图像处理、数据压缩等领域有广泛应用,如语音压缩、图像压缩 、数据挖掘等。
CHAPTER 04
小波变换在图像处理中的应用
图像压缩
利用小波变换对图像进行压缩,减少存储空间和传输带宽的 需求。
通过小波变换将图像分解为不同频率的子带,去除高频细节 ,保留低频信息,从而实现图像压缩。压缩后的图像可以通 过逆小波变换重新构造,保持图像质量的同时减小数据量。
小波变换ppt课件

在此添加您的文本16字
自适应压缩
在此添加您的文本16字
小波变换的自适应性质使得它在压缩过程中能够根据信号 的特性进行动态调整,进一步提高压缩效率。
信号去噪
有效去噪 多尺度分析 自适应去噪
小波变换能够检测到信号中的突变点,从而在去噪过程 中保留这些重要特征,同时去除噪声。
小波变换的多尺度分析能力使其在去噪过程中能够同时 考虑信号的全局和局部特性,实现更准确的去噪效果。
小波变换的算法优化
1 2
小波变换算法的分类
介绍不同类型的小波变换算法,如连续小波变换、 离散小波变换等。
算法优化策略
探讨如何优化小波变换算法,以提高计算效率和 精度。
3
算法实现技巧
介绍实现小波变换算法的技巧和注意事项。
小波变换在实际应用中的挑战与解决方案
01
小波变换在信号处理中的应用
介绍小波变换在信号处理领域的应用,如信号去噪、特征提取等。
小波变换ppt课件
• 小波变换概述 • 小波变换的基本原理 • 小波变换的算法实现 • 小波变换在信号处理中的应用 • 小波变换在图像处理中的应用 • 小波变换的未来发展与挑战
01
小波变换概述
小波变换的定义
01
小波变换是一种信号处理方法, 它通过将信号分解成小波函数的 叠加,实现了信号的多尺度分析 。
02
小波变换在图像处理中的应用
探讨小波变换在图像处理领域的应用,如图像压缩、图像增强等。
03
实际应用中的挑战与解决方案
分析小波变换在实际应用中面临的挑战,并提出相应的解决方案。
THANKS
感谢观看
离散小波变换具有多尺度、多方向和自适应的特点,能够提供信号或图像在不同尺 度上的细节信息,广泛应用于信号降噪、图像压缩和特征提取等领域。
自适应压缩
在此添加您的文本16字
小波变换的自适应性质使得它在压缩过程中能够根据信号 的特性进行动态调整,进一步提高压缩效率。
信号去噪
有效去噪 多尺度分析 自适应去噪
小波变换能够检测到信号中的突变点,从而在去噪过程 中保留这些重要特征,同时去除噪声。
小波变换的多尺度分析能力使其在去噪过程中能够同时 考虑信号的全局和局部特性,实现更准确的去噪效果。
小波变换的算法优化
1 2
小波变换算法的分类
介绍不同类型的小波变换算法,如连续小波变换、 离散小波变换等。
算法优化策略
探讨如何优化小波变换算法,以提高计算效率和 精度。
3
算法实现技巧
介绍实现小波变换算法的技巧和注意事项。
小波变换在实际应用中的挑战与解决方案
01
小波变换在信号处理中的应用
介绍小波变换在信号处理领域的应用,如信号去噪、特征提取等。
小波变换ppt课件
• 小波变换概述 • 小波变换的基本原理 • 小波变换的算法实现 • 小波变换在信号处理中的应用 • 小波变换在图像处理中的应用 • 小波变换的未来发展与挑战
01
小波变换概述
小波变换的定义
01
小波变换是一种信号处理方法, 它通过将信号分解成小波函数的 叠加,实现了信号的多尺度分析 。
02
小波变换在图像处理中的应用
探讨小波变换在图像处理领域的应用,如图像压缩、图像增强等。
03
实际应用中的挑战与解决方案
分析小波变换在实际应用中面临的挑战,并提出相应的解决方案。
THANKS
感谢观看
离散小波变换具有多尺度、多方向和自适应的特点,能够提供信号或图像在不同尺 度上的细节信息,广泛应用于信号降噪、图像压缩和特征提取等领域。
第9章 小波变换(08) 数字图像处理课件

采用上述方法,理论上产生的数据量将是原始数据的两倍。根据Nyquist采 样定理, 可用下采样的方法来减少数据量,即在每个通道内每两个样本数 据取一个, 便可得到离散小波变换的系数(Coefficient)。
D 1000个采样点
↓
S 1000个采样点
S 1000个采样点
cD 约500个DW T系数
A 1000个采样点
(t)
(t-k)
O
t
O
t
(a)
(b)
图7-15 (a) 小波函数ψ(t); (b) 位移后的小波函数ψ(t-k)
第9章 小波变换及其在率之间的相互关系。傅立叶变 换提供了有关频率域的信息,但有关时间的局部化信息却基本 丢失。
• 与傅立叶变换不同,小波变换是通过缩放母小波(Mother wavelet)的宽度来获得信号的频率特征, 通过平移母小波来获 得信号的时间信息。
9.1.4 多分辨分析( Mallat快速算法,阮148)
• 1988年Mallat受到塔式算法的启发,在多分辨分析 的指导下建立了Mallat算法,它是小波变换的快速算 法,其作用相当于FFT。
•从多分辨分析——离散卷积——滤波处理,Mallat算 法本质上不需要知道小波函数的具体结构,只由系数 就可以实现f(t)的分解与重构。
cA 1
cD 1
cA 2
cD 2
cA 3
cD 3
(b )
A2
D2
S
Lo_ D : 低 通 滤 波 器 ; Hi_D:
高 通滤 波器
L o_ D
A3
Hi_D D3
cA 1
cD 1
cA 2
cD 2
cA 3
cD 3
(a )
D 1000个采样点
↓
S 1000个采样点
S 1000个采样点
cD 约500个DW T系数
A 1000个采样点
(t)
(t-k)
O
t
O
t
(a)
(b)
图7-15 (a) 小波函数ψ(t); (b) 位移后的小波函数ψ(t-k)
第9章 小波变换及其在率之间的相互关系。傅立叶变 换提供了有关频率域的信息,但有关时间的局部化信息却基本 丢失。
• 与傅立叶变换不同,小波变换是通过缩放母小波(Mother wavelet)的宽度来获得信号的频率特征, 通过平移母小波来获 得信号的时间信息。
9.1.4 多分辨分析( Mallat快速算法,阮148)
• 1988年Mallat受到塔式算法的启发,在多分辨分析 的指导下建立了Mallat算法,它是小波变换的快速算 法,其作用相当于FFT。
•从多分辨分析——离散卷积——滤波处理,Mallat算 法本质上不需要知道小波函数的具体结构,只由系数 就可以实现f(t)的分解与重构。
cA 1
cD 1
cA 2
cD 2
cA 3
cD 3
(b )
A2
D2
S
Lo_ D : 低 通 滤 波 器 ; Hi_D:
高 通滤 波器
L o_ D
A3
Hi_D D3
cA 1
cD 1
cA 2
cD 2
cA 3
cD 3
(a )
小波变换及其在图像处理中的典型应用PPT课件

要点一
总结词
要点二
详细描述
通过调整小波变换后的系数,可以增强图像的某些特征, 如边缘、纹理等。
小波变换可以将图像分解为不同频率的子图像,通过调整 小波系数,可以突出或抑制某些特征。增强后的图像可以 通过小波逆变换进行重建,提高图像的可视效果。
感谢您的观看
THANKS
实现方式
通过将输入信号与一组小波基函 数进行内积运算,得到小波变换 系数,这些系数反映了信号在不 同频率和位置的特性。
特点
一维小波变换具有多尺度分析、 局部化分析和灵活性高等特点, 能够有效地处理非平稳信号,如 语音、图像等。
二维小波变换
定义
二维小波变换是一种处理图像的方法,通过将图像分解成不同频率和方向的小波分量, 以便更好地提取图像的局部特征。
实现方式
02
通过将小波变换系数进行逆变换运算,得到近似信号或图像的
原始数据。
特点
03
小波变换的逆变换具有重构性好、计算复杂度低等特点,能够
有效地恢复信号或图像的原始信息。
03
小波变换在图像处理中的 应用
图像压缩
利用小波变换对图像进行压缩,减少 存储空间和传输带宽的需求。
通过小波变换将图像分解为不同频率 的子图像,保留主要特征,去除冗余 信息,从而实现图像压缩。压缩后的 图像可以通过解压缩还原为原始图像。
图像融合
利用小波变换将多个源图像融合成一个目 标图像,实现多源信息的综合利用。
通过小波变换将多个源图像分解为不同频 率的子图像,根据一定的规则和权重对各个 子图像进行融合,再通过逆变换得到融合后 的目标图像。图像融合在遥感、医学影像、 军事侦察等领域有广泛应用,能够提高多源
信息的综合利用效率和目标识别能力。
小波变换原理与应用ppt课件

3.小波变换的基本原理与性质
信号的时域表示和频域表示只适用于平稳信号,对于
非平稳信号而言,在时间域各种时间统计量会随着时 间的变化而变化,失去统计意义;而在频率域,由于 非平稳信号频谱结构随时间的变化而变化导致谱值失 去意义
幅度 A |Y(f)|
信 号 x(t)的 时 域 波 形 1
0.5
0
-0.5
2
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
1.小波的发展历史——工程到数学
小波变换的概念是由法国从事石油信号处理的工程 师J.Morlet在1974年首先提出的,通过物理的直观和信 号处理的实际需要经验的建立了反演公式,当时未能 得到数学家的认可。幸运的是,1986年著名数学家 Y.Meyer偶然构造出一个真正的小波基,并与S.Mallat 合作建立了构造小波基的同一方法枣多尺度分析之后 ,小波分析才开始蓬勃发展起来。
1.小波的发展历史——工程到数学
1909: Alfred Haar——发现了Haar小波 1980:Morlet——Morlet小波,并分别与20世纪70年代提
出了小波变换的概念,20世纪80年代开发出了连续小 波变换CWT( continuous wavelet transform ) 1986:Y.Meyer——提出了第一个正交小波Meyer小波 1988: Stephane Mallat——Mallat快速算法(塔式分解和 重构算法)
Rx(t1,t2)ExE(t)x(t1)x ( tx2)f(x)dRxx()m,x t2 t1
Ex2(t)
非平稳信号 不满足平稳性条件至少是宽平稳条件的信号
信号的时域表示和频域表示只适用于平稳信号,对于
非平稳信号而言,在时间域各种时间统计量会随着时 间的变化而变化,失去统计意义;而在频率域,由于 非平稳信号频谱结构随时间的变化而变化导致谱值失 去意义
幅度 A |Y(f)|
信 号 x(t)的 时 域 波 形 1
0.5
0
-0.5
2
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
1.小波的发展历史——工程到数学
小波变换的概念是由法国从事石油信号处理的工程 师J.Morlet在1974年首先提出的,通过物理的直观和信 号处理的实际需要经验的建立了反演公式,当时未能 得到数学家的认可。幸运的是,1986年著名数学家 Y.Meyer偶然构造出一个真正的小波基,并与S.Mallat 合作建立了构造小波基的同一方法枣多尺度分析之后 ,小波分析才开始蓬勃发展起来。
1.小波的发展历史——工程到数学
1909: Alfred Haar——发现了Haar小波 1980:Morlet——Morlet小波,并分别与20世纪70年代提
出了小波变换的概念,20世纪80年代开发出了连续小 波变换CWT( continuous wavelet transform ) 1986:Y.Meyer——提出了第一个正交小波Meyer小波 1988: Stephane Mallat——Mallat快速算法(塔式分解和 重构算法)
Rx(t1,t2)ExE(t)x(t1)x ( tx2)f(x)dRxx()m,x t2 t1
Ex2(t)
非平稳信号 不满足平稳性条件至少是宽平稳条件的信号
数字图像处理中 小波变换和图像压缩

LOGO
小波变换与图像压缩
目录
信号编码 离散小波变换系数的计算 基于小波变换的压缩编码 二维小波变换 基本的阈值编码方法 EZW编码 SPIHT编码
§8.6 信号编码
用小波信号编码,就是将信号分解到伸缩和移位的函数上。尺度函数是 父小波的伸缩和移位形式;小波函数是母小波的伸缩和移位形式。下面 将说明用尺度函数和小波函数一起对信号进行编码,效率最高。 用尺度函数对信号进行编码要满足: 选择小波基的特性适合于待编码的信号; 最小尺度能够反映出信号的最小细节。
(c)
该等式将精细尺度m+1上的小波变换系数与相邻粗尺度m上的小波系数联系起来。 合成方程在这个意义上实现了反离散小波变换(IDWT)。
图形显示了与Daubechies-4小波基对应的滤波器的脉冲响应傅里叶变换幅 度谱。这两个滤波器对称互补,曲线交点正好是滤波器的3dB带宽点,即 当信号通过时,这两个正好将整个信号带宽平分为二。
3 3 3 2 3 2 3 2 -M 2
来代替小波系数cM [n]作为DWT分析的输入。这种简化的根据是
足够小的时侯,尺度函数和小波函数变得近似于冲击函数。如图P205图8.29
任一数信号可以表示为冲击函数的加权和 x(n)=⋯ +c3[0]δ [n] + c3 [1]δ [n − 1] + c3[2]δ [n − 2] +⋯ 比较以上两式可以得到一般结论为: cM [n]=2 x[n]
例题8-7 请详见课本
P211
§8.8基于小波变换的压缩编码 基于小波变换的压缩编码
ⅰ
二维小波变换
压缩编码
ⅱ
基本的阈值编码方法
ⅲ
EZW&SPIHT编码 编码
小波变换与图像压缩
目录
信号编码 离散小波变换系数的计算 基于小波变换的压缩编码 二维小波变换 基本的阈值编码方法 EZW编码 SPIHT编码
§8.6 信号编码
用小波信号编码,就是将信号分解到伸缩和移位的函数上。尺度函数是 父小波的伸缩和移位形式;小波函数是母小波的伸缩和移位形式。下面 将说明用尺度函数和小波函数一起对信号进行编码,效率最高。 用尺度函数对信号进行编码要满足: 选择小波基的特性适合于待编码的信号; 最小尺度能够反映出信号的最小细节。
(c)
该等式将精细尺度m+1上的小波变换系数与相邻粗尺度m上的小波系数联系起来。 合成方程在这个意义上实现了反离散小波变换(IDWT)。
图形显示了与Daubechies-4小波基对应的滤波器的脉冲响应傅里叶变换幅 度谱。这两个滤波器对称互补,曲线交点正好是滤波器的3dB带宽点,即 当信号通过时,这两个正好将整个信号带宽平分为二。
3 3 3 2 3 2 3 2 -M 2
来代替小波系数cM [n]作为DWT分析的输入。这种简化的根据是
足够小的时侯,尺度函数和小波函数变得近似于冲击函数。如图P205图8.29
任一数信号可以表示为冲击函数的加权和 x(n)=⋯ +c3[0]δ [n] + c3 [1]δ [n − 1] + c3[2]δ [n − 2] +⋯ 比较以上两式可以得到一般结论为: cM [n]=2 x[n]
例题8-7 请详见课本
P211
§8.8基于小波变换的压缩编码 基于小波变换的压缩编码
ⅰ
二维小波变换
压缩编码
ⅱ
基本的阈值编码方法
ⅲ
EZW&SPIHT编码 编码
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Lena图像的多分辨率表示
上述的分解过程通常采用滤波器组的形式 实现,滤波器组由一个低通滤波器和一个 高通滤波器构成。首先在行的方向上对图 像进行分解,然后再在列方向上对图像进 行分解,这样就得到一个逼近信号和三个 不同方向上的细节信号。逼近信号又可作 为输入进行下一级分解。由小波系数重构 原始图像是上述过程的逆过程。
2. EZW算法
Embedded zero-tree wavelet algorithm
E Z W 算 法 是 Shaprio 等 人 在 1993 年 发 表 的,它是小波图像压缩历史上具有里程碑 意义的一个算法。到目前为止,许多最新 的 算 法 仍 然 还 是 基 于 EZW 的 核 心 思 想 。 该 算法的核心是对小波分解后的子带系数定 义一种零树结构,这种零树结构是基于频 率衰减的假设,即在同一方向上粗糙尺度 子带的系数要比相应位置精细尺度子带的 系数大,然后采用连续逼近量化和熵编码 生成嵌入式码流。
(
n1
,
n2
)
g (k1) g (k2 )ai (2n1 k1,2n2 k2 )
k1 0信号ai1(n1,n2) 是 ai(n1,n2) 在低分辨率上的近似,从ai(n1,n2) 籍 低通滤波器和沿行及列2倍下取样计算此近似 信号,信号 di1 1(n1,n2)d ,i2 1(n1,n2)和 di31(n1,n2)包 含 ai(n1,n2) 的细节。信号 di11(n1,n2) 包含垂直高 频(水平边沿)。计算此信号是由水平方向低 通和垂直方向高通滤波 ai(n1,n2) ,信号di21(n1,n2)
EZW 算法根据小波分解后得到的图像的多分 辨率表示的特点,定义了一种树形结构。对 于最低分辨率子带,每一个系数都可与同一 空间位置的水平、垂直、对角线方向的 3 个 小波系数相关联;对于非最高分辨率的其它 子带,每个系数都可与精细尺度的相同方向、 同一空间位置的 4 个小波系数相关联。称粗 糙尺度的系数是其关联的下一级精细尺度系 数的父亲,称精细尺度的系数是与其关联的 上一级粗糙尺度系数的孩子,这样就形成一 系列的子带系数间的父子关系。
关于小波变换及应用图像压缩
小波分析因为同时具有好的空间分辨率和好的 频率分辨率,特别适于分析非稳态信号。自然 图像正具有这种非稳态特性,可以看作是能量 空间集中(图像边沿和细节)和频率集中(图 像的平缓变化部分)信号的线性组合[8]。因此, 使用小波分析进行图像压缩可以取得很好的效 果。
基于小波的图像压缩思想来源
图像经过小波分解后,绝大部分能量集中 在逼近信号子带,该子带的图像可看作原 始图像的一种低分辨率的抽样。而细节子 带则反映了图像在各个尺度的细节,如边 缘、纹理等。因为自然图像的边缘、纹理 通常之存在于小部分区域,所以细节子带 的大部分系数很小,平均能量很低。下图 是 Lena 图 像 经 过 小 波 分 解 得 到 的 多 分 辨 率 表示。
d2
a111 a112 a113 a114 a121a122 a123a124 a131 a132 a133 a134a141a142a143 a144
d1
展开的小波树
注意到每一级的树形节点都对应图像相同 空 间 位 置 的 区 域 。 也 即 a 与a1 、 a 2 、 a 3 表
k1 0 k2 0
L 1 L 1
d
1 i 1
(
n1
,
n2
)
h(k1) g (k2 )ai (2n1 k1,2n2 k2 )
k1 0 k2 0
L 1 L 1
d
2 i 1
(
n1
,
n2
)
g (k1)h(k2 )ai (2n1 k1,2n2 k2 )
k1 0 k2 0
L 1 L 1
d
3 i 1
Embedded 意即编码器可以在任一希望速率 上停止编码。同样,解码器可在码流的任一 点截断码流,停止解码。 优点:不需要图像预先知识,不用存储其码 表,和不用训练。
EZW算 法 利 用 DW T分 解 , 在 每 一 i 层的 最 低 带 (band)分 解 为 四 个 子 带 : Li L 1, Li H 1, Hi1, LHi1H
列
H(Z) 2 G(Z) 2 H(Z) 2 G(Z) 2
N 4
N 4
a2(n1,n2)
d21(n1,n2)
d22(n1,n2)
d23(n1,n2) d11(n1,n2) d12(n1,n2) d13(n1,n2)
LL3 HL3 HL2
LH 3 HH 3
HL1
LH 2
HH 2
LH1
HH 1
图像的多分辨率表示
小波分析因为同时具有好的空间分辨率和好的频 率分辨率,特别适于分析非稳态信号。自然图像 正具有这种非稳态特性,可以看作是能量空间集 中(图像边沿和细节)和频率集中(图像的平缓 变化部分)信号的线性组合。小波图像压缩就是 利用小波变换同时具有好的空间分辨率和好的频 率分辨率的特性,使变换系数的能量同时在频率 上和空间上集中,达到去除像素冗余度的作用。
1. 图像的小波分解
若2-D滤波器 (n1,n2)可分解为 (n 1 ,n 2 )1 (n 1 )2 (n 2 ),则
可分的2-D DWT,将分解近似图象ai(n1,n2)为一个近似
图象和3个细节图象,即:
L 1 L 1
ai1(n1, n2 )
h(k1)h(k2 )ai (2n1 k1,2n2 k2 )
包含水平高频(垂直边沿),信号 di31(n1,n2) 包 含两个方向的高频(角)。
2级2-D DWT的上式计算,可由下框图实现:
N N
N 2
N
行
H (Z )
a0(n1,n2)
2
G(Z) 2
行
列
H (Z )
a1(n1,n2)
2
H(Z) 2
G(Z) 2
G(Z) 2
H(Z) 2
G(Z) 2
N 2
N 2
a LL3
HL 3
d
2 3
?4
d
2 2
LH3 HH3
?4
d
1 3
d
3 3
HL2
d
1 2
d
3 2
LH 2
HH 2
d11
d12
HL1
d13
LH1
HH1
小波系数的树形结构
a
a1
(d
1 3
)
a2
(d
2 3
)
a3 (d33 )
a11 a12 a13 a14 a21 a22 a23 a24 a31 a32 a33 a34