萃取塔(转盘塔)操作及体积传质系数测定2

合集下载

实验七 转盘萃取塔实验讲义

实验七  转盘萃取塔实验讲义

实验七液-液萃取塔的操作及其传质单元高度的测定转盘塔是一种外输入能量的液—液萃取设备,具有结构简单、生产能力大、功率小等优点,广泛应用于食物油纯化,核燃料处理、原油净化、维生素净化、废水处理等方面。

一、实验目的1.掌握萃取塔传质单元高度的测定方法,学会分析外加能量对液-液萃取塔传质单元的影响;2.了解引起萃取塔液泛不正常现象出现的原因以及处理方法;3.了解液-液萃取设备的结构和特点。

二、实验原理萃取是分离混合液体的一种方法,它是一种弥补精馏操作无法实现分离的方法之一,特别适用于稀有分散昂贵金属的冶炼和高沸点多组分分离,它是依据液体混合物各组分在溶剂中溶解度的差异而实现分离的。

但是,萃取单元操作得不到高纯物质,它只是将难以分离的混合液转化为容易分离的混合液,增加了分离设备和途径,导致成本提高。

所以,经济效益是评价萃取单元操作成功于否的标准。

1.萃取和吸收的区别⑴相同之处:两者均是利用混合物中的各组分在某溶剂中溶解度的不同而达到分离的。

吸收是气液接触传质,萃取是液-液接触传质,两者同属相际传质,因此两者的速率表达式和传质推动力的表达式是相同的。

图1. 萃取和吸收的区别⑵不同之处:由于液-液萃取体系的特点,两相的密度比较接近,界面张力较小,所以,能用于强化过程的推动力不大,加上分散的一相,凝聚分层能力不高;而气液吸收两相密度相差很大,界面张力较大,气液两相分离能力很大,由此,对于气液接触效率较高的设备,用于液-液接触效率不一定高。

为了提高液-液相际传质设备的效率,常常需外加能量,如搅拌、脉动、振动等。

另外,为了让分散的液滴凝聚,实现两相的分离,需要有足够的停留时间也即凝聚空间,简称分层分离空间。

2.萃取塔结构特征由于液-液萃取体系的特点,从而使萃取塔的结构发生了根本性变化: ⑴需要适度的外加能量; ⑵需要足够大的分层分离空间。

3.萃取塔的操作特点 ⑴分散相的选择a.容易分散的一相为分散相:在现实操作过程中,很易转相,为了避免此类情况发生,宜选择容易分散的一相为分散相。

萃取塔性能测定2

萃取塔性能测定2

YE
300 转/分钟
XR
YE
*
1/(Y*-YE)
N OE H OE KYEa
YEb
YEt
dYE 0.6555 (Y YE )
* E
H 0.75 1.1442 N OE 0.6555 S H OE A 1.1442 4 103

4
3.251
3 2
(37 10 )
XR YE
序号
300 转/分钟 0.001026 0.002055 0.000505 0 1 0 0.001026 0.000851 1175 2 0.0001 0.001220 0.000945 1183 3 0.0002 0.001440 0.001023 1215 4 0.0003 0.001630 0.001088 1269 5 0.0004 0.00184 0.001102 1425 6 0.000505 0.002050 0.001130 1600
5.85 5.85 25 9.04 9.005
11.715 10-3 0.0115 122 =0.002055 10 0.8
VNaOH N NaOH M 苯甲酸
8.2110-3 0.0115 122 = =0.001440 10 0.8 = 5.69 10-3 0.0115 122 =0.000319 25 1
0.0115mol/L 250 样品体积 ml NaOH 用量 ml 样品体积 ml NaOH 用量 ml 样品体积 ml NaOH 用量 ml 10 11.7 11.73 12
300 10 12 12 10
11.715 10 8.21 8.21 25 5.68 5.69 5.7 8.97 8.21 5.85

萃取塔的操作与萃取传质单元高度的测定实验

萃取塔的操作与萃取传质单元高度的测定实验
b.影响液泛的因素: ① 外加能量的大小; ② 流量、系统的物性。
六.萃取塔的操作与控制
㈠ 开车
㈡ 物料衡算 维持分相界面恒定,可以达到总物料的平衡; 操作中利用Π管来控制总物料平衡。
㈢ 达到稳定操作的时间 稳定时间=3×替代时间 (一般需20min)
七.萃取设备内的传质效果
㈠ 传质单元数和传质单元高度
(2)外加能量的大小 有利:a.增加液液传质面积; b.增加液液传质系数。 不利:a.返混增加,传质推动力下降; b.液滴太小,内循环消失,传质系数下降; c.容易发生液泛,通量下降。
(3)液泛 a.定义: 当连续相速度增加,或分散相速度下降,此时分
散相上升或下降速度为零,对应的连续相速度即为 液泛速度;发生的现象称之为液泛。
NA=K(Ha)ΔCM=G油(CF-CR) H GK油a CΔF CCM R H=HOR·NOR NOR :反映分离的难易 HOR :反映设备的性能
㈡ 影响传质效果的因素 ①操作因素: S ; Xs ; T ②设备因素: 分散相的选择; 外加能量的大小; 设备形式及结构。
㈢ 传质单元高度的测定
H GK油aCΔ F CCMR
液-液萃取塔的操作 及其传质单元高度的测定
<化工原理实验室> <赵培 张秋香>
一.实验目的
⑴掌握萃取塔传质单元高度的测定方法,学会分析 外加能量对液-液萃取塔传质单元高度的影响;
⑵了解引起萃取塔液泛不正常现象出现的原因以及处 理方法;
⑶了解液-液萃取设备的结构和特点。
二.实验原理
萃取是利用液体混合物各组分在溶剂中溶解度的 差异而实现分离的一种方法。溶质A,稀释剂B,溶 剂S,当B、S不互溶时,萃取和吸收一样,均属两相 传质,因此,其传质过程的数学表达式和吸收一样。

转盘萃取塔实验

转盘萃取塔实验

转盘萃取塔实验化工工艺实验讲义实验二、转盘萃取塔实验一、实验目的1.了解转盘萃取塔的基本结构、操作方法及萃取的工艺流程。

2.观察转盘转速变化时,萃取塔内轻、重两相的流动状况,了解影响萃取操作的主要因素,研究萃取操作条件对萃取过程的影响。

3.掌握萃取塔传质单元数、传质单元高度和萃取率的实验测定原理和方法,分析外加能量对液-液萃取传质单元高度的影响。

二、基本原理萃取是分离和提纯物质的重要单元操作之一,是利用混合物中各个组分在外加溶剂中的溶解度的差异而实现组分分离的单元操作。

和气(汽)液传质过程类似,液液萃取过程中,要求在萃取设备内两相能密切接触并伴有较高程度的湍动,以实现两相之间的质量传递,而后又能使两相较快地分离。

但由于液液萃取中两相之间的密度差较小,实现两相的密切接触和快速分离要比气液体系困难得多。

为了提高液-液传质设备的效率,常需要采用搅拌、振动、脉动等措施来补加能量;为了使两相分离,设备需要设置分层段,以保证有足够的停留时间让分散的液相凝聚。

使用转盘塔进行液-液萃取操作时,两种液体在塔内作逆流流动,其中一相液体作为分散相,以液滴形式通过另一种连续相液体,两种液相的浓度在设备内作微分式的连续变化,并依靠密度差在塔的两端实现两相间的分离。

当轻相作为分散相时,相界面出现在塔的上端;反之,当重相作为分散相时,则相界面出现在塔的下端。

本实验以水为萃取剂,从煤油中萃取苯甲酸,苯甲酸在煤油中的浓度约为0.2%(质量)。

水相为萃取相(以字母E表示,本实验中又称连续相、重相),煤油相为萃余相(以字母R表示,本实验中又称分散相、轻相)。

萃取过程中,苯甲酸部分地从煤油相转移至水相。

考虑到萃取剂水与原溶剂煤油完全不互溶,且苯甲酸在两相中的浓度都很低,可近似认为萃取过程中两相液体的体积流量不发生变化。

操作条件下,以质量比表示的分配系数可取为常数2.26,即相平衡关系为Y=2.26X。

化工工艺实验讲义1. 传质单元数的计算计算萃取塔的塔高时可以采用传质单元法,即以传质单元数和传质单元高度来表征,传质单元数表示分离过程的难易程度,传质单元高度表示设备传质性能的好坏。

转盘萃取

转盘萃取

一、实验目的1、了解转盘萃取塔的结构和特点;2、掌握液—液萃取塔的操作;3、掌握传质单元高度的测定方法,并分析外加能量对液液萃取塔传质单元高度和通量的影响。

4、测定固定转速和水相流量,在不同油相流量下以萃取余相为基准的总传质系数K x a ;5、测定固定两相流量,不同转速下的一萃取余相为基准的总传质系数K x a 。

二、实验原理萃取是利用原料液中各组分在两个液相中的溶解度不同而使原料液混合物得以分离。

将一定量萃取剂加入原料液中,然后加以搅拌使原料液与萃取剂充分混合,溶质通过相界面由原料液向萃取剂中扩散,所以萃取操作与精馏、吸收等过程一样,也属于两相间的传质过程。

与精馏,吸收过程类似,由于过程的复杂性,萃取过程也被分解为理论级和级效率;或传质单元数和传质单元高度,对于转盘塔,振动塔这类微分接触的萃取塔,一般采用传质单元数和传质单元高度来处理。

传质单元数表示过程分离难易的程度。

对于稀溶液,传质单元数可近似用下式表示:⎰-=12x x *OR xx dx N式中 N OR ------萃余相为基准的总传质单元数;x------萃余相中的溶质的浓度,以摩尔分率表示;x*------与相应萃取浓度成平衡的萃余相中溶质的浓度,以摩尔分率表示。

x 1、x 2------分别表示两相进塔和出塔的萃余相浓度传质单元高度表示设备传质性能的好坏,可由下式表示:OR OR N H H =Ω=OR x H L a K式中 H OR ------以萃余相为基准的传质单元高度,m;H------ 萃取塔的有效接触高度,m;Kxa------萃余相为基准的总传质系数,kg/(m 3•h•△x); L------萃余相的质量流量,kg/h;Ω------塔的截面积,m 2;已知塔高度H和传质单元数N OR可由上式取得H OR的数值。

H OR反映萃取设备传质性能的好坏,H OR越大,设备效率越低。

影响萃取设备传质性能H OR的因素很多,主要有设备结构因素,两相物质性因素,操作因素以及外加能量的形式和大小。

01萃取塔操作及体积传质系数测定

01萃取塔操作及体积传质系数测定

x% 0.1786 0.2348 0.4230 0.6550 0.6330
y——水相中苯甲酸重量百分数。
与平衡组成的偏差程度是传质过程的推动力,在装置的顶部,推动力是线段 PP’:
YR YR* YS
(4)
在塔的下部推动力是线段 QQ’: YF YF* YE
传质过程的平均推动力,在操作线和平衡线为直线的条件下为:
(2)
3.3 萃取过程的质量传递 不平衡的萃取相与萃余相在塔的任一截面上接触,两相之间发生质量传递。物质 A 以
扩散的方式由
萃余相进入萃取相,该过程的界限是达到相间平衡,相平衡的相间关系为:
Y * kX
(3)
k 为分配系数,只有在较简单体系中,k 才是常数,一般情况下均为变数。本实验给出 如下表 1 所示的系统平衡数据,用来求取 X 与 Y 之间的对应关系。
F ——溶液密度, g / l 。
xR 亦用同样的方法测定:
xR

Na 'M a R
(20)
式中:
N
a
'

V2 ' Nb V1 '
(21)
V1 ' 、V2 ' ——分别为试样的体积数与滴定所耗的 NaOH 溶液的体积数。
4 操作方法和实验步骤
4.1 转盘萃取塔 1) 原料液储槽内为煤油-苯甲酸溶液。 2) 将萃取剂(蒸馏水)加入萃取剂贮槽中。 3) 启动萃取剂输送泵,调节流量,先向塔内加入萃取剂,充满全塔,并调至所需流 量。 4) 启动原料液输送泵,调节流量。在实验过程中保持流量不变,并通过调节萃取液 出口阀门,使油、水相分界面控制在萃取剂进口与萃余液出口之间。 5) 调节转盘轴转速的大小,在操作中逐渐增大转速,设定转速,一般取100-600转/ 分。 6) 水在萃取塔内流动运行5min后,开启分散相—油相管路,调节两相流量约510L/h,待分散相在塔顶凝聚一定厚度的液层后,再通过调节连续相出口阀,以保 持安静区中两相分界面的恒定。 7) 每次实验稳定时间约30分钟,然后打开取样阀取样分析,用NaOH标准液中和滴 定法(添加非离子型表面活性剂)测定原料液及萃余液的组成,同时记录转速。 8) 改变转速,重复上述实验。 9) 实验结束后,将实验装置恢复原样。

萃取塔实验报告

萃取塔实验报告

一、实验目的1. 理解萃取塔的基本结构和工作原理。

2. 掌握萃取塔的操作方法和注意事项。

3. 研究不同操作条件对萃取效果的影响。

4. 测定萃取塔的传质系数和传质效率。

二、实验原理萃取塔是一种用于混合物分离的设备,其原理是利用两种互不相溶的溶剂之间的溶解度差异,将混合物中的组分分离。

在萃取塔中,一种溶剂(称为萃取剂)与混合物接触,使混合物中的某一组分转移到萃取剂中,从而达到分离的目的。

三、实验仪器与药品1. 实验仪器:萃取塔、冷凝器、加热器、温度计、流量计、分液漏斗、烧杯、量筒等。

2. 实验药品:有机溶剂、混合物(如苯和甲苯)、萃取剂等。

四、实验步骤1. 将混合物加入萃取塔中,并设定萃取塔的初始温度和压力。

2. 打开加热器,使萃取塔内的温度和压力达到实验要求。

3. 调节萃取剂流量,观察萃取塔内两相的流动状况。

4. 记录萃取塔内两相的温度、压力、流量等参数。

5. 观察并记录萃取塔内两相的颜色变化和分层情况。

6. 根据实验数据,计算萃取塔的传质系数和传质效率。

7. 改变萃取塔的操作条件(如温度、压力、萃取剂流量等),重复实验步骤,观察萃取效果的变化。

五、实验结果与分析1. 萃取塔内两相的流动状况:在实验过程中,观察到萃取塔内两相的流动状况与萃取剂流量和温度有关。

当萃取剂流量较大、温度较高时,两相流动较为剧烈;反之,两相流动较为缓慢。

2. 萃取塔内两相的颜色变化和分层情况:在实验过程中,观察到萃取剂与混合物接触后,混合物中的某一组分会转移到萃取剂中,导致萃取剂的颜色发生变化。

同时,两相在萃取塔内分层,有机相(萃取剂)在上层,水相在下层。

3. 萃取塔的传质系数和传质效率:根据实验数据,计算得出萃取塔的传质系数和传质效率。

结果表明,随着萃取剂流量和温度的升高,传质系数和传质效率均有所提高。

4. 不同操作条件对萃取效果的影响:改变萃取塔的操作条件(如温度、压力、萃取剂流量等),观察萃取效果的变化。

实验结果表明,在一定的操作条件下,提高萃取剂流量和温度可以提高萃取效果。

萃取塔(转盘塔)操作及体积传质系数测定2

萃取塔(转盘塔)操作及体积传质系数测定2

实验报告课程名称:过程工程原理实验(甲)指导老师: 叶向群 成绩:_______________ 实验名称: 萃取塔(转盘塔)操作及体积传质系数测定 同组学生姓名: 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得萃取塔(转盘塔)操作及体积传质系数测定1、实验目的:1) 了解转盘萃取塔和脉冲萃取塔的基本结构、操作方法及萃取的工艺流程。

2) 观察转盘萃取塔转盘转速变化时或脉冲萃取塔的脉冲强度(脉冲幅度及脉冲频率)变化时,萃取塔内轻、重两相流动状况,了解萃取操作的主要影响因素,研究萃取操作条件对萃取过程的影响。

3) 测量每米萃取高度的传质单元数、传质单元高度和体积传质系数YVK ,关联传质单位高度与脉冲萃取过程操作变量的关系。

4) 计算萃取率2、实验装置流程:2.1 转盘萃取塔主要设备是转盘萃取塔,塔体是内径为50mm 玻璃管,塔顶电机连接转轴,转轴上固定有圆盘,塔壁固定有圆环,圆环与圆盘交错布置,转盘萃取流程图见下图1专业:姓名:学号: 日期:__ ___ 地点:1.原料贮槽(苯甲酸-煤油)2.收集槽(萃余液)3.电机4.控制柜5.转盘萃取塔6.9.转子流量计7.萃取剂贮罐(水)8.10. 输送泵11.排出液(萃取液)管12.转速测定仪A.B.C 取样口图1 转盘萃取实验流程图2.2 脉冲萃取塔主要设备是脉冲萃取塔,塔体是内径为50mm玻璃管,内装不锈钢丝网填料,脉冲萃取流程图见下图1.原料贮槽(苯甲酸-煤油)2.收集槽(萃余液)3.脉冲系统4.控制柜5.填料(脉冲)萃取塔6.9.转子流量计7.萃取剂贮罐(水)8.10 输送泵11.排出液(萃取液)管 A.B.C 取样口图2 脉冲萃取实验流程图3、实验内容和原理:萃取是分离和提纯物质的重要单元操作之一,是利用混合物中各个组分在外加溶剂中的溶解度的差异而实现组分分离的单元操作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程名称:过程工程原理实验(甲)指导老师:叶向群成绩:_______________实验名称: 萃取塔(转盘塔)操作及体积传质系数测定同组学生姓名:一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得萃取塔(转盘塔)操作及体积传质系数测定1、实验目的:1)了解转盘萃取塔和脉冲萃取塔的基本结构、操作方法及萃取的工艺流程。

2)观察转盘萃取塔转盘转速变化时或脉冲萃取塔的脉冲强度(脉冲幅度及脉冲频率)变化时,萃取塔内轻、重两相流动状况,了解萃取操作的主要影响因素,研究萃取操作条件对萃取过程的影响。

3)测量每米萃取高度的传质单元数、传质单元高度和体积传质系数K,关联传质单位高度与脉冲YV萃取过程操作变量的关系。

4)计算萃取率2、实验装置流程:2.1 转盘萃取塔主要设备是转盘萃取塔,塔体是内径为50mm玻璃管,塔顶电机连接转轴,转轴上固定有圆盘,塔壁固定有圆环,圆环与圆盘交错布置,转盘萃取流程图见下图11.原料贮槽(苯甲酸-煤油)2.收集槽(萃余液)3.电机4.控制柜5.转盘萃取塔6.9.转子流量计7.萃取剂贮罐(水)8.10. 输送泵11.排出液(萃取液)管12.转速测定仪A.B.C 取样口图1 转盘萃取实验流程图2.2 脉冲萃取塔主要设备是脉冲萃取塔,塔体是内径为50mm玻璃管,内装不锈钢丝网填料,脉冲萃取流程图见下图1.原料贮槽(苯甲酸-煤油)2.收集槽(萃余液)3.脉冲系统4.控制柜5.填料(脉冲)萃取塔6.9.转子流量计7.萃取剂贮罐(水)8.10 输送泵11.排出液(萃取液)管 A.B.C 取样口图2 脉冲萃取实验流程图3、实验内容和原理:萃取是分离和提纯物质的重要单元操作之一,是利用混合物中各个组分在外加溶剂中的溶解度的差异而实现组分分离的单元操作。

进行液-液萃取操作时,两种液体在塔内作逆流流动,其中一液体作为分散相,以液滴的形式通过另一作为连续相的液体,两种液相浓度在设备内作微分式的连续变化,并依靠密度差在塔的两端实现两液相的间的分离。

当轻相作为分散相时,相界面出现在塔的上部;反之相界面出现在塔的下端。

本实验以轻相为分散相,相界面出现在塔的上部。

计算微分逆流萃取塔的塔高时,主要是采取传质单元法。

即以传质单元数和传质单元高度来表征,传质单元数表示过程分离程度的难易,传质单元高度表示设备传质性能的好坏。

3.1 萃取的基本符号3.2 萃取的物料衡算图3 物料衡算示意图 图4 平均推动力计算示意图如上图所示,萃取计算中各项组成可用操作线方程相关联,操作线方程的P (X R ,Y S )和点Q (X F ,Y E )与装置的上下部相对应。

在第一溶剂B 与萃取剂S 完全不互溶时,萃取过程的操作线在X~Y 坐标上时直线,其方程式如下形式:RS R F S E X X Y Y X X Y Y --=-- (1)由上式得:()SS X X m Y Y -=-, 其中: RF S E X X Y Y m --=单位时间内从第一溶剂中萃取出的纯物质A 的量M ,可由物料衡算确定:()()S E R F Y Y S X X B M -=-= (2)3.3 萃取过程的质量传递不平衡的萃取相与萃余相在塔的任一截面上接触,两相之间发生质量传递。

物质A 以扩散的方式由 萃余相进入萃取相,该过程的界限是达到相间平衡,相平衡的相间关系为:kX Y =* (3)k 为分配系数,只有在较简单体系中,k 才是常数,一般情况下均为变数。

本实验给出如下表1所示的系统平衡数据,用来求取X 与Y 之间的对应关系。

表1 煤油—苯甲酸—水系统在室温下的平衡数据表其中:x ——油相中苯甲酸重量百分数;y ——水相中苯甲酸重量百分数。

与平衡组成的偏差程度是传质过程的推动力,在装置的顶部,推动力是线段PP ’:S R R Y Y Y -=∆*(4)在塔的下部推动力是线段QQ ’: E F F Y Y Y -=∆* (5)传质过程的平均推动力,在操作线和平衡线为直线的条件下为:RFR F m Y Y Y Y Y ∆∆∆-∆=∆ln (6)物质A 由萃余相进入萃取相的过程的传质动力学方程式为:m Y Y A K M ∆= (7)式中:Y K ——单位相接触面积的传质系数,()kg kg s m kg //2⋅;A ——相接触表面积,2m 。

该方程式中的萃取塔内相接触表面积A 不能确定,因此通常采用另一种方式。

相接触表面积A 可以表示为:h a aV A Ω== (8) 式中:a ——相接触比表面积,32/m m ; V ——萃取塔有效操作段体积,3m ; Ω——萃取塔横截面积,2m ; h ——萃取塔操作部分高度,m 。

这时,m YV m Y Y V K Y aV K M ∆=∆= (9)式中:a K KY YV=——体积传质系数,()kg kg s m kg //3⋅。

根据(2)、(7)、(8)和(9)式,可得OE OE m SE YV N H Y Y Y K Sh ⋅=∆-⋅Ω=(10)在该方程中:Ω=YV OEK S H,称为传质单元高度;mS E OEY Y Y N∆-=,称为总传质单元数。

Y K 、YV K 、OE H 是表征质量交换过程特性的,Y K 、YV K 越大,OE H 越小,则萃取过程进行的越快。

()mS E m YV Y V Y Y S Y V MK ∆-=∆=(11) 3.4 萃取率%100⨯=的量原料液中组分的量被萃取剂萃取的组分A A η所以 ()%100⨯-=FS E BX Y Y S η (12)或 ()%1001%100⨯⎪⎪⎭⎫⎝⎛-=⨯-=F R F R F X X BX X X B η (13) 3.5 质量流量和组成(1)第一溶剂B 的质量流量()()F F F F x V x F B -=-=11ρ (14)式中:F ——料液的质量流量,h kg /; F V ——料液的体积流量,h m /3;Fρ——料液的密度,3/m kg ;F x ——料液中A 的含量,kg kg /。

液体流量计校正:FV 由下式计算:()()FNf F F f NF V V V ρρρρρρρρ000≈--= (15)式中:N V ——转子流量计读数,min /ml 或h m /3;f ρ——转子密度,3/m kg ;0ρ——20 ℃时水的密度,3/m kg 。

所以, ()F F Nx VB -=10ρρ (16)(2)萃取剂S 的质量流量因为萃取剂为水,所以 0ρN V S = (17)(3)原料液及萃余液的组成F x 、Rx对于煤油、苯甲酸、水体系,采用酸碱中和滴定的方法可测定进料液组成F x 、萃余相组成Rx 和萃取相组成E y ,即苯甲酸的质量分率,Ey 也可通过如上的物料衡算而得,具体步骤如下:用移液管取试样ml V 1,加指示剂1~2滴,用浓度为b N 的NaOH 水溶液滴定至终点,如用去NaOH溶液ml V 2,则试样中苯甲酸的摩尔浓度aN 为:12V N V N b a =(18)则 FA a FM N x ρ= (19)式中:AM ——溶质A 的分子量,mol g /,本实验中苯甲酸的分子量为122mol g /;F ρ——溶液密度,l g / 。

R x 亦用同样的方法测定:Ra a R M N x ρ'=(20)式中: '''12V N V N b a= (21)'1V 、'2V ——分别为试样的体积数与滴定所耗的NaOH 溶液的体积数。

4、操作方法和实验步骤:转盘萃取塔的操作步骤:1) 原料液储槽内为煤油-苯甲酸溶液。

9768.132.998014.00=⨯==ρN V S ()12.14)001802.01(6.7822.998016.010=-⨯⨯⨯=-=F F N x V B ρρ2) 将萃取剂(蒸馏水)加入萃取剂贮槽中。

3) 启动萃取剂输送泵,调节流量,先向塔内加入萃取剂,充满全塔,并调至所需流量。

4) 启动原料液输送泵,调节流量。

在实验过程中保持流量不变,并通过调节萃取液出口阀门,使油、水相分界面控制在萃取剂进口与萃余液出口之间。

5) 调节转盘轴转速的大小,在操作中逐渐增大转速,设定转速,一般取100-600转/分。

6) 水在萃取塔内流动运行5min 后,开启分散相—油相管路,调节两相流量在100-200ml/min ,待分散相在塔顶凝聚一定厚度的液层后,再通过调节连续相出口阀,以保持安静区中两相分界面的恒定。

7) 每次实验稳定时间约30分钟,然后打开取样阀取样分析,用中和滴定法测定萃余液及萃取液的组成,同时记录转速。

8) 改变转速,重复上述实验。

9) 实验结束后,将实验装置恢复原样。

5、实验数据记录:表1 转盘萃取所得数据6、实验数据处理:原料液中苯甲酸的摩尔浓度aN 为: 萃余液中苯甲酸的摩尔浓度a N 为:当转速为0(r/min )时萃取剂S 的质量流量:(kg/h )第一溶剂B 的质量流量:(kg/h )0116.01001.06.1112=⨯==V N V N b a 0097.01001.07.91''2'=⨯==V N V N b a %1802.07854.0122.00116.0=⨯==FA a F M N x ρ%1512.07826.0122.00097.0'=⨯==Raa R M N x ρ()()S E R F Y Y S X X B M -=-=%1436.07815.0122.00092.0'=⨯==Raa R M N x ρ%0293.0=E Y 由 得出萃取相浓度从而做出相图,得到平衡线上的两点(0.1802,0.184),(0.1512,0.166)得到平均传质推动力=∆∆∆-∆=∆RF RF m Y Y Y Y Y ln 0.001603传质推动力系数()mS E m YV Y V Y Y S Y V M K ∆-=∆==1723kg/(h.m 3)传质单元高度Ω=YV OE K SH =4.13m总传质单元数mSE OE Y Y Y N ∆-==0.1828 萃取率 ()%100⨯-=FS E BX Y Y S η=16.09%当转速为130(r/min )时,萃余液中苯甲酸的摩尔浓度a N 为:0092.01001.02.91''2'=⨯==V N V N b a9768.132.998014.00=⨯==ρN V S ()()S E R F Y Y SX X B M -=-=0090.01001.00.91''2'=⨯==V N V N b a %1405.0'==Raa R M N x ρ())/(11.1410h kg x V B F F N =-=ρρ第一溶剂B 的质量流量:())/(11.1410h kg x V B F F N =-=ρρ 萃取剂S 的质量流量:(kg/h )得出萃取相浓度%03695.0=E Y 由 从而做出相图,得到平衡线上的两点(0.1802,0.184),(0.1436,0.132)得到平均传质推动力=∆∆∆-∆=∆RF RF m Y Y Y Y Y ln 0.001394传质推动力系数()mS E m YV Y V Y Y S Y V M K ∆-=∆==2499kg/(h.m 3)传质单元高度Ω=YV OE K SH =2.85m总传质单元数mSE OE Y Y Y N ∆-==0.265 萃取率 ()%100⨯-=FS E BX Y Y S η=20.31%当转速为300(r/min )时,度aN 为:萃余液中苯甲酸的摩尔浓第一溶剂B 的质量流量:9768.132.998014.00=⨯==ρN V S ()()S E R F Y Y S X X B M -=-=取剂S 的质量流量:(kg/h )萃由 得出萃取相浓度%0401.0=E Y 从而做出相图,得到平衡线上的两点(0.1802,0.184),(0.1405,0.128)得到平均传质推动力=∆∆∆-∆=∆RF RF m Y Y Y Y Y ln 0.001358传质推动力系数()mS E m YVY V Y Y S Y V MK ∆-=∆==2784kg/(h.m 3) 传质单元高度Ω=YV OE K S H =2.56m总传质单元数mSE OE Y Y Y N ∆-==0.2953 萃取率 ()%100⨯-=FS E BX Y Y S η=22.04%7、思考题1) 请分析比较萃取实验装置与吸收、精馏实验装置的异同点?答:相同点:三者均为传质设备,通过两相的接触进行传质,一相由上而下,一相由下至上。

相关文档
最新文档