Linux下的SPI设备驱动详解
ARM—Linux下SPI设备的添加与驱动实现

策 略 和 接 口。 面 向用 户 接 口层 提 供 统 一 的 接 口, 便 S I 以 P
设 备 驱 动 通 过 总线 控 制 器 进 行 数 据 收 发 , 主 体 框 架 程 序 其
是 GP O模 拟 S I 序 s ibt a g C和 可 进 行 同/ 步 消 I P 时 p i n. b 异
d vc 置 定 义 S I 机 信 号 与 从 机 的 片 选 信 号 和 中 断 ei e配 P主
信 号 。si ei 配 置 指 定 具 体 S I 备 对 应 的 S I 机 p dvc — e P设 P 主
号 、 用的 S I 信模 式与传 输速度 和其使 用 的中断等 。 采 P通
构 图如图 l 示 。 所
甲台依赖 层(1 n1 eidL V r Pa 1R l ae1 e 、
2 借 用 通 用 s i e . 动 新 设 备 p —d v C驱
对于一些常规的 S I 备 , 存储器 、 度传感 器等 , P设 如 温 可 以将 其 连 接 到 选 定 的 S I主机 控 制 器 总 线 上 , 用 系 统 P 借 提 供 的 通 用 si e . p —d v C程 序 直 接 实 现 串 行 通 信 操 作 。需 要 做 的 是 在 平 台 匹 配 文 件 ma h X X C中 添 加 或 修 改 片 c— X.
—
息传 输 等操 作 的 s iC p. 。用 户 接 口层 即设 备 驱 动 层 , 用 为 户 提 供 了通 过 S I 线 访 问 具 体 设 备 的 接 口 , 括 S I P总 包 P 设 备 和 S I 动 程 序 。ARM —L n x下 S I总 线 的层 次 结 P驱 iu P
件 mah X X C 如 ma h s d c 1 . 。 c— X . , c m k 1 0 C
嵌入式Linux下AD7714与SPI接口及驱动的实现

jc o dfrni cn i ao m t , ets r uth w ed vr ok ol l n e a persli acrt. et f ie tl ann c r e rt t e lso st r e rsnr a adt m l euts cua e as g l i e h e s h i w n hs e
21 0 1钲
仪 表 技 术 与 传 感 器
I sr me t T c n q e a d S n o nt u n e h iu n e sr
201 1
第 4期
N . o4
嵌 入 式 L n x- 7 1 iu F AD 7 4与 S I接 口及 驱 动 的 实 现 P
s isr l e p ea it fc) 是 Mo rl公 司推 出 的 一 P(ei r hrln r e a pi ea t a o o
种同步串行通讯方式 , 主要用 于 MC U或 MP U与各 种外 围设 备
以串行方式进行通信 , 是一种 高速 、 同步 、 全双工 的串行通信 总
c e t r n mi in B s d o h lt r o M9 mir p o e s r¥ 2 4 n mb d e p r t n s s m iu 2 6,hs p p r in a s s o . a e n t e p af m fAR c o r c s o 3 4 0 a d e e d d o e ai y t L n x . t i a e t s o C o e
选控制线 ( S ) N S 组成 。
12 A 71 . D 74芯 片 简 介
线 。S I P 因其传输高效 、 结构简单 , 入式系统 中得到广泛 在嵌
Linux内核中SPI总线驱动分析

Linux内核中SPI总线驱动分析本文主要有两个大的模块:一个是SPI总线驱动的分析(研究了具体实现的过程);另一个是SPI总线驱动的编写(不用研究具体的实现过程)。
1 SPI概述SPI是英语Serial Peripheral interface的缩写,顾名思义就是串行外围设备接口,是Motorola首先在其MC68HCXX系列处理器上定义的。
SPI接口主要应用在EEPROM,FLASH,实时时钟,AD转换器,还有数字信号处理器和数字信号解码器之间。
SPI是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线,节约了芯片的管脚,同时为PCB的布局上节省空间,提供方便。
SPI的通信原理很简单,它以主从方式工作,这种模式通常有一个主设备和一个或多个从设备,需要4根线,事实上3根也可以。
也是所有基于SPI的设备共有的,它们是SDI(数据输入),SDO(数据输出),SCLK(时钟),CS(片选)。
MOSI(SDO):主器件数据输出,从器件数据输入。
MISO(SDI):主器件数据输入,从器件数据输出。
SCLK :时钟信号,由主器件产生。
CS:从器件使能信号,由主器件控制。
其中CS是控制芯片是否被选中的,也就是说只有片选信号为预先规定的使能信号时(高电位或低电位),对此芯片的操作才有效,这就允许在同一总线上连接多个SPI设备成为可能。
需要注意的是,在具体的应用中,当一条SPI总线上连接有多个设备时,SPI本身的CS 有可能被其他的GPIO脚代替,即每个设备的CS脚被连接到处理器端不同的GPIO,通过操作不同的GPIO口来控制具体的需要操作的SPI设备,减少各个SPI设备间的干扰。
SPI是串行通讯协议,也就是说数据是一位一位从MSB或者LSB开始传输的,这就是SCK 时钟线存在的原因,由SCK提供时钟脉冲,MISO、MOSI则基于此脉冲完成数据传输。
SPI 支持4-32bits的串行数据传输,支持MSB和LSB,每次数据传输时当从设备的大小端发生变化时需要重新设置SPI Master的大小端。
如何在Zynq 7000平台上使用Linux spidev.c驱动

如何在Zynq 7000平台上使用Linux spidev.c驱动
在上一篇博客中,介绍了如何配置Vivado下的硬件工程、例化SPI硬件接口和如何使用petalinux加载Xilinx提供的SPI总线驱动,如果要通过SPI 控制外部器件,还需要添加SPI的设备驱动以实现SPI的对外控制逻辑。
在Linux内核的driver/spi目录下有许多外设的设备驱动可以参考,这篇博客主要介绍如何使用其中的spidev,c这个设备驱动来实现对外设的控制。
spidev是一个通用的SPI外设驱动,它提供了spi字符驱动的注册,并向上层应用程序提供了I/O控制接口,当我们仅需要利用SPI接口向外设发送和接收简单的控制序列时,可直接使用该驱动,下面介绍具体的使用方法。
一、在前一篇博客中,我们采用xilinx针对Zynq 7000处理器提供的spi-cadence.c驱动实现了芯片上SPI总线驱动的注册,接下来需要修改设备树文件以时我们的外设挂接在SPI总线下。
在petalinux工程的../subsystems/linux/configs/device-tree目录下找到zynq 相关的设备树文件,目录所包含的文件如下图所示。
Linux下SPI驱动测试程序

Linux下的SPI总线驱动(一)2013-04-12 15:08:46分类:LINUX版权所有,转载请说明转自一.SPI理论介绍SPI总线全名,串行外围设备接口,是一种串行的主从接口,集成于很多微控制器内部。
和I2C使用2根线相比,SPI总线使用4根线:MOSI (SPI 总线主机输出/ 从机输入)、MISO (SPI总线主机输入/从机输出)、SCLK(时钟信号,由主设备产生)、CS(从设备使能信号,由主设备控制)。
由于SPI总线有专用的数据线用于数据的发送和接收,因此可以工作于全双工,当前市面上可以找到的SPI外围设备包括RF芯片、智能卡接口、E2PROM、RTC、触摸屏传感器、ADC。
SCLK信号线只由主设备控制,从设备不能控制信号线。
同样,在一个基于SPI的设备中,至少有一个主控设备。
这样传输的特点:这样的传输方式有一个优点,与普通的串行通讯不同,普通的串行通讯一次连续传送至少8位数据,而SPI允许数据一位一位的传送,甚至允许暂停,因为SCLK 时钟线由主控设备控制,当没有时钟跳变时,从设备不采集或传送数据。
也就是说,主设备通过对SCLK时钟线的控制可以完成对通讯的控制。
SPI还是一个数据交换协议:因为SPI的数据输入和输出线独立,所以允许同时完成数据的输入和输出。
不同的SPI 设备的实现方式不尽相同,主要是数据改变和采集的时间不同,在时钟信号上沿或下沿采集有不同定义,具体请参考相关器件的文档。
在点对点的通信中,SPI接口不需要进行寻址操作,且为全双工通信,显得简单高效。
在多个从设备的系统中,每个从设备需要独立的使能信号,硬件上比I2C 系统要稍微复杂一些。
二.SPI驱动移植我们下面将的驱动的移植是针对Mini2440的SPI驱动的移植Step1:在Linux Source Code中修改arch/arm/mach-s3c2440/文件,加入头文件:#include <linux/spi/>#include <../mach-s3c2410/include/mach/>然后加入如下代码:static struct spi_board_info s3c2410_spi0_board[] ={[0] = {.modalias = "spidev", us_num = 0, hip_select = 0, rq = IRQ_EINT9, ax_speed_hz = 500 * 1000,in_cs = S3C2410_GPG(2),.num_cs = 1, us_num = 0, pio_setup = s3c24xx_spi_gpiocfg_bus0_gpe11_12_13, odalias = "spidev",.bus_num = 1,.chip_select = 0,.irq = IRQ_EINT2,.max_speed_hz = 500 * 1000,}};static struct s3c2410_spi_info s3c2410_spi1_platdata = {.pin_cs = S3C2410_GPG(3),.num_cs = 1,.bus_num = 1,.gpio_setup = s3c24xx_spi_gpiocfg_bus1_gpg5_6_7,};Step2:在mini2440_devices[]平台数组中添加如下代码:&s3c_device_spi0,&s3c_device_spi1,Step3:最后在mini2440_machine_init函数中加入如下代码:&s3c2410_spi0_platdata;spi_register_board_info(s3c2410_spi0_board, ARRAY_SIZE(s3c2410_spi0_board)); &s3c2410_spi1_platdata;spi_register_board_info(s3c2410_spi1_board, ARRAY_SIZE(s3c2410_spi1_board)); Step4:最后需要修改arch/arm/plat-s3c24xx/KConfig文件找到config S3C24XX_SPI_BUS0_GPE11_GPE12_GPE13boolhelpSPI GPIO configuration code for BUS0 when connected toGPE11, GPE12 and GPE13.config S3C24XX_SPI_BUS1_GPG5_GPG6_GPG7boolhelpSPI GPIO configuration code for BUS 1 when connected toGPG5, GPG6 and GPG7.修改为config S3C24XX_SPI_BUS0_GPE11_GPE12_GPE13bool "S3C24XX_SPI_BUS0_GPE11_GPE12_GPE13"helpSPI GPIO configuration code for BUS0 when connected toGPE11, GPE12 and GPE13.config S3C24XX_SPI_BUS1_GPG5_GPG6_GPG7bool "S3C24XX_SPI_BUS1_GPG5_GPG6_GPG7"helpSPI GPIO configuration code for BUS 1 when connected toGPG5, GPG6 and GPG7.Step5:最后make menuconfig配置,选中System Type和SPI support相应文件Step6:执行make生成zInage,将编译好的内核导入开发板,并且编译测试程序运行即可。
Linux下SPI驱动测试程序

L i n u x下S P I驱动测试程序-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIANLinux下的SPI总线驱动(一)2013-04-12 15:08:46分类:LINUX版权所有,转载请说明转自一.SPI理论介绍SPI总线全名,串行外围设备接口,是一种串行的主从接口,集成于很多微控制器内部。
和I2C使用2根线相比,SPI总线使用4根线:MOSI (SPI 总线主机输出/ 从机输入)、 MISO (SPI总线主机输入/从机输出)、SCLK(时钟信号,由主设备产生)、CS(从设备使能信号,由主设备控制)。
由于SPI总线有专用的数据线用于数据的发送和接收,因此可以工作于全双工,当前市面上可以找到的SPI外围设备包括RF芯片、智能卡接口、E2PROM、RTC、触摸屏传感器、ADC。
SCLK信号线只由主设备控制,从设备不能控制信号线。
同样,在一个基于SPI的设备中,至少有一个主控设备。
这样传输的特点:这样的传输方式有一个优点,与普通的串行通讯不同,普通的串行通讯一次连续传送至少8位数据,而SPI允许数据一位一位的传送,甚至允许暂停,因为SCLK 时钟线由主控设备控制,当没有时钟跳变时,从设备不采集或传送数据。
也就是说,主设备通过对SCLK时钟线的控制可以完成对通讯的控制。
SPI还是一个数据交换协议:因为SPI的数据输入和输出线独立,所以允许同时完成数据的输入和输出。
不同的SPI设备的实现方式不尽相同,主要是数据改变和采集的时间不同,在时钟信号上沿或下沿采集有不同定义,具体请参考相关器件的文档。
在点对点的通信中,SPI接口不需要进行寻址操作,且为全双工通信,显得简单高效。
在多个从设备的系统中,每个从设备需要独立的使能信号,硬件上比I2C 系统要稍微复杂一些。
二.SPI驱动移植我们下面将的驱动的移植是针对Mini2440的SPI驱动的移植Step1 :在Linux Source Code中修改arch/arm/mach-s3c2440/文件,加入头文件:#include <linux/spi/>#include <../mach-s3c2410/include/mach/>然后加入如下代码:static struct spi_board_info s3c2410_spi0_board[] ={[0] = {.modalias = "spidev", us_num = 0, hip_select = 0, rq = IRQ_EINT9, ax_speed_hz = 500 * 1000, in_cs = S3C2410_GPG(2),.num_cs = 1, us_num = 0, pio_setup = s3c24xx_spi_gpiocfg_bus0_gpe11_12_13, odalias = "spidev",.bus_num = 1,.chip_select = 0,.irq = IRQ_EINT2,.max_speed_hz = 500 * 1000,}};static struct s3c2410_spi_info s3c2410_spi1_platdata = {.pin_cs = S3C2410_GPG(3),.num_cs = 1,.bus_num = 1,.gpio_setup = s3c24xx_spi_gpiocfg_bus1_gpg5_6_7,};Step2:在mini2440_devices[]平台数组中添加如下代码:&s3c_device_spi0,&s3c_device_spi1,Step3:最后在mini2440_machine_init函数中加入如下代码:&s3c2410_spi0_platdata;spi_register_board_info(s3c2410_spi0_board, ARRAY_SIZE(s3c2410_spi0_board));&s3c2410_spi1_platdata;spi_register_board_info(s3c2410_spi1_board, ARRAY_SIZE(s3c2410_spi1_board));Step4:最后需要修改arch/arm/plat-s3c24xx/KConfig文件找到config S3C24XX_SPI_BUS0_GPE11_GPE12_GPE13boolhelpSPI GPIO configuration code for BUS0 when connected toGPE11, GPE12 and GPE13.config S3C24XX_SPI_BUS1_GPG5_GPG6_GPG7boolhelpSPI GPIO configuration code for BUS 1 when connected toGPG5, GPG6 and GPG7.修改为config S3C24XX_SPI_BUS0_GPE11_GPE12_GPE13bool "S3C24XX_SPI_BUS0_GPE11_GPE12_GPE13"helpSPI GPIO configuration code for BUS0 when connected toGPE11, GPE12 and GPE13.config S3C24XX_SPI_BUS1_GPG5_GPG6_GPG7bool "S3C24XX_SPI_BUS1_GPG5_GPG6_GPG7"helpSPI GPIO configuration code for BUS 1 when connected toGPG5, GPG6 and GPG7.Step5:最后make menuconfig配置,选中System Type和SPI support相应文件Step6:执行make生成zInage,将编译好的内核导入开发板,并且编译测试程序运行即可。
Linuxkernel有关spi设备树参数解析

Linuxkernel有关spi设备树参数解析⼀、最近做了⼀个 spi 设备驱动从板级设备驱动升级到设备树设备驱动,这其中要了解 spi 设备树代码的解析。
⼆、设备树配置如下:503 &spi0 {504 status = "okay";505 pinctrl-name = "default";506 pinctrl-0 = <&spi0_pins>;507 ti,pindir-d0-out-d1-in;508509 wk2124A {510 compatible = "wk2124A"; // 匹配字符串511 reg = <0>; // cs512 # spi-cpha = <1>; // 配置 spi 的模式513 # spi-tx-bus-width = <1>; // 这是是 spi-tx 的总线宽度514 # spi-rx-bus-width = <1>;515 spi-max-frequency = <10000000>; // spi 最⼤速率配置516 };517 };三、代码跟踪// drivers/spi/spi.c2772 postcore_initcall(spi_init); // spi_init2733 static int __init spi_init(void)2734 {2735 int status;27362737 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);2738 if (!buf) {2739 status = -ENOMEM;2740 goto err0;2741 }27422743 status = bus_register(&spi_bus_type);2744 if (status < 0)2745 goto err1;27462747 status = class_register(&spi_master_class);2748 if (status < 0)2749 goto err2;27502751 if (IS_ENABLED(CONFIG_OF_DYNAMIC))2752 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier)); // 这⾥要注册主机和从机27532754 return 0;27552756 err2:2757 bus_unregister(&spi_bus_type);2758 err1:2759 kfree(buf);2760 buf = NULL;2761 err0:2762 return status;2763 }2726 static struct notifier_block spi_of_notifier = {2727 .notifier_call = of_spi_notify,2728 };2686 static int of_spi_notify(struct notifier_block *nb, unsigned long action,2687 void *arg)2688 {2689 struct of_reconfig_data *rd = arg;2690 struct spi_master *master;2691 struct spi_device *spi;26922693 switch (of_reconfig_get_state_change(action, arg)) {2694 case OF_RECONFIG_CHANGE_ADD:2695 master = of_find_spi_master_by_node(rd->dn->parent); // 找到主机节点2696 if (master == NULL)2697 return NOTIFY_OK; /* not for us */26982699 spi = of_register_spi_device(master, rd->dn); // ---> 注册设备2700 put_device(&master->dev);27222723 return NOTIFY_OK;2724 }1428 #if defined(CONFIG_OF)1429 static struct spi_device *1430 of_register_spi_device(struct spi_master *master, struct device_node *nc)1431 {1432 struct spi_device *spi;1433 int rc;1434 u32 value;14351436 /* Alloc an spi_device */1437 spi = spi_alloc_device(master);1438 if (!spi) {1439 dev_err(&master->dev, "spi_device alloc error for %s\n",1440 nc->full_name);1441 rc = -ENOMEM;1442 goto err_out;1443 }14441445 /* Select device driver */1446 rc = of_modalias_node(nc, spi->modalias, // 匹配到从机1447 sizeof(spi->modalias));1448 if (rc < 0) {1449 dev_err(&master->dev, "cannot find modalias for %s\n",1450 nc->full_name);1451 goto err_out;1452 }14531454 /* Device address */1455 rc = of_property_read_u32(nc, "reg", &value); // 设备节点 reg 表⽰ cs1456 if (rc) {1457 dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",1458 nc->full_name, rc);1459 goto err_out;1460 }1461 spi->chip_select = value;14621463 /* Mode (clock phase/polarity/etc.) */ // 选择 spi 的模式1464 if (of_find_property(nc, "spi-cpha", NULL))1465 spi->mode |= SPI_CPHA;1466 if (of_find_property(nc, "spi-cpol", NULL))1467 spi->mode |= SPI_CPOL;1468 if (of_find_property(nc, "spi-cs-high", NULL)) // 选择 spi cs 是⾼有效还是低有效 1469 spi->mode |= SPI_CS_HIGH;1470 if (of_find_property(nc, "spi-3wire", NULL))1471 spi->mode |= SPI_3WIRE;1472 if (of_find_property(nc, "spi-lsb-first", NULL))1473 spi->mode |= SPI_LSB_FIRST;14741475 /* Device DUAL/QUAD mode */ // 选择单线还是双线通道1476 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {1477 switch (value) {1478 case 1:1479 break;1480 case 2:1481 spi->mode |= SPI_TX_DUAL;1482 break;1483 case 4:1484 spi->mode |= SPI_TX_QUAD;1485 break;1486 default:1487 dev_warn(&master->dev,1488 "spi-tx-bus-width %d not supported\n",1489 value);1490 break;1491 }1492 }14931494 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {1495 switch (value) {1496 case 1:1497 break;1498 case 2:1499 spi->mode |= SPI_RX_DUAL;1500 break;1501 case 4:1502 spi->mode |= SPI_RX_QUAD;1503 break;1504 default:1505 dev_warn(&master->dev,1506 "spi-rx-bus-width %d not supported\n",1508 break;1509 }1510 }15111512 /* Device speed */ // 设备速度配置1513 rc = of_property_read_u32(nc, "spi-max-frequency", &value);1514 if (rc) {1515 dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n", 1516 nc->full_name, rc);1517 goto err_out;1518 }1519 spi->max_speed_hz = value;15201521 /* Store a pointer to the node in the device structure */1522 of_node_get(nc);1523 spi->dev.of_node = nc; // 保存设备结构体15241525 /* Register the new device */1526 rc = spi_add_device(spi);1527 if (rc) {1528 dev_err(&master->dev, "spi_device register error %s\n",1529 nc->full_name);1530 goto err_out;1531 }15321533 return spi;15341535 err_out:1536 spi_dev_put(spi);1537 return ERR_PTR(rc);1538 }。
Linux下spi驱动开发(1)

Linux下spi驱动开发(1)华清远见刘洪涛一、概述基于子系统去开发驱动程序已经是linux内核中普遍的做法了。
前面写过基于I2C子系统的驱动开发。
本文介绍另外一种常用总线SPI的开发方法。
SPI子系统的开发和I2C有很多的相似性,大家可以对比学习。
本主题分为两个部分叙述,第一部分介绍基于SPI子系统开发的理论框架;第二部分以华清远见教学平台FS_S5PC100上的M25P10芯片为例(内核版本2.6.29),编写一个SPI驱动程序实例。
二、SPI总线协议简介介绍驱动开发前,需要先熟悉下SPI通讯协议中的几个关键的地方,后面在编写驱动时,需要考虑相关因素。
SPI总线由MISO(串行数据输入)、MOSI(串行数据输出)、SCK(串行移位时钟)、CS(使能信号)4个信号线组成。
如FS_S5PC100上的M25P10芯片接线为:上图中M25P10的D脚为它的数据输入脚,Q为数据输出脚,C为时钟脚。
SPI常用四种数据传输模式,主要差别在于:输出串行同步时钟极性(CPOL)和相位(CPHA)可以进行配置。
如果CPOL= 0,串行同步时钟的空闲状态为低电平;如果CPOL= 1,串行同步时钟的空闲状态为高电平。
如果CPHA= 0,在串行同步时钟的前沿(上升或下降)数据被采样;如果CPHA = 1,在串行同步时钟的后沿(上升或下降)数据被采样。
这四种模式中究竟选择哪种模式取决于设备。
如M25P10的手册中明确它可以支持的两种模式为:CPOL=0 CPHA=0 和CPOL=1 CPHA=1三、linux下SPI驱动开发首先明确SPI驱动层次,如下图:SPI总线可理解为SPI控制器引出的总线1、Platform busP latform bus对应的结构是platform_bus_type,这个内核开始就定义好的。
我们不需要定义。
2、Platform_deviceSPI控制器对应platform_device的定义方式,同样以S5PC100中的SPI控制器为例,参看arch/arm/plat-s5pc1xx/dev-spi.c文件struct platform_device s3c_device_spi0 = {.name = "s3c64xx-spi", //名称,要和Platform_driver匹配.id = 0, //第0个控制器,S5PC100中有3个控制器.num_resources = ARRAY_SIZE(s5pc1xx_spi0_resource),//占用资源的种类.resource = s5pc1xx_spi0_resource,//指向资源结构数组的指针.dev = {.dma_mask = &spi_dmamask, //dma寻址范围.coherent_dma_mask = DMA_BIT_MASK(32), //可以通过关闭cache等措施保证一致性的dma寻址范围.platform_data = &s5pc1xx_spi0_pdata,//特殊的平台数据,参看后文},};static struct s3c64xx_spi_cntrlr_info s5pc1xx_spi0_pdata = {.cfg_gpio = s5pc1xx_spi_cfg_gpio, //用于控制器管脚的IO配置.fifo_lvl_mask = 0x7f,.rx_lvl_offset = 13,};static int s5pc1xx_spi_cfg_gpio(struct platform_device *pdev){s witch (pdev->id) {c ase 0:s3c_gpio_cfgpin(S5PC1XX_GPB(0), S5PC1XX_GPB0_SPI_MISO0);s3c_gpio_cfgpin(S5PC1XX_GPB(1), S5PC1XX_GPB1_SPI_CLK0);s3c_gpio_cfgpin(S5PC1XX_GPB(2), S5PC1XX_GPB2_SPI_MOSI0);s3c_gpio_setpull(S5PC1XX_GPB(0), S3C_GPIO_PULL_UP);s3c_gpio_setpull(S5PC1XX_GPB(1), S3C_GPIO_PULL_UP);s3c_gpio_setpull(S5PC1XX_GPB(2), S3C_GPIO_PULL_UP);break;c ase 1:s3c_gpio_cfgpin(S5PC1XX_GPB(4), S5PC1XX_GPB4_SPI_MISO1);s3c_gpio_cfgpin(S5PC1XX_GPB(5), S5PC1XX_GPB5_SPI_CLK1);s3c_gpio_cfgpin(S5PC1XX_GPB(6), S5PC1XX_GPB6_SPI_MOSI1);s3c_gpio_setpull(S5PC1XX_GPB(4), S3C_GPIO_PULL_UP);s3c_gpio_setpull(S5PC1XX_GPB(5), S3C_GPIO_PULL_UP);s3c_gpio_setpull(S5PC1XX_GPB(6), S3C_GPIO_PULL_UP);break;c ase 2:s3c_gpio_cfgpin(S5PC1XX_GPG3(0), S5PC1XX_GPG3_0_SPI_CLK2);s3c_gpio_cfgpin(S5PC1XX_GPG3(2), S5PC1XX_GPG3_2_SPI_MISO2);s3c_gpio_cfgpin(S5PC1XX_GPG3(3), S5PC1XX_GPG3_3_SPI_MOSI2);s3c_gpio_setpull(S5PC1XX_GPG3(0), S3C_GPIO_PULL_UP);s3c_gpio_setpull(S5PC1XX_GPG3(2), S3C_GPIO_PULL_UP);s3c_gpio_setpull(S5PC1XX_GPG3(3), S3C_GPIO_PULL_UP);break;d efault:dev_err(&pdev->dev, "Invalid SPI Controller number!");return -EINVAL;}3、Platform_driver再看platform_driver,参看drivers/spi/spi_s3c64xx.c文件static struct platform_driver s3c64xx_spi_driver = {.driver = {.name = "s3c64xx-spi", //名称,和platform_device对应.owner = THIS_MODULE,},.remove = s3c64xx_spi_remove,.suspend = s3c64xx_spi_suspend,.resume = s3c64xx_spi_resume,};platform_driver_probe(&s3c64xx_spi_driver, s3c64xx_spi_probe);//注册s3c64xx_spi_driver和平台中注册的platform_device匹配后,调用s3c64xx_spi_probe。