有理数加法1

合集下载

有理数的加法

有理数的加法

有理数的加法有理数的加法是数学中一种基本的运算方法。

在数学中,有理数是可以用整数表示的数,包括正整数、负整数和0。

有理数的加法是指将两个或多个有理数相加得到一个和的过程。

有理数的加法可以用以下几种方式进行。

1. 原理法原理法是指根据有理数的定义,将两个有理数的分子和分母进行相应的运算,然后将结果归纳为一个有理数。

例如,对于两个有理数a/b 和c/d,其中a、b、c、d为整数且b和d不为0,可以将它们的分子相加得到分子的和,分母相加得到分母的和,即(a+b)/(b+d)。

2. 十进制法十进制法是将有理数转化为十进制小数后进行相加的方法。

首先将有理数表示为一个整数部分和一个小数部分,然后对整数部分进行相加,对小数部分进行相加,最后将整数部分和小数部分的和合并得到一个新的有理数。

3. 图形法图形法是通过在数轴上绘制表示有理数的点,并将相应的点进行相加,得到一个新的有理数。

在数轴上,正数表示向右移动,负数表示向左移动,0表示原点。

通过将两个有理数的点进行移动和合并,可以得到它们的和。

有理数的加法满足以下几个基本性质。

1. 交换律对于任意两个有理数a和b,它们的和a+b和b+a相等。

2. 结合律对于任意三个有理数a、b和c,它们的和(a+b)+c和a+(b+c)相等。

3. 加法逆元对于任意有理数a,存在一个有理数-b,使得a+(-b)=0。

4. 加法单位元0是加法的单位元,对于任意有理数a,a+0=a。

有理数的加法在日常生活中广泛应用。

例如,在购物中,我们需要将商品的价格相加得到总价;在账户余额中,我们需要将收入和支出相加得到最新的余额;在时间计算中,我们需要将时、分、秒相加得到总的时间等等。

总之,有理数的加法是一种基本且实用的数学运算方法。

通过不同的计算方式和性质,我们可以灵活地进行有理数的相加运算,解决各种实际问题。

第1课时有理数的加法法则(39张PPT)数学

第1课时有理数的加法法则(39张PPT)数学

B
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
解析
答案
解析 -(-1)+|-1|=-(-1)+1=1+1=2,故选B.
3.下列运算正确的是( )A.(-2)+(-2)=0 B.(-6)+(+4)=-10C.0+(-3)=3 D.0.56+(-0.26)=0.3
1
2
3
4
5
6
7
8
9
10
11
答案
同号两数相加,取与 相同的符号,并把 相加;异号两数相加,取 的符号,并用 减去_____________;互为 的两个数相加得0;一个数同0相加,仍得这个数.
类型2
利用有理数的加法法则运算

例2 (教材例1针对训练)计算:
(2)(-39)+(-11).
解 (-39)+(-11)=-(39+11)=-50.

(4)(-10)+0.
解 (-10)+0=-10.
归纳总结 两个有理数相加的运算方法:(1)同号→确定符号(与加数同号)→把绝对值相加;(2)异号→确定符号(取绝对值较大的加数符号)→较大绝对值减较小绝对值;(3)数+0=原数.
0
-8
典例精析
类型1
利用数轴表示两个有理数相加
例1 (教材补充例题)在数轴上表示以下两数相加,并写出结果.(1)(-5)+(+3).

解 (-5)+(+3)=-2.

(2)(-2)+(-4).
解 (-2)+(-4)=-6.
归纳总结 利用数轴表示两个有理数相加的步骤:(1)画数轴;(2)从0开始进行移动;(3)根据终点确定和.

有理数的加法(一)

有理数的加法(一)
直接写结果;第11题做到书上,拍照上传. • 2.有理数加法法则背起来,背法则录视频上
传钉钉,和拍照的作业一起上传。
运动3m,很显然,两次运动后物体从起点向左运动了2m.
-5










-8 -7 -6 -5 -4 -3 -2 -1 0 1
+3
-2
类型三:异 号 两 个 数 相 加
5+(—3)=2
+5










-3 -2 -1 0 1 2 3 4 5 6
+2
—3
5+(—5)=0
+5






解:(1)(-4)+(-6)= — (4+6)= —10 (2) 4 + (-6) = — (6—4)= —2 (3) (-4)+ 6 = + (6—4)= 2 (4)(-4)+4= 0
(5)(-4)+14= + (14—4)= 10 (6)(-14)+4= — (14—4)=—10 (7)6+(-6)= 0 (8)0+(-6)= -6
-8
类型二:同 号 两 个 数 相 加
(-5) + (-3) = -8
根据这个算式能否尝试总结负数与负数相加, 它的运算结果与两个加数有什么联系吗?
符号 绝对值
结论: 负数与负数相加,取负号,并把绝对值相加.
类型二:同 号 两 个 数 相 加
( +5) + (+ 3) = ++8 (-- 5) + (-- 3) =-- 8

有理数的加法一

有理数的加法一
解:三场比赛中,红队共进__球,失__ 球,净胜球数为___+___=____=__
黄队共进__球,失__球,净胜球数 为___+___=____=__ 蓝队共进__球,失__球,净胜球数 为___+___=____=__
思考:仓库内原存粮食4000 千克,一周内存入和取出情况如 下(存入为正,单位:千克): 2000,-1500,-300,600, 500,-1600,-350,问第七天 末仓库内还存有多少粮食?
2.计算当a,b为下列值时 a+b的值。
(1).a3,b=0
归纳小结
1. 有理数加法法则的类 型。
2. 有理数加法法则及其 应用。
3. 注意异号的情况。
作业
书本18页练习第1,2题 书本24页习题1.3第1题
西

1.向东跑3米,再向东跑2米,离原点多少米? 2.向西跑3米,再向西跑2米,离原点多少米? 3.向东跑3米,再向西跑2米,离原点多少米? 4.向西跑3米,再向东跑2米,离原点多少米? 5.向东跑3米,再向西跑3米,离原点多少米?
6.向东跑3米,然后原地不动,离原点多少米?
总结 规律 写出 法则
1.同号两数相加,取 相同的 符号,并把绝对值相加。
2.异号两数相加,绝对值相等 时和为零;
绝对值不相等时,取绝对 值大的符号,并用较大的绝对 值减去较小的绝对值。
3.一个数同零相加, 仍得这 个数。
一般步骤
1.根据有理数加法法则 确定和的符号。
2.根据有理数加法法则 进行绝对值的运算。
例题1
1.(-9)+(-1) 2. 180+(-10) 3. 5+(-5) 4. 0+(-2) 5. -7+(+20)

有理数的加法(教师版+学生版)

有理数的加法(教师版+学生版)

教师版2.1有理数的加法(1)【知识清单】1.有理数加法法则:(1)同号两数相加,取与加数相同的符号,并把绝对值相加.(2)异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.(3)互为相反数的两个数相加得零;一个数同零相加,仍得这个数.2.灵活运用法则:灵活使用运算法则能简化运算步骤,提高计算效率,通常有下列规律:①互为相反的两个数,可以先相加;②符号相同的数,可以先相加;③分母相同的数,可以先相加;④几个数相加能得到整数,可以先相加.【经典例题】例题1、如果a+b=c,且a、b都大于c,那么a、b一定是()A. 同为负数B. 一个正数一个负数C. 同为正数D. 一个负数一个是零【考点】有理数的加法.【分析】根据题意两个加数都大于和可得,两个加数必为负数.【解答】∵a+b=c,且a、b都大于c,∴a、b一定都是负数.故选A.【点评】根据有理数的加法:负数加负数和小于任意一个加数这是确定答案的关键.例题2、若a的相反数是最大的负整数,b的绝对值是5,试求a+b的值.【考点】握手问题.【分析】根据a的相反数是最大的负整数,可得a=1,b的绝对值是5,可得b=±5.首先根据题意确定出a、b的值,再计算a+b即可.【解答】∵a的相反数是最大的负整数,∴a=1,∵b的绝对值是5,∴b=±5.当b=5时,a+b=1+5=6,当b=-5时,a+b=1+(-5)=-4,∴a+b=6或-4.【点评】本题是一道综合题目,主要考查了有理数的加法,绝对值,相反数,解决该题的关键是理解和掌握相反数和绝对值概念,正确确定a、b的值.【夯实基础】1、两个数相加,若和为负数,则这两个数( )A .都是负数B .必定一个数的零,另一个数为负数C .总是一正一负D .至少有一个是负数 2、已知a >b 且a +b =0,则( )A .a >0B .a <0C .b ≤0D .b <03、把五个数填入下列方框中,使横、竖三个数的和相等,其中错误的是是( )4、若x 的相反数是3,y =6,则x +y 的值为 ( )A .-9B .3C .-9或3D .9或-3 5、直接写出下列各式的结果:(1) (-3)+(-4)= ; (2) (+3)+(-4)= ; (3) (-3)+(4)= ; (4) (-0.75)+(+43)= ; (5))322(-+0= ; (6) (-3.125)+872-= .6、当a 、b 满足 时,b a b a +=+成立.7、某粮食储备库周一到周四该粮仓小麦的进出情况如下表:(当天运进小麦1万吨,记作+1万吨;当天运出小麦1万吨,记作-1万吨.)上午 下午 算式合计 周一 1.10.61.1+0.6周二 -0.4 -0.8(-0.4)+(-0.8) 周三 -0.60.6 (-0.6)+0.6 周四1.2-0.71.2+(-0.7)补全该表,并说明该粮食储备库四天运进和运出情况?8、(1)大于-5而小于2的所有整数是?(2)绝对值不大于4的所有整数的和的多少?A B C D9、有理数a ,b ,c 在数轴上的位置如图所示,用“>”或“<”比较下列式子与“0”的大小. (1)c +a 0;(2)b +c 0;(3)b +(-a ) 0;(4)b +(-c ) 0.【提优特训】10、土星表面的夜间平均温度为-150℃,白天比夜间高27℃,那么白天的平均温度是( ) A .-177℃ B .-123℃ C .123℃ D .177℃ 11、若a <0,b <0,且b a <,则a +(-b )的一点是( )A .负数B .正数C . 0D .不确定 12、在下列叙述中,正确的是( )A .若b a =,则a =bB .若b a >,则a >bC .若a <b ,则 b a <D .若b a =,则a =±b13、已知两个有理数a 与b 的和至少小于其中一个加数,则a 与b 在数轴上的位置不可能是( )14、计算:1+(-2)+3+(-4)+…+2017+(-2018)的结果是( )A .0B .-1C .-1009D .101015、某潜水员先潜入水下83米,然后又上升52米,这时潜水员在什么位置 . 16、计算:(1)(+7)+(-12)+(+8);(2)(- 3.125)+(+4.75)+(879-)+(+415)+(324-);(3)(-5.38)+(+4.23)+(-1.3)+(+7.15)+(-6.7).17、在数轴上有理数a ,b ,c 所对应的点的位置如图所示.则下列四个结论中,正确的是 . ①2a +c +b <0;②)()()(c a c b b a -+=-++-+;③c b a --<1;④-a >-b >-c ;⑤a c b <<.A BC D 第9题图第17题图18、先阅读下列材料,再解决问题:学习数轴之后,有同学发现在数轴上到两点之间距离相等的点,可以用表示这两点的数来确定.如:解决问题:根据上述规律完成下列各题:(1)到点50和150距离相等的数是多少?(3)到点-12和点-26距离相等的点表示的数是多少?你能说出你得到的规律吗?-x,求x+y的值.20、钟面上有1,2,3,…,11,12,共12个数字.(1)试在某些数字的前面添加负号,使钟面上的数字之和等于0,你能找到几种添法?这样的负号至少需要填几个?(2)哪些时间段里分针和时针所夹的数字前面添加负号,钟面上的所有数字的和等于0?【中考链接】21、(2018•柳州)计算:0+(-2)=()A.-2 B.2 C.0 D.-2022、(2018•德州)计算:|-2+3|=.参考答案1、D2、D3、B4、C5、(1)-7,(2)-1,(3)1,(4)0,(5)322-,(6)41-6、a 和b 符号相同或有一个0或两个都是0 10、B 11、B 12、D 13、D 14、C 15、潜水员在水下31米处 21、A 22、17、某粮食储备库周一到周四该粮仓小麦的进出情况如下表:(当天运进小麦1万吨,记作+1万吨;当天运出小麦1万吨,记作-1万吨.)上午 下午 算式合计 周一 1.10.61.1+0.6 1.7周二 -0.4 -0.8(-0.4)+( -0.8) -1.2周三 -0.6 0.6 (-0.6)+0.6 0 周四1.2-0.71.2+(-0.7)0.5补全该表,并说明该粮食储备库四天运进和运出情况? 解:周一合计:1.1+0.6=1.7, 周二合计:(-0.4)+(-0.8)=-1.2, 周三合计:(-0.6)+0.6=0, 周四年合计:1.2+(-0.7)=0.5, 1.7+(-1.2)+0+0.5=1(万吨), 所以周一到周四这四天运进1万吨. 8、(1)大于-5而小于2的所有整数是?(2)绝对值不大于4的所有整数的和的多少?解:(1)大于-5而小于2的所有整数为-4,-3,-2,-1,0,1.(2)绝对值不大于4,即4≤x 所有整数为-4,-3,-2,-1,0,1,2,3,4,故和是0 9、有理数a ,b ,c 在数轴上的位置如图所示,用“>”或“<”比较下列式子与“0”的大小. (1)c +a < 0;(2)b +c > 0;(3)b +(-a ) > 0;(4)b +(-c ) < 0.16、计算:(1)(+7)+(-12)+(+8);第9题图(2)(- 3.125)+(+4.75)+(879-)+(+415)+(324-); (3)(-5.38)+(+4.23)+(-1.3)+(+7.15)+(-6.7). 解:(1)原式=(+7)+(+8)+(-12) =15+(-12)=3; (2)原式=(813-)+(879-)+(+434)+(+415)+(324-) =(-13)+10+(324-)=-3+(324-)=327-;(3)原式=(-5.38)+(-6.3)+(-8.7)+(+4.23)+ (+7.15). =(-20.38)+11.38=-9.17、在数轴上有理数a ,b ,c 所对应的点的位置如图所示.则下列四个结论中,正确的是① ② ④ ⑤ .①2a +c +b <0;②)()()(c a c b b a -+=-++-+;③c b a --<1;④-a >-b >-c ;⑤a c b <<.18、先阅读下列材料,再解决问题:学习数轴之后,有同学发现在数轴上到两点之间距离相等的点,可以用表示这两点的数来确定.如:(1)到点4和点10距离相等的点表示的数是7,有这样的关系7=21(4+10); (2)到点-3和点-7距离相等的点表示的数是-5,有这样的关系-5=[])7()3(21-+-.解决问题:根据上述规律完成下列各题:(1)到点50和150距离相等的数是多少? (2)到点32和85- 距离相等的点表示的数是多少? (3)到点-12和点-26距离相等的点表示的数是多少?你能说出你得到的规律吗? 解:(1)21(50+150)=100; (2)21⎥⎦⎤⎢⎣⎡-+)85(32=481; (3)21[])26()12(-+-= -19. 第17题图在数轴上到两个点距离相等的点表示的数为这两个点所表示数之和的一半.-x,求x+y的值.∴x=±6,y=±10,-x,∴当x=6,y=10时,等式成立,则x+y=16;当x=-6,y=10时,等式成立,则x+y=4;故答案为4或16.20、钟面上有1,2,3,…,11,12,共12个数字.(1)试在某些数字的前面添加负号,使钟面上的数字之和等于0,你能找到几种添法?这样的负号至少需要填几个?(2)哪些时间段里分针和时针所夹的数字前面添加负号,钟面上的所有数字的和等于0?解:(1)∵1+2+3+…+12=78,∴78÷2=39.∴只要凑得几个数字使得他们之和是39,再把这些数,或者剩下来的数前面都加上负号就行了.如:①12+11+10+6 或9,8,7,5,4,3,2,1;②12+11+9+7或10,8,6,5,4,3,2,1;③12+10+9+8或11,7,6,5,4,3,2,1;④11+10+9+8+1或12,7,6,5,4,3,2;⑤12+11+10+5+1或9,8,7,6,4,3,2.……这样的负号至少需要填4个;(2)∵在时针分针所夹的所有数字前添加负号.但必须是连续几个数之和是39才可以.∴4,5,6,7,8,9和12,11,10,1,2,3符合条件.∴9:15至9点20之间分针和时针所夹的数字为4,5,6,7,8,9;以及3点45至3点50之间分针和时针所夹的数字为10,11,12,1,2,3.2.1有理数的加法(2)【知识清单】 有理数加法的运算律: (1)加法交换律:两个数相加,交换加数的位置,和不变. 用字母表示: a + b = b + a (2)加法结合律:三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变. 用字母表示:(a + b ) + c = a + (b + c ) 【经典例题】 例题1、计算:(1) (-37)+(+85)+(-63)+(+19); (2) (+0.75)+(432-)+(+0.125)+(7312-)+ (815-). 【考点】有理数的加法的运算律.【分析】根据题意灵活运用加法的交换律、结合律即可解决.【解答】(1)原式=[][])19()85()63()37(++++-+- =(-100)+(+104) =4;(2) 原式= (+0.75) +(+0.125) + (815-)+(7312-)+ (432-)= ⎥⎦⎤⎢⎣⎡-++)432()43(+⎥⎦⎤⎢⎣⎡-++)815()81(+(7312-)=(-2)+(-5)+(7312-) =7319-. 【点评】多个有理数相加,注意观察各加数的特点,一般遵循:(1)互为相反数相加;(2)同号相加;(3)整数相加;(4)同分母相加;(5)小数、分数合理互化,同时注意灵活运用加法的交换律、结合律.例题2、检修小组乘汽车沿公路检修线路(约定前进为正,后退为负),某天自A 地出发到收工时所走的路程(单位:千米)为 11,-5,3,-4,8,14,-6,12,-9,6 (1)收工时离A 地有多少千米?(2)若每千米耗油0.2千克,则自A 地出发到收工时共耗油多少千克?【考点】有理数的加法以及结合律、结合律.【分析】弄懂题意是关键.(1)约定前进为正,后退为负,依题意列式求出和即可; (2)要求耗油量,需求他共走了多少路程,这与方向无关.. 【解答】(1)11+(-5)+3+(-4)+8+14+(-6)+12+(-9)+6,=54-24, =30千米.故收工时离A 地有30千米;(2)6912614843511++-+++-+++++-+++-++=54+24 =78千米. 78×0.2=15.6千克.故自A 地出发到收工时共耗油多15.6千克.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示,(2)中注意需要求出它们的绝对值的和.【夯实基础】1、下列变形,运用加法运算律正确的是( )A .7+(-5)= 5+7B .2+(-3)+5=(-3)+2+5C .[]8)4()9(+-++=[]4)8()9(+-++D .)41()4()43(++-++=4)41()43(+⎥⎦⎤⎢⎣⎡+++2、某地一天早晨的气温是-7℃,中午上升了11℃,午夜又下降了9℃,则午夜的气温是( )A .-5℃B .5℃C .-3℃D .-9℃ 3、计算)4(32)5()65(-++-+-时,先将其变成 [])4()5(32)65(-+-+⎥⎦⎤⎢⎣⎡+-,然后再计算结果,这个过程运用了 ( )A .加法的交换律B .加法的结合律C .加法的交换律和加法的结合律D .无法判断4、如图,在一个由6个圆圈组成的三角形里,把3,4,5,-6,-7,-8这6个数分别填入图的圆圈中,要求三角形的每条边上的三个数的和S 都相等,那么S 的最小值是( ) A .-1 B .-6 C .-10D .-125、计算(-2.786)+(-3.254)+(+3.786)时,应该先把 和 这两个数相加较为简便.第4题图6、若=a +d +(-b )+(-c ),则的值是 .7、(1)6+((2)(-4.23)+(-3.25)+(+4.23)= +[(-4.23)+ (+4.23)] ,即(a +b )+c = . 8.计算:9、一名足球守门员练习折返跑,从球门的位置出发,向前记作正数,返回记作负数,他的记录如下(单位:米):+6,-5,+9,-10,+13,-9,-4. (1)守门员是否回到了原来的位置? (2)守门员离开球门的位置最远是多少? (3)守门员一共走了多少路程?【提优特训】10、下列说法正确的个数为( )①两个数的和一定大于加数; ②两个数的和有可能等于加数; ③两个数相加,绝对值大的加数为负,则和一定为负;④所有的加数都非正,和一定为负.A .1个B .2个C .3个D .4个11、下面运用加法的运算律计算)3.4()23()7.5()313()23()327(-+++-+++-++,最恰当的是( )A .[])3.4()23()7.5()313()23()327(-+-+-+⎥⎦⎤⎢⎣⎡+++++B .[])23()23()7.5()313()3.4()327(-+++-+⎥⎦⎤⎢⎣⎡++-++C .[][])3.4()7.5()23()23()313()327(-+-+++-+⎥⎦⎤⎢⎣⎡+++D .[])3.4()23()7.5()313()23()327(-+++⎥⎦⎤⎢⎣⎡-+++⎥⎦⎤⎢⎣⎡-++12、对于有理数a ,b ,如果a >0,b <0,且b a <,那么下列等式成立的是( )A .a +b =b a +B .a +b =-(b a +)C .a +b =[])(b a -+-D .a +b =[])(a b -+- 13、2019个不全相等的有理数之和为0,则这2019个有理数之中( ) A .至少有一个为0 B .至少有一半为正数 C .至少有一个负数 D .至少有一半为负数 14、计算2019321132112111+⋅⋅⋅++++⋅⋅⋅++++++的结果是( ) A .1 B .10101009 C .101010091 D .2 15、如图,某种特定编码由17位数字组成,每一位数字写在下面的一个方格中,如果任何相邻的三个数字之和都等于20,则x +y 的值等于 11 .16、计算1+(-3)+(-5)+7+9+(-11)+(-13)+15+…+2009+(-2011)+(-2013)+2015+2017+(-2019)+(-2021)+2023的值为 .17、已知4=a ,2=b ,5=c ,且有理数a ,b ,c 在数轴上的位置如图所示,计算a +b +c 的值18、若)2.3(-+x +5+y +513+z =0,求x +y +z 的值.19、分别在如图所示的空格内填上适当的数,使得每行每列的三个数之和为零.十分钟内加悬赏第15题图第17题图20、先阅读下列材料,再解决问题:【中考链接】21、(2018•武汉) 温度由-4℃上升7℃是( )A .3℃B .-3℃C .11℃D .-11℃22、(2018•四川自贡)计算-3+1的结果是A. -2B.-4C. 4D. 223、(2018•湖北荆门) 将数1个1,2个21,3个31,…,n 个n1(n 为正整数)顺次排成一列:1,21,21,31,31,31,…,n 1,n 1,…,n 1,记a 1=1,a 2=21,a 3=21,…,S 1=a 1,S 2=a 1+a 2,S 3=a 1+a 2+a 3,…,S n =a 1+a 2+…+a n ,则S 2018= ..参考答案1、B2、A3、C4、C5、-2.786,3.786,6、-67、(1)(-5),b+a;(2) (-3.25),a+(b+c)110、B 11、C 12、D 13、C 14、C 15、1116、0 21、A 22、A 23、6332 8.计算:(1)守门员是否回到了原来的位置? (2)守门员离开球门的位置最远是多少? (3)守门员一共走了多少路程? 解:根据题意得(1)(+6)+(-5)+(+9)+(-10)+(+13)+(-9)+(-4)=0,故回到了原来的位置; (2)离开球门的位置最远是13米;(3)总路程=491310956-+-+++-+++-++=56米.17、已知4=a ,2=b ,5=c ,且有理数a ,b ,c 在数轴上的位置如图所示,计算a +b +c 的值解:根据有理数a ,b ,c 在数轴上的位置, 可以得出a =4,b =-2,c =-5, ∴a +b +c =4+(-2)+(-5)=-3. 18、若)2.3(-+x +5+y +513+z =0,求x +y +z 的值. 解:∵)2.3(-+x +5+y +513+z =0, ∴)2.3(-+x =0,5+y =0,513+z =0, ∴x =3.2,y =-5,z =513-=-3.2. ∴x +y +z =(+3.2)+(-5)+(-3.2) =[(+3.2) +(-3.2)] +(-5) =0+(-5)=-5.19、分别在如图所示的空格内填上适当的数,使得每行每列的三个数之和为零.十分钟内加悬赏 解:20、先阅读下列材料,再解决问题:第17题图第19题图1第19题图3第19题图2第19题图1第19题图3第19题图2学生版2.1有理数的加法(1)【知识清单】1.有理数加法法则:(1)同号两数相加,取与加数相同的符号,并把绝对值相加.(2)异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.(3)互为相反数的两个数相加得零;一个数同零相加,仍得这个数.2.灵活运用法则:灵活使用运算法则能简化运算步骤,提高计算效率,通常有下列规律:①互为相反的两个数,可以先相加;②符号相同的数,可以先相加;③分母相同的数,可以先相加;④几个数相加能得到整数,可以先相加.【经典例题】例题1、如果a+b=c,且a、b都大于c,那么a、b一定是()A. 同为负数B. 一个正数一个负数C. 同为正数D. 一个负数一个是零例题2、若a的相反数是最大的负整数,b的绝对值是5,试求a+b的值.【夯实基础】1、两个数相加,若和为负数,则这两个数( )A.都是负数B.必定一个数的零,另一个数为负数C.总是一正一负D.至少有一个是负数2、已知a>b且a+b=0,则( )A.a>0 B.a<0 C.b≤0 D.b<03、把五个数填入下列方框中,使横、竖三个数的和相等,其中错误的是是( )A B C D4、若x的相反数是3,y=6,则x+y的值为( )A.-9 B.3 C.-9或3 D.9或-35、直接写出下列各式的结果:(1) (-3)+(-4)= ; (2) (+3)+(-4)= ; (3) (-3)+(4)= ; (4) (-0.75)+(+43)= ; (5))322(-+0= ; (6) (-3.125)+872-= .6、当a 、b 满足 时,b a b a +=+成立.7、某粮食储备库周一到周四该粮仓小麦的进出情况如下表:(当天运进小麦1万吨,记作+1万吨;当天运出小麦1万吨,记作-1万吨.)上午 下午 算式合计 周一 1.10.61.1+0.6周二 -0.4 -0.8(-0.4)+(-0.8) 周三 -0.60.6 (-0.6)+0.6 周四1.2-0.71.2+(-0.7)补全该表,并说明该粮食储备库四天运进和运出情况?8、(1)大于-5而小于2的所有整数是?(2)绝对值不大于4的所有整数的和的多少?9、有理数a ,b ,c 在数轴上的位置如图所示,用“>”或“<”比较下列式子与“0”的大小. (1)c +a 0;(2)b +c 0;(3)b +(-a ) 0;(4)b +(-c ) 0.【提优特训】10、土星表面的夜间平均温度为-150℃,白天比夜间高27℃,那么白天的平均温度是( ) A .-177℃ B .-123℃ C .123℃ D .177℃ 11、若a <0,b <0,且b a <,则a +(-b )的一点是( )A .负数B .正数C . 0D .不确定第9题图12、在下列叙述中,正确的是( )A .若b a =,则a =bB .若b a >,则a >bC .若a <b ,则 b a <D .若b a =,则a =±b13、已知两个有理数a 与b 的和至少小于其中一个加数,则a 与b 在数轴上的位置不可能是( )14、计算:1+(-2)+3+(-4)+…+2017+(-2018)的结果是( )A .0B .-1C .-1009D .101015、某潜水员先潜入水下83米,然后又上升52米,这时潜水员在什么位置 .16、计算:(1)(+7)+(-12)+(+8);(2)(- 3.125)+(+4.75)+(879-)+(+415)+(324-);(3)(-5.38)+(+4.23)+(-1.3)+(+7.15)+(-6.7).17、在数轴上有理数a ,b ,c 所对应的点的位置如图所示.则下列四个结论中,正确的是 . ①2a +c +b <0;②)()()(c a c b b a -+=-++-+;③c b a --<1;④-a >-b >-c ;⑤a c b <<.A BC D 第17题图18、先阅读下列材料,再解决问题:学习数轴之后,有同学发现在数轴上到两点之间距离相等的点,可以用表示这两点的数来确定.如:解决问题:根据上述规律完成下列各题:(1)到点50和150距离相等的数是多少?(3)到点-12和点-26距离相等的点表示的数是多少?你能说出你得到的规律吗?-x,求x+y的值.20、钟面上有1,2,3,…,11,12,共12个数字.(1)试在某些数字的前面添加负号,使钟面上的数字之和等于0,你能找到几种添法?这样的负号至少需要填几个?(2)哪些时间段里分针和时针所夹的数字前面添加负号,钟面上的所有数字的和等于0?【中考链接】21、(2018•柳州)计算:0+(-2)=()A.-2 B.2 C.0 D.-2022、(2018•德州)计算:|-2+3|=.2.1有理数的加法(2)【知识清单】 有理数加法的运算律: (1)加法交换律:两个数相加,交换加数的位置,和不变. 用字母表示: a + b = b + a (2)加法结合律:三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变. 用字母表示:(a + b ) + c = a + (b + c ) 【经典例题】 例题1、计算:(1) (-37)+-(+85)+(63)+(+19); (2) (+0.75)+(432-)+(+0.125)+(7312-)+ (815-).例题2、检修小组乘汽车沿公路检修线路(约定前进为正,后退为负),某天自A 地出发到收工时所走的路程(单位:千米)为 11,-5,3,-4,8,14,-6,12,-9,6 (1)收工时离A 地有多少千米?(2)若每千米耗油0.2千克,则自A 地出发到收工时共耗油多少千克?【夯实基础】1、下列变形,运用加法运算律正确的是( )A .7+(-5)= 5+7B .2+(-3)+5=(-3)+2+5C .[]8)4()9(+-++=[]4)8()9(+-++D .)41()4()43(++-++=4)41()43(+⎥⎦⎤⎢⎣⎡+++2、某地一天早晨的气温是-7℃,中午上升了11℃,午夜又下降了9℃,则午夜的气温是( )A .-5℃B .5℃C .-3℃D .-9℃ 3、计算)4(32)5()65(-++-+-时,先将其变成 [])4()5(32)65(-+-+⎥⎦⎤⎢⎣⎡+-,然后再计算结果,这个过程运用了 ( )A .加法的交换律B .加法的结合律C .加法的交换律和加法的结合律D .无法判断4、如图,在一个由6个圆圈组成的三角形里,把3,4,5,-6,-7,-8这6个数分别填入图的圆圈中,要求三角形的每条边上的三个数的和S 都相等,那么S 的最小值是( ) A .-1 B .-6 C .-10D .-125、计算(-2.786)+(-3.254)+(+3.786)时,应该先把 和 这两个数相加较为简便.6、若=a +d +(-b )+(-c ),则的值是 .7、(1)6+(-5)= +6,即a +b = .(2)(-4.23)+(-3.25)+(+4.23)= +[(-4.23)+ (+4.23)] ,即(a +b )+c = . 8.计算:(1) (+27)+(-18.36)+(-24)+(+18.36); (2) (-2.75)+)414(-+)832(-+83;(3) (-52)+(+18)+(-8)+(-14)+(+32)+(+17); (4) 32.5+)7510(-+⎥⎦⎤⎢⎣⎡-+-)725()2146(.9、一名足球守门员练习折返跑,从球门的位置出发,向前记作正数,返回记作负数,他的记录如下(单位:米):+6,-5,+9,-10,+13,-9,-4. (1)守门员是否回到了原来的位置?第4题图(2)守门员离开球门的位置最远是多少? (3)守门员一共走了多少路程?【提优特训】10、下列说法正确的个数为( )①两个数的和一定大于加数; ②两个数的和有可能等于加数; ③两个数相加,绝对值大的加数为负,则和一定为负;④所有的加数都非正,和一定为负.A .1个B .2个C .3个D .4个11、下面运用加法的运算律计算)3.4()23()7.5()313()23()327(-+++-+++-++,最恰当的是( )A .[])3.4()23()7.5()313()23()327(-+-+-+⎥⎦⎤⎢⎣⎡+++++B .[])23()23()7.5()313()3.4()327(-+++-+⎥⎦⎤⎢⎣⎡++-++C .[][])3.4()7.5()23()23()313()327(-+-+++-+⎥⎦⎤⎢⎣⎡+++D .[])3.4()23()7.5()313()23()327(-+++⎥⎦⎤⎢⎣⎡-+++⎥⎦⎤⎢⎣⎡-++12、对于有理数a ,b ,如果a >0,b <0,且b a <,那么下列等式成立的是( )A .a +b =b a +B .a +b =-(b a +)C .a +b =[])(b a -+-D .a +b =[])(a b -+- 13、2019个不全相等的有理数之和为0,则这2019个有理数之中( ) A .至少有一个为0 B .至少有一半为正数 C .至少有一个负数 D .至少有一半为负数 14、计算2019321132112111+⋅⋅⋅++++⋅⋅⋅++++++的结果是( ) A .1 B .10101009 C .101010091 D .2 15、如图,某种特定编码由17位数字组成,每一位数字写在下面的一个方格中,如果任何相邻的三个数字之和都等于20,则x +y 的值等于 11 .16、计算1+(-3)+(-5)+7+9+(-11)+(-13)+15+…+2009+(-2011)+(-2013)+2015+2017+(-2019)+(-2021)+2023的值为 .17、已知4=a ,2=b ,5=c ,且有理数a ,b ,c 在数轴上的位置如图所示,计算a +b +c 的值18、若)2.3(-+x +5+y +513+z =0,求x +y +z 的值.19、分别在如图所示的空格内填上适当的数,使得每行每列的三个数之和为零.第17题图第19题图1第19题图3第19题图220、先阅读下列材料,再解决问题:【中考链接】21、(2018•武汉) 温度由-4℃上升7℃是( )A .3℃B .-3℃C .11℃D .-11℃22、(2018•四川自贡)计算-3+1的结果是A. -2B.-4C. 4D. 223、(2018•湖北荆门) 将数1个1,2个21,3个31,…,n 个n1(n 为正整数)顺次排成一列:1,21,21,31,31,31,…,n 1,n 1,…,n 1,记a 1=1,a 2=21,a 3=21,…,S 1=a 1,S 2=a 1+a 2,S 3=a 1+a 2+a 3,…,S n =a 1+a 2+…+a n ,则S 2018= ..。

1.3.1有理数的加法(1)课件2021-2022学年人教版七年级数学上册

1.3.1有理数的加法(1)课件2021-2022学年人教版七年级数学上册
3.一个数同0相加,仍得这个数.
知识拓展
1. 有理数加法法则: (1)同号两数相加,取相同的符号,并把 绝对值 相加; (2)绝对值不相等的 异号 两数相加,取绝对值 较大 的加数 的符号,并用较大的绝对值 减去 较小的绝对值;互为相反数的两 个数相加得 0 ; (3)一个数同 0 相加,仍得这个数. 2. 两数相加时,首先确定 和 的符号,再确定 绝对值 的大 小,最后将绝对值相加或相减.
新知探究2 如果物体先向左运动3 m,再向右运动5 m,那么两次运动的最后结
果怎样?如何用算式表示?
算式:(-3)+5=2
新知探究2 如果物体先向右运动3 m,再向左运动5 m,那么两次运动的最后结
果怎样?如何用算式表示?
算式:3+(-5)=-2
课堂小结
符号相反的两个数相加,结果的符号与绝对值较大的加数的符 号相同,并用较大的绝对值减去较小的绝对值
(3)(-0.9)+1.5 (5)(-15)+(-32);
如果,红队进4个球,失2个球; (2)7+(-5)=2(元)
( ) 32
1
=1.5-0.9
6
=0.6
体验收获
今天我们学习了哪些知识? 1.有理数的加法法则是什么? 2.进行有理数的加法运算时需要注意哪几个步骤?
达标测试
1.用算式表示下面的结果: (1)温度由-4 ºC上升7ºC; (2)收入7元,又支出5元.
过关练习2
1.判断对错,并说明理由. (1)(-4)+6=-2( ) (2) 2+(-5)=3( ) (3)(-6)+4=-2( )
答案:×;×;√
2. 填空. 5+(-2)=_____, (-7)+2=______. 答案:3;-5
新知探究3

有理数的加法教案

有理数的加法教案篇一:有理数的加法1《有理数的加法》教案师:在小学里,同学们已经学过数的加、减、乘、除四则运算。

这些数是正整数、正分数、和零,也就是说,这些运算是在非负有理数范围内进行的。

自从引进负数后,数的范围就扩大到整个有理数。

那么,在有理数范围内,怎样进行四则运算呢?今天,我们来探索有理数的加法运算。

(教师板书课题:有理数的加法)请同学们思考一下,两个有理数进行加法运算时,这两个加数的符号可能有哪些情况。

生1:加数都是正数或都是负数。

(教师板书:同号两数相加)加数一正一负(教师板书:异号两数相加)师:还有其他情况吗?生2:正数与零,负数与零,或者两个都是零师:同学们回答得很好。

现在让我们一起来看一个具体问题:某人从一点出发,经过下面两次运动,结果的方向怎样?离开出发点的距离是多少?① 先向东走了5米,再向东走3米,结果怎样?生3:向东走了8米师:如果规定向东为正,向西为负,同学们能不能用一个数学式子来表示?生4:表示为(+5)+(+3)=+8(教师板书)师:我们可以画出示意图。

(教师用投影仪显示图1)②先向西走了5米,再向西走了3米,结果如何?生5:向西走了8米。

可以表示为:(-5)+(-3)=-8 [教师板书] (教师用投影仪显示图2)③ 向东走了5米,再向西走了3米,结果呢?生6:向东走了2米。

可以表示为:(+5)+(-3)=+2 [教师板(教师用投影仪显示图3)④先向西走了5米,再向东走了3米,结果呢?生7:向西走了2米。

可以表示为:(-5)+(+3)=-2(教师板)(教师用投影仪显示图4)⑤先向东走5米,再向西走5米,结果呢?生8:回到原地位置。

可以表示为:(+5)+(-5)=0(教师板书)(教师用投影仪显示图5)⑥先向西走5米,再向东走5米,结果呢?生9:仍回到原地位置。

可以表示为:(-5)+(+5)=0 [教师板书] (教师用投影仪显示图6)师:同学们开动脑筋,完成上面这组问题完成得非常好,我非常高兴,请同学们独立完成下面一组有理数加法的具体问题,用数学式子表示出来。

青岛版(五四制)七年级上册数学课件3.1.1有理数的加法1(新版)

三、互为相反数的两个数相加:
得零.
四、一个数同零相加:
仍得这个数.
灿若寒星
看谁先学会!
请在下列的内填入正确的符号或数字
(1)(+5)+(+7)=+(+)=+5 7
12
(2)(-10)+(-3)=(10_3)=- +
13
(3)(+6)+(-5)=(65+)= _
1
(4)0+(+)=
1 5
1 5
0
(5)(-2.3)+(+2.3)=
作_________.3、已知a=-5,b=+3,
︱a︳+︱b︱=_______
4、已知8a=-5,b=+3,
︱a︱-︱b︱=_______
5.求下列个数的绝对值 2
8,-2,-3.1,-6.8,0,
灿若寒星
一只可爱的小企鹅,在一条东西走向的笔直公路上蹒 跚而行。现规定向东为正,向西为负。
如果小企鹅先向东行走3米,再继续向东行走4米,则 小企鹅两次一共向哪个方向行走了多少米?
规定向东为正,写成算式为:Βιβλιοθήκη (-3)+(-5)= -8
灿若寒星
加数 加数 和
(+3)+(+4)= +7
(-3)+(-5)=
-8
你能从上面的两个算式中发现什么?
同号两数相加,取相同的符 号,并把绝对值相加.
灿若寒星
如果小企鹅先向东行走2米,接着向西行走6米,则小
企鹅两次行走一共向()走了()米. 西
灿若寒星
加数 加数 和
(+2)+(-6)= -4 (-3)+(+5)= +2

有理数的加法1


5
-1 0 1 2 3 4

8
5 6
3
7 8
(+5)+(+3)=+8
一个物体向左右方向运动,我们规定向右为正,向左为负. 向右运动5 m记作5 m,向左运动5 m记作-5 m. (2)如果物体先向左运动5 m,再向左运动3 m,那么两次运 动后总的结果是什么?能否用算式表示?
-3
-8 -7 -6

-10 (6)(-14)+4;
(7) 6+(-6); 0
(8) 0+(-6).-6
教科书第20页
3.计算: (1)15+(-22);
( 1 ) 7
练习
(2) (-13)+(-8);
(3)(-0.9)+1.5;
(3 ) 0.6
1 2 +(- . ) (4) 2 3
1 (4) 6
(2) 21
加数的符号,并用较大的绝对值减去较小的绝对值,
互为相反数的两个数相加得0. (3)一个数同0相加,仍得这个数.
注意:一个有理数是由符号和绝对值两部分组成,所以 进行有理数的加法时,必须分别确定和的符号和绝对值。 这与小学学习的加法运算不同。
分析理解 总结步骤
( -4 ) + ( - 8 ) = - ( 4 + 8 )= - 12
0
1
2
3
5
(5)先向左运动了5 m,再向右运动了5 m, 物体从起点运动了 0 m , (-5)+(+5)= 0

注意关注加数的 符号和绝对值
(3)
(+5) +(-3) = + 2 (-5) +(+3) =-2
向右5米 再向左5米
(4)

有理数的加法(一)


答:两天后该市的最高气温约为2 ℃ 、 最低气温约为- 5 ℃
例3 在数轴上表示下列有理数的运算,并 求出计算出计算结果.
(1)(-3)+(-4)
(2)4+(-5)
(补充)例 4 小慧原来在银行存有零用钱 350 元, 上月取出了 120元,这个月计划再存人 50元,请用 有理数加法计算: (1)到上月底小慧在银行还有多少存款? (2)到这个月底小慧将有多少存款?
想一想
中国国家足球队在两场比赛中,第一 场净胜 2 球,第二场净负 1 球,请问两场 比赛后,中国国家队合计胜几球? 你能否用一个算式来表示最终结果? 如何表示?这个算式与小学时学过的加 法有何不同?
(+2)+(-1)=?
一建筑工地仓库记录星期一和星期二水泥的进货和出货 数量如下,其中进货为正,出货为负(单位:吨):
(2)(-3.5)+(+7)
(3)(-1.08)+0 2 2 (4)(- )+(+ ) 3 3
互为相反数的两个数相加得零.
例2、某市今天的最高气温为7℃,最低气温 为0 ℃。据天气预报,两天后有一股强冷空 气将影响该市,届时将降温5℃。问两天后该 市的最高气温、最低气温约为多少摄氏度?
解:气温下降5℃,记为- 5℃。 7+ (- 5)=2 ℃;0+ (- 5)= - 5 ℃
课内练习(补充) 计算:(1)(-1.37)+0 (2)(-68)+(-42)
(3)(-27)+(+102)
(4)(-4.2)+(+2.5)
1 3 (5)(+ )+(- ) 4 4 1 5 (6)(- 2 )+(+3 ) 3 6
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 1 章(课)第 3 节有理数加法
教学目标:
知识与技能:
1.理解有理数加法意义
2.掌握有理数加法法则,会正确进行有理数加法运算
过程与方法:经历探究有理数有理数加法法则过程,学会与他人交流合作
情感态度价值观:进一步激发学习需求通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.
教学重点:和的符号的确定
教学难点:异号两数相加的法则
预习作业(书P16~18)
1、一个物体在数轴上做左右方向的运动,我们规定向右为正,向左为负.假设原点0为运动起点,利用数轴,写出下列情况时物体两次运动的结果:
(1)先向左运动3cm,再向左运动2cm,物体从起点向运动了 cm;算式
(2)先向右运动3cm,再向左运动2cm,物体从起点向运动了 cm;算式
(3)先向右运动2cm,再向左运动3cm,物体从起点向运动了 cm;算式
(4)先向右运动3cm,再向左运动3cm,物体从起点向运动了 cm;算式
(5)先向右运动3cm,然后原地不动,物体从起点向运动了 cm;算式
2、总结:有理数的加法法则:
(1)同号两数相加,取符号,并把绝对值;
(2)异号两数相加,绝对值相等时和为;绝对值不等时,取的数的符号,并用减去;
(3)一个数同0相加,仍得.
3、(1)16+(-8)= ;(2)
11
()()
23
-+-=;
(3)
17
(3)()
22
++-=;(4)(+8)+()=5.
教学设计过程:
一:预习交流
1、教师课前检查了解学生完成预习作业情况。

2学生围绕教材内容和预习作业题自学2---3分钟。

3教师精讲点拨预习作业.
二:展示探究
例1.借助数轴讨论有理数的加法
一个物体向左右方向运动,我们规定向右为正,向左为负,向右运动5m,记作5m,向左动5m,记作 -5m
(1)如果物体先向右运动5m,再向左运动3m,那么两次运动后总的结果是什么?
(2)如果物体先向左运动5m,再向左运动3m,那么两次运动后总的结果是什么?
练习.足球循环赛中,红队胜黄队4: 1,黄队胜蓝队1 :0,蓝队胜红队1: 0,计算各队的净胜球数。

(进球为正,失球为负)
解:
红队共进_____球,失_____球,净胜球数为 ______ =
黄队共进_____球,失_____球,净胜球数为 ______ =
蓝队共进_____球,失_____球,净胜球数为 ______ =
例2.计算:
(1)(-13)+(-18);(2)20+(-14);
(3)1.7 + 2.8 ; (4)2.3 + (-3.1);
(5)(-31)+(-32); (6)121
+(-1.5);
(7)(-3.04)+ 6 ; (8)21+(-32
).
例3.判断题:
(1)两个负数的和一定是负数;( )
(2)绝对值相等的两个数的和等于零;( )
(3)若两个有理数相加时的和为负数,这两个有理数一定都是负数;( )
(4)若两个有理数相加时的和为正数,这两个有理数一定都是正数.( )
例4.当a = -1.6,b = 2.4时,求a+b 和a +(-b )的值.
例5.已知│a │= 8,│b │= 2.
(1)当a 、b 同号时,求a+b 的值;
(2)当a 、b 异号时,求a+b 的值.
三、检测反馈
1、如果( )+2=0,那么“( )”内应填的有理数是 。

2、某天夜晚平均气温是10C ︒-,白天比夜晚高12C ︒,那么白天的平均温度是_________
3、计算 (19)8.3-+=______ (6)-3.4+4.3=_______
4、两数相加,其和小于每一个数,那么( )
A .这两个加数必定有一个为0
B. 这两个加数一正一负,且负数的绝对值较大
C .这两个加数必定都是负数
D .这两个加数的符号不能确定
5、下列说法不正确的是 ( )
A 两个有理数相加,和不一定比加数大
B 零加上任何一个数,和一定比零大
C 零加上一个数,仍得这个数
D 两个互为相反数的数相加得零
6、数a,b 表示的点如图l .3—1所示,则
(1)a+b 0; (2)a+(-b) 0;(3)(-a)+b 0;
(4)(-a)+(-b) 0.(填“>”、“<”或“=”)
7、借助数轴来讨论有理数的加法
1)如果规定向东为正,向西为负,那么一个人向东走4米,再向东走2米,两次共向东
走了 米,这个问题用算式表示就是: ____
2)如果规定向东为正,向西为负,那么一个人向西走2米,再向西走4米,两
次共向西走多少米?很明显,两次共向西走了 米.这个问题用算式表示就是: ________ 如图所示:。

相关文档
最新文档