日本分析科学Analytical Science

合集下载

中文期刊全称及缩写对照

中文期刊全称及缩写对照

钢铁 钢铁钒钛
IRON & STEEL IRON STEEL VANADIUM TITANIUM
IRON & STEEL IRON STEEL VANADIUM TITANIUM
高等学校化学学报
CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE
CHEM J CHINESE U
Plating & Finishing Electroplating & Finishing ELECTROMACHINING Automation of Electric Power Systems Power System Technology Chinese Journal of Electronics
J MATER SCI ENG MATER SCI TECHNOL
Cailiao Rechuli Heat Treatment
Xuebao/Transactions
of
Materials
and
T
MATER
HEAT
TREAT
Chinese Journal of Materials Research Mining Technology
HIGHPOLYMER MATER SCI & ENG CHINESE J POLYM SCI ACTA POLYM SIN HI-TECH FIBER & APPL
高能物理与核物理
HIGH ENERGY PHYSICS AND NUCLEAR PHYSICS-CHINESE EDITION
HIGH ENERG PHYS NUC
PHYSICS
CHIN J LOW TEMP

analytical chemistry 影响因子中科院分区

analytical chemistry 影响因子中科院分区

analytical chemistry 影响因子中科院分区Analytical Chemistry在中科院分区中的影响因子分析Analytical Chemistry,作为化学领域中颇具影响力的学术期刊,其影响因子在中科院分区中具有显著的地位。

首先,我们需要明确中科院分区对于期刊的分类标准。

通常,中科院分区会根据期刊的学术水平、发表论文的质量和数量、国际影响力等多个因素进行划分。

在划分过程中,影响因子作为一个重要的量化指标,被广泛采用。

那么,我们来具体看看Analytical Chemistry的影响因子在中科院分区中的位置。

根据最新的数据,Analytical Chemistry的影响因子为X(X为具体数值,因数据实时更新,此处不展示具体数字)。

这一数值表明,该期刊在化学分析领域具有很高的学术影响力。

进一步地,在中科院分区中,Analytical Chemistry被归为X区(X为具体的分区数字,因分区标准可能随时间变化,此处不展示具体数字)。

这意味着该期刊的学术地位得到了中科院的高度认可。

通常,中科院的X区期刊代表着该领域内具有国际先进水平的学术成果,其论文质量、学术价值和研究深度均达到了一定的标准。

值得一提的是,Analytical Chemistry能够在中科院分区中获得高影响因子和良好分区的原因是多方面的。

首先,该期刊严格地遵循学术出版规范,确保每一篇论文都具有高度的科学性和创新性。

其次,Analytical Chemistry 的编委会由世界范围内化学分析领域的知名专家组成,他们的高水平审稿确保了期刊的学术质量。

此外,该期刊与多个国际学术组织建立了合作关系,为作者和读者提供了更广泛的学术交流平台。

综上所述,Analytical Chemistry在中科院分区中的影响因子和分区位置均表明其在化学分析领域的领先地位。

这一成就不仅归功于期刊自身的严格要求和专家团队的审稿制度,还归功于其与国际学术组织的紧密合作。

药物分析化学SCI投稿指南--dxy

药物分析化学SCI投稿指南--dxy

药物分析化学SCI投稿指南,教你选最适合的杂志!-from 目录药物分析化学SCI投稿指南,教你选最适合的杂志! (1)-from (1)1. 分析化学类 (1)2. 色谱分析类 (3)3. 药物医学类 (3)4. 质谱类 (4)5. 电化学分析类 (4)Chemistry, Analytical SCI杂志大全-分析类 (6)对于从事药物分析化学的同志们来说,很多时候做课题比投文章更为重要。

当然对于在读研究生来说,为了毕业,文章才是最重要的。

有关药物分析化学可以投的杂志非常多,很多刚开始从事这个方向的同志都不太明白这些杂志的侧重点在哪里,往往会出现虽然自己的文章质量很不错,但是由于没有投到一个最合适的杂志而导致文章没有被录用的情况,这样就非常可惜了。

我从事这个方向的研究也偶一段时日了,文章也发了几篇,也算是积累了一点小经验,现在在这里和大家分享,希望能给从事医药分析和生化分析的同志们在投文章的时候提供一点可以借鉴的东西。

有关怎么写论文,怎么组织自己的文章,怎么做实验整理数据之类的东西论坛里面已经有很多相关的帖子了,我在这里就不再罗嗦。

现在重点讲讲怎么挑选一个最合适自己的杂志,顺便介绍一下药分相关的杂志有哪些。

1. 分析化学类Anal. Chem. IF 5.646 ACS米果化学会的分析化学杂志,分析化学的No.1,对于做药分的同志,如果你的文章的创新非常大,比如说提出了一种新的分析方法或分析手段,比之以前的分析方法有了明显的进步,具有很重大的意义;或者说你的应用体系非常的具有新意,可以考虑投AC。

The Analyst IF 3.198 RSC英国皇家化学会的分析家杂志,文章质量非常不错,对文章的新意要求也是比较高的,要求在方法学或者体系有明显的创新,然后才有被接受的可能。

不过比之AC还是有不小的差距。

Anal. Chim. Acta IF 2.894 分析化学快报, ANALYTICA CHIMICA ACTA,Journal Country/Territory: NETHERLANDSTalanta IF 2.81 塔兰塔(应用与纯粹化学会杂志)Elsevier的两个分析化学杂志,对新意要求不是那么严格,一般来说,只要有一定的新意,能说出比以前的方法的进步之处,实验数据充实,文章条理清晰,都能被接受。

化工文献检索作业

化工文献检索作业

1.请分别列出五个以下各类期刊的刊名英文全名称及缩写形式(要求SCI收录)(1)物理化学、化学物理催化学报Chinese Journal of Catalysis(Chinese.J. Catal )分子催化Journal of Moleclar Catalysis (J. Mol. Catel )化学物理学报Chinese Journal of Chemical Physics (Chinese .J. Chim Phys )物理化学学报Acta Physico-Chemical Sinica(Acta Phys-Chem Sin )物理化学杂志(A,B,C快报)The Journal of Physical Chemistry A, B, C, Letters(J. Phys. Chem.A.B.C.Lett)催化杂志Journal of Catalysis(J. Catal.)化学热力学杂志The Journal of Chemical Thermodynamics(J. Chem. Thermodyn)化学物理快报Chemical Physics Letters(Chem. Phys. Lett.)热化学学报Thermochimica Acta (Thermochim. Acta)(2)无机化学分析化学学报Chinese Journal of Inorganic Chemistry (Chinese. J. Inorg Chem)无机化学Inorganic Chemistry (Inorg. Chem.)配位化学杂志Journal of Coordination Chemistry (J. Coord. Chem.)配位化学评论Coordination Chemistry Reviews (Coord. Chem. Rev.)无机化学进展Progress in Inorganic Chemistry (Prog. Inorg. Chem.)(3)分析化学分析化学Analytical Chemistry (Anal. Chem.)分析科学学报Journal of Analytical Science (J. Anal Sci)分析化学家Analyst (Analyst)分析化学评论Critical Reviews in Analytical Chemistry (Crit. Rev. Anal. Chem.)塔兰塔Talanta (Talanta)分析通讯Analytical Communications (Anal. Commun.)(4)有机化学有机化学Chinese Journl of Organic Chemistry (Chinese.J. Org Chem )有机化学杂志Journal of Organic Chemistry (J. Org. Chem. )杂环化学杂志Journal of Heterocyclic Chemistry (J. Heterocycl. Chem.)四面体Tetrahedron (Tetrahedron)四面体快报Tetrahedron Letters (Tetrahedron Lett.)碳水化合物研究Carbohydrate Research (Carbohydr. Res.)有机化学通讯Organic Letter (Org. Lett.)(5)高分子化学与物理高分子学报Acta Polymerica Sinica (Acta Polym Sin )聚合物科学Journal of Polymer Science (J. Polym. Sci.)聚合物Polymer (Polymer)应用聚合物科学杂志Journal of Applied Polymer Science(J. Appl. Polym. Sci.)聚合物科学进展Progress in Polymer Science (Prog. Polym. Sci.)欧洲聚合物杂志European Polymer Journal (Eur. Polym. J.)(6)化学工业与化学工程化工学报Journal of Chemical Technology and Biotechnology(J. Chem. Technol. Biotechnol.)化学工程Chemical Engineering (Chem. Eng.)现代化工Modern Chemical Industry (Mod Chem Ind)化学工程与技术Chemical Engineering and Technology (Chem. Eng. Technol.)化学工程科学Chemical Engineering Science (Chem. Eng. Sci.)(7)化学综合类美国化学会志Journal of the American Chemical Society (J. Am. Chem. Soc.)化学研究报告Accounts of Chemical Research (Acc. Chem. Res.)德国应用化学Angewandte Chemie International Edition (Angew. Chem. Int. Ed.)自然化学Nature Chemistry (Nat Chem)化学通讯Chemical Communications (Chem. Commun.)中国化学Chinese Journal of Chemistry (Chin. J. Chem .)(8)材料化学类材料花学Chemistry of Materials (Chem. Mater. )先进材料Advanced Materials (Adv. Mater.)先进功能材料Advanced Functional Materials (Adv. Funct. Mater.)材料化学杂志A,B,C: Journal of Materials Chemistry A,B,C(J. Mater. Chem.A,B,C)先进能源材料Advanced Energy Materials (Adv Energy Mater)2.科技文献按文献性质不同可划分为哪几类文献?定义分别是什么?并举例说明。

SCI分析类杂志介绍

SCI分析类杂志介绍
主要侧重基础科学。
SCI的介绍
SCI最大的优点是引文功能,介绍了某一作 者的某篇论文是否被他人引用过,并通过引 文次数可以了解某一学科的发展过程。另外, 使用SCI还可以了解到科学技术发展的最新 信息,SCI也具有反映科技论文质量和学术 水平的功能。
SCI分析类杂志的介绍
SCI分析
类杂志
1.Analytical Chemistry
2.Analyst
对文章的新意要求也是比较高的,要求在方法学 或者体系有明显的创新,然后才有被接受的可能, 不过比之AC还是有不小的差距。
一审周期2-4周,较快。
3.Analytica Chimica Acta
出版者:Elsevier Science(荷 兰) 影响因子:4.309(2010) ISSN号:0003-2670 检索数据库:Science Direct 出版周期:周刊
介绍内容
SCI的介绍 SCI分析类杂志的介绍 SCI投稿的介绍
SCI的介绍
SCI全称:Science Citation Index即科学引文索引 由美国科学信息研究所(ISI)1961年创办出版的引文 数据库。SCI是一部国际性的检索刊物,包括有:自
然科学、生物、医学、农业、技术和行为科学等,
分析相关其它杂志
3.Chromatographia IF 1.171 色谱家杂志,对创新要 求不高,较容易发表. 质谱类 J AM SOC MASS SPECTR IF 3.307 美国质谱学会 杂志,水准很高的质谱杂志!
SCI投稿经验总结
一、写作存在的问题:
1.语言障碍
提高英语科研论文的写作水平
2.Journal of Chromatography A
出版者:Elsevier Science(荷兰) 影响因子:4.193(2010)

毛细管电色谱-电喷雾电离-飞行时间质谱分离分析盐酸地尔硫卓和盐酸维拉帕米混合手性药物

毛细管电色谱-电喷雾电离-飞行时间质谱分离分析盐酸地尔硫卓和盐酸维拉帕米混合手性药物
唐艺旻1,李英杰1,高立娣1,秦世丽*1,靳凤龙2,刘树仁3
(1.齐齐哈尔大学化学与化学工程学院,黑龙江齐齐哈尔 161006;
2.齐齐哈尔食品药品检验检测中心,黑龙江齐齐哈尔 161005;
3.浙江大学环境与资源学院环境健康研究所,浙江杭州 310012)

要:建 立 一 种 毛 细 管 电 色 谱-电 喷 雾 电 离-飞 行 时 间 质 谱(
mi
n 作为鞘流液流速。
2.
4 混合手性药物的 CEC
-TOF MS 定性分析
在本实验优化的条件下,检测出两混合手性药物的 4 组分。图 5 为混合手性药物总离子流图色谱图。
为了验证检测出两混合手性药物 4 组分的主要成分,采用 MS 对图 5 中 4 组分峰进行定性分析,各组分提
取质谱图见图 6。
0.
0016gAMPS 和0.
10g MAH0.
2g mL 超声混匀。将混合物填充至毛细管柱
β-CD 的 DMSO 溶液(
中 24.
0cm 处(柱总长 130cm),
40℃ 反应 12h 后,备用。
1.
3 样品的制备
/mi
取 一片盐酸地尔硫卓或盐酸维拉帕米片剂重量的粉末,溶于10mL 甲醇中,超声溶解,
实现不同程度的分离(混合手性药物对映体的 4 组分峰分别用 A、
B、
C、
D 表示),
4 组分两果表明,
50 时 4 组分的分离效果较好,故最佳 pH 值选为 4.
50。
pH=4.
表 1 pH 对两种混合手性药物分离的影响
Tab
l
e1 Ef
f
e
c
to
fpHont
等 [13]通过将 PDA/S

一、食品检验课程参考书籍

一、食品检验课程参考书籍1. 食品检验与分析黄伟坤等编著1989 北京轻工业出版社2. 动物性食品卫生检验山东农业大学主编1991 北京农业出版社3. 食品卫生检验手册日本食品卫生协会编1993 天津天津科技翻译出版公司4. 食品卫生检验技术手册王叔淳主编1994 北京化学工业出版社5. 食品添加剂检验方法于信令,林云芬编1992 北京中国轻工业出版社国家商检局《肉禽食品卫6. 肉禽食品加工卫生与检验1994 杭州浙江科学技术出版社生与核验》编译组[编]7. 食品商品与检验高真主编1995 北京中国轻工业出版社8. 食品卫生微生物检验标准手罗雪云,刘宏道主编1995 北京中国标准出版社册9. 掺伪粮油食品鉴别检验白满英,张金诚主编1996 北京中国标准出版社10. 动物性食品微生物学检验周阳生主编1996 北京中国农业出版社11. 中华人民共和国职业技能鉴劳动部,国内贸易部颁发1996 北京中国商业出版社定规范12. 罐头食品检验技术张水华主编1997 北京中国计量出版社13. 食品卫生检验技术郑世荣主编1997 成都四川科学技术出版社[中华人民共和国卫生部14. 食品卫生检验方法1997 北京中国标准出版社卫生监督司提出]15. 食品质量检验马兰,李坤雄编1998 北京中国计量出版社16. 食品微生物检验手册苏世彦主编1998 北京中国轻工业出版社杨惠芬,李明元,沈文主1998 北京中国标准出版社17. 食品卫生理化检验标准手册编中国食品添加剂生产应1999 北京中国轻工业出版社18. 食品添加剂分析检验手册用工业协会编19. 粮油食品微生物学检验项琦主编2000 北京中国轻工业出版社20. 食品检验杨祖英主编2001 北京化学工业出版社21. 食品分析与检验杜苏英主编2002 北京高等教育出版社22. 食品卫生检验技术手册王叔淳主编2002 北京化学工业出版社中华人民共和国劳动和23. 食品检验工2002 北京中国劳动社会保障出版社社会保障部制定24. 食品检验技术靳敏,夏玉宇主编2003 北京化学工业出版社25. 食品微生物检验牛天贵,张宝芹编著2003 北京中国计量出版社26. 无公害动物源性食品检验技张彦明主编2003 北京中国农业出版社术27. 中国进出境食品检验检疫实洪雷主编2004 北京中国海关出版社务大全28. 食品掺伪鉴别检验彭珊珊等主编2004 北京中国轻工业出版社29. 食品理化与微生物检测实验张英主编2004 北京中国轻工业出版社30. 食品检验工黄高明主编2005 北京机械工业出版社31. 食品工艺实验与检验技术蔺毅峰主编2005 北京中国轻工业出版社马永强,韩春然,刘静32. 食品感官检验2005 北京化学工业出版社波编孟宪军,李新华,张春33. 食品检验工2005 北京中国农业出版社红主编34. 食品检验工徐春主编2005 北京机械工业出版社35. 冷冻方便食品加工技术及检张文叶主编2005 北京化学工业出版社验36. 食品质量检验巢强国主编2006 北京中国计量出版社37. 食品检验工丁兴华主编2006 北京机械工业出版社38. 调味品及酱货腌制品质量检胡振洲主编2006 北京中国计量出版社验39. 食品分析与检验康臻主编2006 北京中国轻工业出版社40. 食品理化检验黎源倩主编2006 北京人民卫生出版社41. 食品检验工刘长春主编2006 北京机械工业出版社42. 食品检验技术刘用成主编2006 北京中国轻工业出版社43. 茶叶可可咖啡质量检验鲁成银,于立强主编2006 北京中国计量出版社44. 食品分析与检验曲祖乙,刘靖主编2006 北京中国环境科学出版社45. 粮油及制品质量检验苏锡辉主编2006 北京中国计量出版社46. 酒类产品质量检验田志强主编2006 北京中国计量出版社47. 食品检验技术汪浩明主编2006 北京中国轻工业出版社48. 食品质量检验吴广臣主编2006 北京中国计量出版社49. 糕点糖果蜜饯炒货质量检吴玉銮,蔡玮红主编2006 北京中国计量出版社验50. 食品检验教程章银良主编2006 北京化学工业出版社51. 食品分析与检验技术周光理主编2006 北京化学工业出版社52. 乳及乳制品质量检验朱俊平主编2006 北京中国计量出版社53. 食品掺伪检验技术陈敏,王世平主编2007 北京化学工业出版社54. 食品分析与检验程云燕,李双石主编2007 北京化学工业出版社55. 食品卫生与检验张拥军主编2007 北京中国计量出版社二、食品检验课程参考报刊1、食品类刊名著者年代出版地出版者1. 粮油加工与食品机械2000-2006 北京该杂志社2. 食品与发酵工业1975- 北京食品与发酵工业编辑部3. 中国食品1975- 北京中国食品杂志社4. 食品工业科技1979- 北京食品工业科技编辑部5. 食品科技1980- 北京食品科技杂志社6. 食品科学1980- 北京中国食品杂志社7. 食品研究与开发1980- 天津天津市食品研究所等8. 食品与生物技术学报1982- 南京江南大学杂志社9. 包装与食品机械1983- 合肥包装与食品机械杂志社10. 食品文摘全国食品科技情报中心站,北京市食品研究所1984 北京《食品文摘》编辑部11. 中外食品加工技术12. 中国食品工业1986- 北京中国食品工业杂志社13. 食品工业1989- 上海食品工业杂志社14. 中国食品卫生杂志1989- 北京中国食品卫生杂志社15. 食品与生活1991- 上海食品与生活杂志社16. 食品与机械1991- 长沙食品与机械杂志社17. 现代食品与药品杂志1991- 广州广东药学编辑部18. 现代食品与药品杂志该刊编辑部1991 广州现代食品与药品杂志编辑部19. 营养与食品卫生1992- 广州营养与食品卫生杂志社20. 粮油食品科技1993- 北京粮油食品科技杂志社21. 国际食品中国粮油食品进出口(集团)有限公司主办1994 北京《国际食品》杂志社22. 食尚中国粮油食品进出口(集团)有限公司主办1994 北京《国际食品》杂志社23. 国际食品该刊编辑部1994 北京《国际食品》杂志社24. 冷饮与速冻食品工业1995- 常熟(江苏)冷饮与速冻食品工业杂志社25. 无锡轻工大学学报1995- 无锡(江苏)无锡轻工大学学报编辑部26. 中国保健食品2001- 北京中国保健食品杂志社27. 中国食品报北京该报社28. 上海食品报上海该社29. 食品导报杭州该社30. 四川食品报成都该社31. 广东食品广东药学院……[等]主办广州《广东食品》杂志社32. 食品信息中国人民大学主办北京中国人民大学书报资料中心33. 食品信息山东轻工业学院图书馆科技信息部山东该部34. 中国食品质量报北京《中国食品质量报》编辑部35. 中外食品工业信息中国食品工业(集团)公司,中国食品科学技术学会主办北京《中外食品工业信息》编辑部36. 食品与健康天津市医学科技信息研究所,天津市科技期刊编辑学会主办天津《食品与健康》编辑部37. 中国食品报北京该报社38. 中国畜产与食品《中国畜产与食品》编辑部南京《中国畜产与食品》编辑部39. 中外食品中外食品杂志社北京中外食品杂志社40. 中外食品中国食品工业(集团)公司,中国食品科学技术学会主办北京《中外食品》编辑部2、检验类(1)分析化学(FENXI HUAXUE ,Chinese Journal of Analytical Chemistry)编辑部地址: 长春市人民大街159号,邮编:电话:(0431)5262017,E-mail: fxhx@,网址:/FXHX (2)分析科学学报(FENXI KEXUE XUEBAO,Journal of Analytical Science )光谱编辑部地址: 湖北省武昌武汉大学化学与环境科学学院,邮编:430072电话:(027)87682248(3)分析试验室(FENXI SHIYANSHI,Chinese Journal of Analysis Laboratory )编辑部地址: 北京新街口外大街2号,邮编:100088电话010)82013328或(010)62014488-5112,E-mail:fenxi@(4)分析测试学报(FENXI CESHI XUEBAO,Journal of instrumental analysis)编辑部地址: 广州市先烈中路100号中国广州分析测试中心内,邮编:510070电话:(020)87759776,E-mail:fxcxb@(5)理化检验-化学分册[LIHUA JIANYAN(HUAXUE FENCE),Physical Testing and Chemical Analysis ,Part B Chemical Analysis]5J)U.RRbJ0h分析化学论坛编辑部地址: 上海市邯郸路99号,邮编:200437E-mail:mppnc@(6)色谱(SE PU,Chinese journal of chromatography)编辑部地址: 大连市中山路457号,邮编:116023电话:(0411)4379021,E-mail:sepu@,网址:(7)中华检验医学杂志(ZHONGHUA JIANYAN YIXUE ZAZHI,Chinese Journal of laboratory medicine)编辑部地址:北京市东四西大街42号,邮编:100710电话:(010) 65122268-1447,E-mail: cmajy@(8)化学研究与应用(HUAXUE YANJIU YU YINGYONG,Chemical Research and Application)编辑部地址:成都市望江路29号四川大学化学学院内邮编:610064电话:(028)5418495,E-mail: SUQCP@,网址:(9)质谱学报(ZHI PU XUEBAO,Journal of Chinese Mass Spectrometry Society)编辑部地址:北京275信箱65分箱《质谱学报》编辑部,邮编:102413电话:(010)69357734(10)临床检验杂志(LINCHUANG JIANYAN ZAZHI,Chinese journal of clinical laboratory science)编辑部地址: 南京市中央路42号,邮编:210008电话:(025)7714280,E-mail: jcls@(11)上海医学检验杂志(SHANGHAI YIXUE JIANYAN ZAZHI,Shanghai Journal of Medical Laboratory Sciences)编辑部地址:上海市泰安路120弄3号,邮政编码:200052电话:(021)62830572 ,电子邮件:shyxjyzzs@(12)药物分析杂志(YAOWU FENXI ZAZHI,Chinese Journal of Pharmaceutical Analysis)编辑部地址: 北京天坛西里2号中国检定所编辑室,邮编:100050。

分析化学期刊及其影响因子

分析化学期刊及其影响因⼦Science Citation IndexANALYTICAL CHEMISTRYJournal List分析化学期刊(共59 种)1、ADVANCES IN CHROMATOGRAPHYAnnualISSN: 0065-2415MARCEL DEKKER, 270 MADISON AVE, NEW YORK, NY, 100162、AMERICAN LABORATORYSemimonthlyISSN: 0044-7749INT SCIENTIFIC COMMUN INC, PO BOX 870,30 CONTROLS DRIVE, SHELTON, CT, 06484-08703、ANALUSISMonthlyISSN: 0365-4877E D P SCIENCES, 7, AVE DU HOGGAR,PARC D ACTIVITES COURTABOEUF,BP 112LES ULIS CEDEXA, FRANCE, F-919444、ANALYSTMonthlyISSN: 0003-2654ROYAL SOC CHEMISTRY, THOMAS GRAHAM HOUSE,SCIENCE PARK,MILTON RD,CAMBRIDGE, ENGLAND, CB4 0WF5、ANALYTICA CHIMICA ACTAWeeklyISSN: 0003-2670ELSEVIER SCIENCE BV, PO BOX 211, AMSTERDAM, NETHERLANDS, 1000 AE6、ANALYTICAL BIOCHEMISTRYSemimonthlyISSN: 0003-2697ACADEMIC PRESS INC, 525 B ST, STE 1900, SAN DIEGO, CA, 92101-44957、ANALYTICAL CHEMISTRYSemimonthlyISSN: 0003-2700AMER CHEMICAL SOC, 1155 16TH ST, NW, WASHINGTON, DC, 20036序号:3序号:108、ANALYTICAL LETTERSMonthlyISSN: 0003-2719MARCEL DEKKER INC, 270 MADISON AVE, NEW YORK, NY, 100169、ANALYTICAL SCIENCESBimonthlyISSN: 0910-6340JAPAN SOC ANALYTICAL CHEMISTRY, 26-2 NISHIGOTANDA 1 CHOME, SHINAGAWA-KU, TOKYO, JAPAN, 14110、ANNALI DI CHIMICABimonthlyISSN: 0003-4592SOC CHIMICA ITALIANA, VIALE LIEGI 48, ROME, ITALY, I-0019811、BIOMEDICAL CHROMATOGRAPHYBimonthlyISSN: 0269-3879JOHN WILEY & SONS LTD, BAFFINS LANE, CHICHESTER, W SUSSEX, ENGLAND, PO19 1UD12、BUNSEKI KAGAKUMonthlyISSN: 0525-1931JAPAN SOC ANALYTICAL CHEMISTRY, 26-2 NISHIGOTANDA 1 CHOME, SHINAGAWA-KU, TOKYO, JAPAN, 14113、CANADIAN JOURNAL OF ANALYTICAL SCIENCES AND SPECTROSCOPY BimonthlyISSN: 1205-6685SPECTROSCOPY SOC CANADA, OTTAWA, C/O DR J G SEN GUPTA,PO BOX 332, STATION A, OTTAWA, CANADA, KIN8V314、CHEMIA ANALITYCZNABimonthlyISSN: 0009-2223INSTYTUT CHEMII FIZYCZNEJ PAN, UL KASPRZAKA 44/52, WARSAW, POLAND, 01-22415、CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMSMonthlyISSN: 0169-7439ELSEVIER SCIENCE BV, PO BOX 211, AMSTERDAM, NETHERLANDS, 1000 AE16、CHIRALITYMonthlyISSN: 0899-0042WILEY-LISS, DIV JOHN WILEY & SONS INC,605 THIRD AVE, NEW YORK, NY, 10158-001217、CHROMATOGRAPHIAMonthlyISSN: 0009-5893VIEWEG, ABRAHAM-LINCOLN-STRABE 46,POSTFACH 15 47, WIESBADEN, GERMANY, D-6500518、COMMUNICATIONS IN SOIL SCIENCE AND PLANT ANALYSISMonthlyISSN: 0010-3624MARCEL DEKKER INC, 270 MADISON AVE, NEW YORK, NY, 1001619、CRITICAL REVIEWS IN ANALYTICAL CHEMISTRYQuarterlyISSN: 1040-8347CRC PRESS LLC, 2000 CORPORATE BLVD NW,JOURNALS CUSTOMER SERVICE, BOCA RATON, FL, 3343120、ELECTROANALYSISSemimonthlyISSN: 1040-0397WILEY-V C H VERLAG GMBH, PO BOX 10 11 61, BERLIN, GERMANY, D-6945121、ELECTROANALYTICAL CHEMISTRYAnnualISSN: 0070-9778MARCEL DEKKER, 270 MADISON AVE, NEW YORK, NY, 1001622、ELECTROPHORESISSemimonthlyISSN: 0173-0835WILEY-V C H VERLAG GMBH, PO BOX 10 11 61, BERLIN, GERMANY, D-6945123、FIELD ANALYTICAL CHEMISTRY AND TECHNOLOGYBimonthlyISSN: 1086-900XJOHN WILEY & SONS INC, 605 THIRD AVE, NEW YORK, NY, 10158-001224、FRESENIUS JOURNAL OF ANALYTICAL CHEMISTRYSemimonthlyISSN: 0937-0633SPRINGER-VERLAG, 175 FIFTH AVE, NEW YORK, NY, 1001025、HRC-JOURNAL OF HIGH RESOLUTION CHROMATOGRAPHYMonthlyISSN: 0935-6304WILEY-V C H VERLAG GMBH, PO BOX 10 11 61, BERLIN, GERMANY, D-6945126、INSTRUMENTATION SCIENCE & TECHNOLOGYBimonthlyISSN: 1073-9149MARCEL DEKKER INC, 270 MADISON AVE, NEW YORK, NY, 1001627、INTERNATIONAL JOURNAL OF ENVIRONMENTAL ANALYTICAL CHEMISTRY MonthlyISSN: 0306-7319GORDON BREACH SCI PUBL LTD, C/O STBS LTD,PO BOX 90, READING, ENGLAND, RG1 8JL28、JOURNAL OF ANALYTICAL AND APPLIED PYROLYSISBimonthlyISSN: 0165-2370ELSEVIER SCIENCE BV, PO BOX 211, AMSTERDAM, NETHERLANDS, 1000 AE29、JOURNAL OF ANALYTICAL CHEMISTRYMonthlyISSN: 1061-9348MAIK NAUKA/INTERPERIODICA, C/O KLUWER ACADEMIC-PLENUM, PUBLISHERS,, 233 SPRING STNEW YORK, NY, 10013-157830、JOURNAL OF ANALYTICAL TOXICOLOGYBimonthlyISSN: 0146-4760PRESTON PUBLICATIONS INC, 7800 MERRIMAC AVE, PO BOX 48312, NILES, IL, 6064831、JOURNAL OF AOAC INTERNATIONALBimonthlyISSN: 1060-3271AOAC INTERNATIONAL, 481 NORTH FREDRICK AVE,STE 500, GAITHERSBURG, MD, 20877-250432、JOURNAL OF AUTOMATED METHODS & MANAGEMENT IN CHEMISTRY BimonthlyISSN: 1463-9246TAYLOR & FRANCIS LTD, 11 NEW FETTER LANE, LONDON, ENGLAND, EC4P 4EE33、JOURNAL OF CHEMOMETRICSBimonthlyISSN: 0886-9383JOHN WILEY & SONS LTD, BAFFINS LANE, CHICHESTER, W SUSSEX, ENGLAND, PO19 1UD34、JOURNAL OF CHROMATOGRAPHIC SCIENCEMonthlyISSN: 0021-9665PRESTON PUBLICATIONS INC, 7800 MERRIMAC AVE, PO BOX 48312, NILES, IL, 6064835、JOURNAL OF CHROMATOGRAPHY AWeeklyISSN: 0021-9673ELSEVIER SCIENCE BV, PO BOX 211, AMSTERDAM, NETHERLANDS, 1000 AE36、JOURNAL OF CHROMATOGRAPHY BSemimonthlyISSN: 0378-4347ELSEVIER SCIENCE BV, PO BOX 211, AMSTERDAM, NETHERLANDS, 1000 AE37、JOURNAL OF ELECTROANALYTICAL CHEMISTRYSemimonthlyISSN: 0022-0728ELSEVIER SCIENCE SA, PO BOX 564, LAUSANNE, SWITZERLAND, 100138、JOURNAL OF FLUORESCENCEQuarterlyISSN: 1053-0509PLENUM PUBL CORP, 233 SPRING ST, NEW YORK, NY, 1001339、JOURNAL OF LABELLED COMPOUNDS & RADIOPHARMACEUTICALSMonthlyISSN: 0362-4803JOHN WILEY & SONS LTD, BAFFINS LANE, CHICHESTER, W SUSSEX, ENGLAND, PO19 1UD40、JOURNAL OF LIQUID CHROMATOGRAPHY & RELATED TECHNOLOGIES Semimonthly ISSN: 1082-6076MARCEL DEKKER INC, 270 MADISON AVE, NEW YORK, NY, 1001641、JOURNAL OF MICROCOLUMN SEPARATIONSMonthlyISSN: 1040-7685JOHN WILEY & SONS INC, 605 THIRD AVE, NEW YORK, NY, 10158-001242、JOURNAL OF PEPTIDE SCIENCEBimonthlyISSN: 1075-2617JOHN WILEY & SONS LTD, BAFFINS LANE, CHICHESTER, W SUSSEX, ENGLAND, PO19 1UD43、JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSISMonthlyISSN: 0731-7085PERGAMON-ELSEVIER SCIENCE LTD, THE BOULEVARD, LANGFORDLANE,KIDLINGTON, OXFORD, ENGLAND, OX5 1GB44、JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRYMonthlyISSN: 0236-5731KLUWER ACADEMIC PUBL, SPUIBOULEVARD 50,PO BOX 17, DORDRECHT, NETHERLANDS, 3300 AA45、JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRYBimonthlyISSN: 1044-0305ELSEVIER SCIENCE INC, 655 AVENUE OF THE AMERICAS, NEW YORK, NY, 1001046、JOURNAL OF THERMAL ANALYSIS AND CALORIMETRYMonthlyISSN: 1418-2874KLUWER ACADEMIC PUBL, SPUIBOULEVARD 50,PO BOX 17, DORDRECHT, NETHERLANDS, 3300 AA 47、JPC-JOURNAL OF PLANAR CHROMATOGRAPHY-MODERN TLCBimonthlyISSN: 0933-4173SPRINGER HUNGARICA KIADO KFT, WESSELENYI U 28, BUDAPEST, HUNGARY, H-107548、LC GC NORTH AMERICAMonthlyISSN: 1527-5949ADVANSTAR COMMUNICATIONS, 131 W FIRST ST, DULUTH, MN, 5580249、MICROCHEMICAL JOURNALMonthlyISSN: 0026-265XELSEVIER SCIENCE BV, PO BOX 211, AMSTERDAM, NETHERLANDS, 1000 AE50、MIKROCHIMICA ACTABimonthlyISSN: 0026-3672SPRINGER-VERLAG WIEN, SACHSENPLATZ 4-6,PO BOX 89, VIENNA, AUSTRIA, A-120151、PHYTOCHEMICAL ANALYSISBimonthlyISSN: 0958-0344JOHN WILEY & SONS LTD, BAFFINS LANE, CHICHESTER, W SUSSEX, ENGLAND, PO19 1UD52、QUIMICA ANALITICAQuarterlyISSN: 0212-0569ELSEVIER INFORMACION PROFESSIONAL, S A, C/ENTENCA, 28 ENTL, BARCELONA, SPAIN, 08015 53、RAPID COMMUNICATIONS IN MASS SPECTROMETRYSemimonthlyISSN: 0951-4198JOHN WILEY & SONS LTD, BAFFINS LANE, CHICHESTER, W SUSSEX, ENGLAND, PO19 1UD54、SENSORS AND ACTUATORS B-CHEMICALMonthlyISSN: 0925-4005ELSEVIER SCIENCE SA, PO BOX 564, LAUSANNE, SWITZERLAND, 100155、SEPARATION AND PURIFICATION METHODSSemiannualISSN: 0360-2540MARCEL DEKKER INC, 270 MADISON AVE, NEW YORK, NY, 1001656、TALANTAMonthlyISSN: 0039-9140ELSEVIER SCIENCE BV, PO BOX 211, AMSTERDAM, NETHERLANDS, 1000 AE57、THERMOCHIMICA ACTASemimonthlyISSN: 0040-6031ELSEVIER SCIENCE BV, PO BOX 211, AMSTERDAM, NETHERLANDS, 1000 AE58、TRAC-TRENDS IN ANALYTICAL CHEMISTRYMonthlyISSN: 0165-9936ELSEVIER SCIENCE LONDON, 84 THEOBALDS RD, LONDON, ENGLAND, WC1X 8RR59、VIBRATIONAL SPECTROSCOPYQuarterlyISSN: 0924-2031ELSEVIER SCIENCE BV, PO BOX 211, AMSTERDAM, NETHERLANDS, 1000 AEO6化学类核⼼期刊表1.化学总论类核⼼期刊表序号刊名中⽂译名中国刊号出版国1 Journal of the American Chemical Society 美国化学会志 540B0003-1 美国2 Chemical reviews 化学评论 540B0010 美国3 Angewandte Chemie 应⽤化学 547E0002 德国4 Chemical communications 化学通讯 540C0007-D 英国5 Accounts of chemical research 化学研究述评 540B0059 美国6 Chemical Society reviews 化学会评论 540C0005 英国7 Chemistry 化学 540E0070 德国8 The Journal of physics and chemistry of solids 固体物理学与固体化学杂志 538C0003 英国9 Bulletin of the Chemical Society of Japan ⽇本化学会通报 540D0005 ⽇本10 Canadian journal of chemistry 加拿⼤化学杂志 540NA001 加拿⼤11 Journal of chemical education 化学教育杂志 540B0053 美国12 Pure and applied chemistry 理论化学与应⽤化学 540B0005 美国13 Chemical & pharmaceutical bulletin 化学与药学通报 633D0008 ⽇本序号刊名中⽂译名中国刊号出版国14 Journal of chemical research 化学研究杂志 540C0010 英国15 Chemistry world 化学世界 540C0004 英国16 Chemistry letters 化学快学 540D0060 ⽇本17 Current medicinal chemistry 当今医药化学 633JM001 阿联酋18 Theochem 分⼦结构杂志 540LB057 荷兰19 CALPHAK 相图计算 542C0062 英国20 Journal of computer-aided molecular design 计算机辅助分⼦设计杂志 542LB010 荷兰21 Journal of computational chemistry 计算化学杂志 540B0023 美国22 Neurochemistry international 国际神经化学 595C0001 英国23 New journal of chemistry 化学新志 540C0077 英国24 Journal of chemical information and computer sciences 化学信息与计算机科学杂志540B0052 美国25 Helvetica chimica acta 瑞⼠化学学报 540E0011 德国2.⽆机化学类核⼼期刊表序号刊名中⽂译名中国刊号出版国1 Inorganic chemistry ⽆机化学 543B0001-1 美国2 Dalton transactions 道尔顿汇刊 540C0007-A 英国3 Inorganica chimica acta ⽆机化学学报 543LD002 瑞⼠4 Polyhedron 多⾯体 543C0001 英国5 Carbon 碳 812C0052 英国6 European journal of inorganic chemistry 欧洲⽆机化学杂志 540E0001 德国7 Journal of radioanalytical and nuclear chemistry 放射分析化学与核化学杂志542LB013 荷兰8 Journal of biological inorganic chemistry ⽣物⽆机化学杂志 540E0068 德国3.有机化学类核⼼期刊表序号刊名中⽂译名中国刊号出版国1 Journal of organic chemistry 有机化学杂志 545B0002-1 美国2 Tetrahedron letters in organic chemistry 四⾯体通讯 545C0003 英国3 Macromolecules ⼤分⼦ 545B0012-1 美国4 Tetrahedron 四⾯体 545C0002 英国5 Organometallics 有机⾦属化合物 545B0014-1 美国6 Organic & biomolecular chemistry 有机与⽣物分⼦化学 540C0017 英国7 Advances in organometallic chemistry 有机⾦属化学进展 545B0019 美国8 Synlett 合成化学快报 545E0052 德国9 Synthesis 合成 545E0002 德国10 European journal of organic chemistry 欧洲有机化学杂志 540E0002 德国11 Biopolymers ⽣物聚合物 545B0006 美国12 Aldrichimica acta 奥尔德⾥奇化学公司学报 545B0067 美国13 Journal of organometallic chemistry 有机⾦属化学杂志 545LD002 瑞⼠。

国内、外主要分析化学及其相关学术期刊

国内、外主要分析化学及其相关学术期刊一、国内期刊(1)分析化学(FENXI HUAXUE ,Chinese Journal of Analytical Chemistry)编辑部地址: 长春市人民大街159号,邮编:130022电话:(0431)5262017,E-mail: fxhx@,网址:/FXHX(2)分析科学学报(FENXI KEXUE XUEBAO,Journal of Analytical Science )编辑部地址: 湖北省武昌武汉大学化学与环境科学学院,邮编:430072电话:(027)87682248(3)分析试验室(FENXI SHIY ANSHI,Chinese Journal of Analysis Laboratory )编辑部地址: 北京新街口外大街2号,邮编:100088电话:(010)82013328或(010)62014488-5112,E-mail:fenxi@(4)分析测试学报(FENXI CESHI XUEBAO,Journal of instrumental analysis)编辑部地址: 广州市先烈中路100号中国广州分析测试中心内,邮编:510070电话:(020)87759776,E-mail:fxcxb@(5)理化检验-化学分册[LIHUA JIANY AN(HUAXUE FENCE),Physical Testing and Chemical Analysis ,Part B Chemical Analysis]编辑部地址: 上海市邯郸路99号,邮编:200437E-mail:mppnc@(6)冶金分析(YEJIN FENXI,Metallurgical Analysis)编辑部地址:北京市海淀区学院南路76号,邮编:100081电话:(010)62182398 ,E-mail:nacis@(7)岩矿测试(Y ANKUANG CESHI,Rock and Mineral Analysis)编辑部地址: 北京市阜外百万庄路26号,邮编:100037电话:(010)68326148,E-mail:ykcs@(8)色谱(SE PU,Chinese journal of chromatography)编辑部地址: 大连市中山路457号,邮编:116023电话:(0411)4379021,E-mail:sepu@,网址:(9)中华检验医学杂志(ZHONGHUA JIANY AN YIXUE ZAZHI,Chinese Journal of laboratory medicine)编辑部地址:北京市东四西大街42号,邮编:100710电话:(010) 65122268-1447,E-mail: cmajy@(10)临床检验杂志(LINCHUANG JIANY AN ZAZHI,Chinese journal of clinical laboratory science)编辑部地址: 南京市中央路42号,邮编:210008电话:(025)7714280,E-mail: jcls@(11)上海医学检验杂志(SHANGHAI YIXUE JIANY AN ZAZHI,Shanghai Journal of Medical Laboratory Sciences)编辑部地址:上海市泰安路120弄3号,邮政编码:200052电话:(021)62830572 ,电子邮件:shyxjyzzs@(12)药物分析杂志(Y AOWU FENXI ZAZHI,Chinese Journal of Pharmaceutical Analysis)编辑部地址: 北京天坛西里2号中国检定所编辑室,邮编:100050。

分析化学领域期刊(一)2024

分析化学领域期刊(一)引言:分析化学领域期刊在科学研究中起着重要的作用,它们为科学家们提供了一个交流和发布最新研究成果的平台。

在这篇文档中,我们将分析化学领域的期刊进行分类和分析,以帮助读者了解各个期刊的特点和优势。

正文:一、国际一流期刊1. Nature:Nature作为全球顶级科学期刊,在分析化学领域也有着广泛的影响力。

它注重科学的原始性和突破性,发表的文章往往具有重大科学价值。

2. Science:Science是另一个国际知名期刊,它涵盖了广泛的科学领域,包括分析化学。

Science注重创新和跨学科研究成果的发表。

二、专业分析化学期刊1. Analytical Chemistry:作为分析化学领域最著名的期刊之一,Analytical Chemistry发表了许多原创的研究文章,涵盖了各个分析化学领域的重要进展。

2. Journal of Analytical Atomic Spectrometry:该期刊专注于原子光谱分析,包括原子发射光谱、原子吸收光谱和原子荧光光谱等。

它是该领域研究人员交流研究成果的重要平台之一。

三、前沿研究期刊1. Analytica Chimica Acta:Analytica Chimica Acta是一本专注于分析化学领域的前沿研究期刊。

它涵盖了从基础原理到分析应用的各个方面。

2. Trends in Analytical Chemistry:Trends in Analytical Chemistry通过发表综述和前沿研究论文,向读者展示了分析化学领域的新兴技术和趋势。

四、区域性期刊1. Chinese Journal of Analytical Chemistry:Chinese Journal of Analytical Chemistry是中国分析化学领域的核心期刊之一。

它发表了许多国内研究人员的原创研究成果。

2. Analytical Sciences:Analytical Sciences是日本的一本分析化学期刊,它发表了许多高质量的研究文章,涵盖了分析化学的各个方面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

IntroductionPyridine derivatives are an important class of nitrogenous compounds. The pyrimidine bases (i.e . thymine and cytosine) are fundamental compounds in biological systems. They participate in processes as distinct as energy transduction, metabolic cofactors and cell signaling, and are essential building blocks of nucleic acids.1 A number of synthetic pharmacophores based upon the pyrimidyl structure exhibit antibacterial, antimicrobial, anticancer, anti-HIV-1 and anti-rubella virus activities.2 Among them, 2,4,6-triaminopyrimidine (TAP) (Fig. 1) is also an outstanding medicine raw material, which has been widely used to synthesize anti-cancer drugs, such as methotrexate and dyrenium. Rosowsky and coworkers 3 reported that a family of lipophilic small-molecule antifolates were synthesized using TAP, and had potential applications in the treatment and prophylaxis of AIDS-associated opportunistic microbial infections. What is more, TAP was reported to be a blocker of the cation-specific paracellular conductance pathways of several epithelia.4 The compound was also known as an inhibitor for sodium transport in frog skin,5 and affected the transmembrane potential and contractility in guinea-pig myocardium.6 Thus, the precise detection of TAP is of critical importance, not only in the field of biomedical chemistry and modern pharmacy, but also in pathological research. However, to the best of our knowledge, little literature has been reported on the determination of TAP so far, except for an IR spectrum method.7For all we known, carbon nanotubes (CNTs) have some excellent properties, such as a high-aspect ratio, electrical conductivity, chemical stability and an ability to promote electron-transfer reactions. In recent years, CNTs have been widely used in analytical chemistry, including the fabrication of electrochemical sensors and biosensors.8 For doing so, CNTs were homogeneously dispersed in a Nafion solution first, and then transferred onto the electrode surfaces for fabricating Nafion/CNTs film electrodes. These modified electrodes have been used as voltammetric sensors for the determination of trace heavy metals,9–11 dopamine,12 2-nitrophenol and 4-nitrophenol 13 and clenbuterol,14 respectively.In the present work, a Nafion/CNTs film modified GC electrode was fabricated by dispersing multi-wall carbon nanotubes (MWCNTs) in 1% Nafion solutions, and then transferred onto a GC surface. With this Nafion/MWCNTs film electrode, TAP showed electro-activity, and it gave an anodic peak at about 1.4 V . Based on this oxidizing reaction, a sensitive2010 © The Japan Society for Analytical Chemistry†T o whom correspondence should be addressed.E-mail: yebx@Electrochemical Behavior and Voltammetric Determination of 2,4,6-Triaminopyrimidine at Glassy Carbon Electrode Modified with Multi-Walled Carbon Nanotubes/NafionBaocheng Y ANG ,* Fei W ANG ,** Sujuan G UO ,* and Baoxian Y E *†* D epartment of Chemistry, Zhengzhou University, Zhengzhou 450001, P . R. China ** D epartment of Material and Chemistry Engineering, Henan Institute of Engineering, Zhengzhou 450007, P . R. ChinaA multi-wall carbon nanotubes (MWCNTs) composite with Nafion was modified on a glass carbon electrode. The modified electrode was then used as a voltammetric sensor in detecting 2,4,6-triaminopyrimidine (TAP). The surface morphology of the Nafion/MWCNTs composite film was characterized by atomic force microscopy (AFM), and the electrochemical behavior of TAP at this sensor was investigated in detail. The results indicated that the Nafion/MWCNTs modified electrode exhibited efficient electrocatalytic oxidation for TAP with relatively high sensitivity, stability and lifetime. Under the optimized condition using linear sweep voltammetry (LSV), the Nafion/MWCNTs modified electrode exhibited a linear voltammetric response for TAP in the concentration range of 2.0 × 10–7 to 3.6 × 10–5 mol L –1, with a detection limit of 5.0 × 10–8 mol L –1. The electrode was applied to detect TAP added to human blood serum, with an average recovery value of 101.3%.(Received May 28, 2010; Accepted June 24, 2010; Published October 10, 2010)Fig. 1 Chemical structure of 2,4,6-triaminopyrimidine.method for the determination of TAP was erected with satisfactory detection recovery.ExperimentalReagents and chemicals MWCNTs (purity ≥95%) were obtained from Nachen S&T Ltd. (Beijing, China). Nafion 117 (5%, w/v in alcoholic solution) was purchased from Alfa, and was diluted to 1% (w/v) with ethanol before use. TAP was purchased from J&KChemical Ltd. and used as received. A stock solution of TAP (1.0 × 10–3 mol L –1) was prepared using 0.01 mol/L hydrochloric acid, and stored under 4 C. All other chemicals used were of analytical grade and the experimental water used wasdouble-distilled. A mixed acid (MA: 0.04 mol L –1 H 3PO 4+ 0.04 mol L –1 HAc + 0.04 mol L –1 H 3BO 3) (pH 1.81) was used as a supporting electrolyte.Apparatus Electrochemical measurements were performed using a CHI650A electrochemical workstation (CHI Instrumental, Shanghai, China) coupled with a conventional three-electrode electrochemical cell. The three-electrode system was composedof a bare glassy carbon (GCE) (d = 3 mm) or modified GCE working electrode, an Ag/AgCl reference electrode and a platinum wire auxiliary electrode, respectively. All potentials in this paper are given against the Ag/AgCl (3 mol L –1 KCl). The UV-vis spectra were recorded by a Model UV-2102PC spectrophotometer (UNICO, Shanghai, China); 5500 atomic force microscopy (Agilent, USA) was used to observe the surface morphology of a film electrode modified by Nafion/MWCNTs.Preparation of film-modified GCEFor the preparation of a Nafion/MWCNTs-modified electrode, MWCNTs (3 mg) was added into a 5-mL Nafion ethanol solution (1%, w/v) and dispersed for 30 min under ultrasound.A Nafion/MWCNTs composite solution was obtained. Before modification, a bare GCE was first treated according to standard methods, and then cleaned ultrasonically with 1:1 nitric acid, alcohol and double-distilled water, sequentially. The Nafion/MWCNTs-modified GCE was prepared by casting 3 μL of a Nafion/MWCNTs composite solution onto a GCE surface, and dried at room temperature. A symbol of Nafion/MWCNTs/GCE was denoted for this film electrode, which was preserved indouble-distilled water in spacing interval experiments. For a comparison, a Nafion modified GCE was prepared using the same method and was named Nafion/GCE.Results and Discussion The morphology of film modified electrodesThe morphology of Nafion/MWCNTs/GCE and Nafion/GCE was observed using the atomic force microscope (AFM) technique. Nafion was evenly spread on the GCE surface, which formed a dense Nafion film (Fig. 2a). While theNafion/MWCNTs composite film was uniformly coated on theelectrode surface, it showed a strong interaction between MWCNTs and Nafion (Fig. 2b). The special surface morphology offered the Nafion/MWCNTs/GCE a much larger real surface area than that of the apparent geometric area.Electrochemical behavior of TAP Figure 3 shows the cyclic voltammetric responses of TAP (1.0 × 10–5 mol L –1) at bare GCE (Fig. 3a), Nafion/GCE (Fig. 3c) and Nafion/MWCNTs/GCE (Fig. 3d) in the MA medium. Figure 3b is a CV curve of Nafion/MWCNTs/GCE in a blank solution. Under the same conditions, no anodic peak of TAP was observed at the bare GCE, but a well-defined anodic peak of TAP was observed at the modified electrodes. Especiallyusing the Nafion/MWCNTs/GCE, the peak current was significantly higher than that at the Nafion/GCE. Moreover, compared with the Nafion/GCE, the anodic peak potential at the Nafion/MWCNTs/GCE was negatively shifted from 1401 to1340 mV . The reasons for the notable sensitivity of the TAP reaction at the Nafion/MWCNTs/GCE may be summarized asfollows: (1) TAP becomes positively charged in a MA medium,Fig. 2 AFM 2D topography images. (a) Nafion-modified mica sheet. (b) Nafion/MWCNTs film modified mica sheet. Scan area, 3 μm × 3 μm.and the Nafion/MWCNTs/GCE contains the cation exchanger of Nafion, which has an enriched ability due to an electrostatic interaction; (2) the interfusion of MWCNTs into Nafion would provide an effective means to improve the sensitivity and stability of Nafion-based sensors because the Nafion/MWCNTs composite film possesses more open structures and a larger surface area, allowing faster diffusion of the adsorbed TAP, and that MWCNTs could also adsorb TAP. Without any doubt, the synergetic functions of Nafion and MWCNTs make contributions to the higher current response of TAP.It also showed that no reduction peak was observed in the reverse scan, suggesting that the electrochemical reaction was an irreversible process. For a continuous cyclic scan, the anodic peak was only obtained in the first cycle, and no any peak appeared in following cycles (data are not shown). This result demonstrated that the oxidizing product of TAP was adsorbed on the electrode surface and the product was electro-inactive. Fortunately, after agitating the solution, the peak current would be revived as the first cycle in the next cycle. Thus, the oxidation peak current in the first anodic sweep was used in following studies.The optimal solution conditionThe electrode reaction might be affected by a supporting electrolyte and the pH of the solution. Some electrolytes, such as HCl, H 2SO 4, H 3PO 4, HNO 3, HAc (each 0.1 mol L –1) and MA, were investigated, and the best response was obtained using MA. The peak currents affected by the solution pH were investigated over the pH range of 1.81 – 4.78 (adjusted with 0.2 mol L –1 NaOH solution). As shown in Fig. 4, the peak currents decreased and peak potentials shifted negatively by increasing of the solution pH. When the solution pH was over 5, the anodic peak would disappear. MA was selected as the optimal solution.Abstracting the data from Fig. 4, the relationship between the peak potentials and the solution pH was linear with a slope of 0.0581. These data elucidated that the electron numbers and the proton numbers taking part in this reaction were equal, i.e. TAP oxidation occurs by the transformation of the same number of electrons and protons.The properties and mechanism of the electrode reactionThe number of electron transfer (n). The n value was determined using constant-potential electrolysis. In a TAP solution (5.0 × 10–5 mol L –1), a constant potential (1.5 V) was applied and continually kept until the electrolysis current decreased to 1% of the starting value. The time needed was about 15 h. The quantity of the electric charge was recorded and used to calculate the n according to the Faraday law. The obtained result was n = 1.Effect of scan rates . The effect of the scan rate (v ) on the peak currents and potentials was investigated over a wide range. Figure 5 shows CV curves using scan rates of 40, 60, 80, 100, 150, 200, 250 and 300 mV s –1, respectively. Obviously, the peak potentials shifted towards more positive, and the peak currents were markedly enhanced as the scan rates increased. The peak current showed a linear relationship with respecttoFig. 3 Cyclic voltammograms. (a) Bare GCE, (c) Nafion/GCE and (d) Nafion/MWCNTs/GCE in 1.0 × 10–5 mol L –1 TAP; (b)Nafion/MWCNTs/GCE in a blank solution. Supporting electrolyte,MA; scan rate, 100 mV/s; accumulating time, 300 s.Fig. 4 Cyclic voltammograms of 1.0 × 10–5 mol L –1 TAP at different solution pH. pH (curve a to f): 1.81, 2.21, 2.87, 3.78, 4.35, 4.78. The insert is the E p –pH relation. Supporting electrolyte, MA + NaOH (0.2 mol L –1); accumulating time, 300 s.Fig. 5 Cyclic voltammograms of TAP at different scan rates. Scan rates (curve a to h): 40, 60, 80, 100, 150, 200, 250, 300 mV s –1. The insert is the i p –v relation. Supporting electrolyte, MA + 2.0 × 10–5 mol L –1 TAP.the scan rates (inset in the Fig. 5) with an I p value of 1.187 + 25 v 1/2 (V s –1) (R = 0.998). These data indicate that TAP molecules were first absorbed at the electrode surface, and then underwent irreversible reactions. Similarly, the peak potentials had a linearly relationship with the logarithm of the scan rates, described by the following equation: E pa = 0.0421ln v + 1.502, (R = 0.9978). According to Laviron ’s theory, the slope was equal to RT /αnF , which indicated that the value of αn was 0.61. That is, the value of the transfer coefficient α, was 0.61 (n = 1).A number of studies reported about the protonation of aminopyrimidine derivatives.15–17 This protonation occurred at the pyrimidine ring nitrogen [N(1) and/or N(3)] and/or at the exocyclic amino group both in the gas phase and in solution.15 The amino group at the C2 position on the pyrimidine ring was electroactive.16,17 Constant-potential electrolysis experiments coupled with UV-vis were conducted to illuminate the mechanism of TAP oxidized at the Nafion/MWCNTs/GCE. The UV-vis spectra of TAP (before and after electrolysis) are shown in Fig. 6. The curves of a, b and c in Fig. 6 were obtained after electrolysis of 0, 3 and 15 h, respectively. TAP exhibited two main absorption peaks at 217 and 272 nm, respectively. By increasing the electrolysis time, the absorption peak at 217 nm was slightly decreased, but the peak at 272 nm finally disappeared (15 h). These data elucidated that the p-conjugated in TAP was destroyed after electrolysis. On the basis of these experimental results and the reported literature,16,17 a possible oxidation mechanism of TAP on the Nafion/MWCNTs/GCE is proposed as Scheme 1. In the scheme, an intermediate of positive nitrogen free radical 17 was formed by the oxidation of TAP on Nafion/MWCNTs/GCE. This intermediate would have passivated the electrode, and made no peak appearance after first cycle (see Electrochemical behavior of TAP section).Effect of the accumulation timeIt was important to fix the accumulation time for an adsorption-driven electrode process. In this investigation, the peak currents were linearly increment with the prolongation of the accumulation time. This phenomenon was up to 400 s in a 1.0 × 10–5 mol L –1 TAP solution. For balancing the detection limit and linearity range, an accumulation time of 50 s was selected for erecting an analytical method of TAP.Relationship between the peak currents and the TAP concentrationsThe linear sweep voltammetry (LSV) was used to investigate the relationship between the peak currents and the TAP concentrations. As shown in Fig. 7, LSV i –E curves exhibited a linear relationship between the anodic peak currents (i pa ) and the TAP concentrations within the range from 2.0 × 10–7 to 3.6 × 10–5 mol L –1, which can be described by the following linear regression equation: Y = 0.72X + 1.39, with a correlation coefficient R of 0.999. The detection limit was 5.0 × 10–8 mol L –1. To assess the stability of the Nafion/MWCNTs/GCE, cyclic voltammetric scanning were recorded on the first day and 35 days later and compared under exacting the same conditions. The anodic peak currents of TAP recorded 35 days later was decreased about 3% compared with that of recorded on the first day (data not shown). For investigating of the reproducibility, ten measurements of a 1.0 × 10–5 mol L –1 TAP solution wereperformed, and the calculated RSD was of 2.5%.Fig. 6 UV-vis spectra of TAP after different electrolysis times. (a), (b) and (c) for the electrolysis of 0, 3 and 15 h, respectively. Supporting electrolyte, MA + 5.0 × 10–5 mol L –1TAP.Fig. 7 Linear sweep voltammograms of different T AP concentrations.TAP concentrations (from a to j): 2.0 × 10–7, 2.0 × 10–6, 4.0 × 10–6, 8.0 × 10–6, 1.2 × 10–5, 1.6 × 10–5, 2.0 × 10–5, 2.6 × 10–5, 3.0 × 10–5, 3.6 × 10–5 mol L –1. The insert is an i p vs . C TAP plot. Scan rate, 100 mV s –1; accumulating time, 50 s; supporting electrolyte, MA +TAP.Scheme 1Table 1 Determination result of TAP in human blood serum (n = 3)Sample 10–6 Added/ mol L –110–6 Found/mol L –1RSD, %Recovery, %12341.05.010151.044.9810.314.82.81.32.93.1104.0 99.6103.0 98.6InterferencesUnder the optimized experimental conditions described above, the effects of some foreign species on the determination of TAP at the 2.0 × 10–6 mol L–1 level were evaluated in detail; 200-fold of Mg2+, Pb2+, Ca2+, Al3+, Fe3+, 100-fold of ascorbic acid, folic acid, uric acid and 15-fold of dopamine and epinephrine had almost no influence on the current response of TAP (signal change below 5%). All of these results indicated that the proposed method had good selectivity for the determination of TAP.Determination of TAP in human blood serumTo evaluate the practical applicability of the proposed method, it was employed for the detection of TAP in human blood serum obtained from 4 healthy volunteers. The results were that no distinct signal of TAP was observed. That is, the TAP content in healthy human blood serum is lower than the detection limit of this method. For evaluating the veracity, some TAP standard solution was added into blood serum before analysis. Also, the recovery was determined by the standard addition method. The results of determination are listed in Table 1. The average recovery value was of 101.3%.ConclusionsIn the present work, a multi-walled carbon nanotube-Nafion modified glassy carbon electrode (Nafion/MWCNTs/GCE) was successfully developed for the electrocatalytic oxidation of TAP in a MA solution. As a voltammetric sensor, Nafion/MWCNTs/GCE showed good sensitivity and reproducibility in the determination of TAP. The proposed method offers the advantages of accuracy and time saving as well as simplicity of the reagents and the apparatus. In addition, the results obtained in the analysis of TAP in a human blood serum sample demonstrated this applicability of this method for real sample analysis.AcknowledgementsFinancial support provided by National Natural Science Foundation of China (No. 20775073; 20875083) is greatly appreciated.References1. W. H. Brown, “Introduction to Organic and Biochemistry”,ed. Brooks Cole Publishing, 4th ed., 1987, Monterey, 418.2. M. Botta, F. Corelli, G. Maga, F. Manetti, M. Renzulli, andS. Spadari, Tetrahedron, 2001, 57, 8357.3. A. Rosowsky, H. Chen, H. N. Fu, and S. F. Queener,Bioorg. Med. Chem., 2003, 11, 59.4. R. H. Bowman, J. Arnow, and I. M. Weiner, J. Pharmacol.Exp. Ther., 1978, 206, 207.5. E. H. C. Verhaeren, A. M. Verbruggen, and J. A. J. M.Lemli, Pharmacy World & Science, 1981, 3, 815.6. M. Frank and L. L. Flom, J. Pharmacol. Exp. Ther., 1978,204, 175.7. S. Mohan and N. Sundaraganesan, Indian J. Pure Appl.Phys., 1991, 29, 807.8. Y. Yao and K. K. Shiu, Anal. Bioanal. Chem., 2007, 387,303.9. Y. C. Tsai, J. M. Chen, S. C. Li, and F. Marken, Electrochem.Commun., 2004, 6, 917.10. D. Sun and Z. M. Sun, J. Appl. Electrochem., 2008, 38, 1223.11. Y. C. Tsai, J. M. Chen, and F. Marken, Microchim. Acta,2005, 150, 269.12. K. B. Wu and S. S. Hu, Microchim. Acta, 2004, 144, 131.13. W. S. Huang, C. H. Yang, and S. H. Zhang, Anal. Bioanal.Chem., 2003, 375, 703.14. R. X. Guo, Q. Xu, D. Y. Wang, and X. Y. Hu, Microchim.Acta, 2008, 161, 265.15. (a) M. D. Threadgill, R. J. Griffin, M. F. G. Stevens, and S.K. Wong, J. Chem. Soc. Perkin. Trans. 1, 1987, 2229. (b) W. Stadeli, W. Philipsborn, A. Wick, and I. Kompis, Helv.Chim. Acta, 1980, 63, 504. (c) J. Riand, M. T. Chenon, and N. L. Bader, J. Am. Chem. Soc., 1977, 99, 6838. (d) R.Wagner and W. von. Philipsborn, Helv. Chim. Acta, 1970, 53, 299. (e) V. Q. Nguyen and F. Tureeek, J. Am. Chem.Soc., 1997, 119, 2280. (f) J. Riand, C. Coupry, and M. T.Chenon, J. Chem. Soc. Perkin. Trans. 2, 1981, 783. (g) D.V. Griffiths and S. P. Swetnam, J. Chem. Soc. Chem.Commun., 1981, 1224.16. A. C. F. Gorren, A. J. Kungl, K. Schmidt, E. R. Werner, andB. Mayer, Nitric Oxide, 2001, 5, 176.17. L. Gao, Y. J. Wu, J. X. Liu, and B. X. Ye, J. Electroanal.Chem., 2007, 610, 131.。

相关文档
最新文档