高中数学:圆锥曲线中的定值、定点问题

合集下载

高考数学复习:圆锥曲线的定点、定值、定直线

高考数学复习:圆锥曲线的定点、定值、定直线

高考数学复习:圆锥曲线的定点、定值、定直线【热点聚焦】纵观近几年的高考试题,圆锥曲线的定点、定值、定直线问题是热点之一.从命题的类型看,主要是大题.一般说来,考查直线与椭圆、双曲线、抛物线的位置关系问题,综合性较强,涉及方程组联立,根的判别式、根与系数的关系、弦长、面积、参数、几何量为定值,或定点在某直线上、定直线过某点等.难度往往大些.【重点知识回眸】(一)定值问题1.定义:定值问题是指虽然圆锥曲线中的某些要素(通常可通过变量进行体现)有所变化,但在变化过程中,某个量的值保持不变即为定值.2.圆锥曲线中的定值问题的常见类型及解题策略(1)求代数式为定值:依题意设条件,得出与代数式参数有关的等式,代入代数式,化简即可得出定值;(2)求点到直线的距离为定值:利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、变形求得;(3)求某线段长度为定值:利用长度公式求得解析式,再依据条件对解析式进行化简、变形即可求得.3.常见定值问题的处理方法:(1)确定一个(或两个)变量为核心变量,其余量均利用条件用核心变量进行表示(2)将所求表达式用核心变量进行表示(有的甚至就是核心变量),然后进行化简,看能否得到一个常数.4.定值问题的处理技巧:(1)对于较为复杂的问题,可先采用特殊位置(例如斜率不存在的直线等)求出定值,进而给后面一般情况的处理提供一个方向.(2)在运算过程中,尽量减少所求表达式中变量的个数,以便于向定值靠拢(3)巧妙利用变量间关系,例如点的坐标符合曲线方程等,尽量做到整体代入,简化运算(二)定点问题1.求解圆锥曲线中的定点问题的两种思路:(1)特殊推理法:先从特殊情况入手,求出定点,再证明定点与变量无关.(2)直接推理法:①选择一个参数建立直线系方程,一般将题目中给出的曲线方程(包含直线方程)中的常量当成变量,将变量x,y当成常量,将原方程转化为kf(x,y)+g(x,y)=0的形式(k是原方程中的常量);②根据直线过定点时与参数没有关系(即直线系方程对任意参数都成立),得到方程组()0g()0f x y x y =⎧⎨=⎩,,;③以②中方程组的解为坐标的点就是直线所过的定点,若定点具备一定的限制条件,则可以特殊解决.2.求解圆锥曲线中的定点问题的方法(1)确定题目中的核心变量(此处设为k )(2)利用条件找到k 与过定点的曲线(),0F x y =的联系,得到有关k 与,x y 的等式(3)所谓定点,是指存在一个特殊的点()00,x y ,使得无论k 的值如何变化,等式恒成立.此时要将关于k 与,x y 的等式进行变形,直至易于找到00,x y .常见的变形方向如下:①若等式的形式为整式,则考虑将含k 的项归在一组,变形为“()k ⋅”的形式,从而00,x y 只需要先让括号内的部分为零即可②若等式为含k 的分式,00,x y 的取值一方面可以考虑使其分子为0,从而分式与分母的取值无关;或者考虑让分子分母消去k 的式子变成常数(这两方面本质上可以通过分离常数进行相互转化,但通常选择容易观察到的形式)3.一些技巧与注意事项:(1)面对复杂问题时,可从特殊情况入手,以确定可能的定点(或定直线).然后再验证该点(或该直线)对一般情况是否符合.属于“先猜再证”.(2)有些题目所求与定值无关,但是在条件中会隐藏定点,且该定点通常是解题的关键条件.所以当遇到含参数的方程时,要清楚该方程为一类曲线(或直线),从而观察这一类曲线是否过定点.尤其在含参数的直线方程中,要能够找到定点,抓住关键条件.例如:直线:1l y kx k =+-,就应该能够意识到()11y k x =+-,进而直线绕定点()1,1--旋转.(三)定直线问题探求圆锥曲线中的定直线问题的两种方法:方法一是参数法,即先利用题设条件探求出动点T 的坐标(包含参数),再消去参数,即得动点T 在定直线上;方法二是相关点法,即先设出动点T 的坐标为(x,y),根据题设条件得到已知曲线上的动点R 的坐标,再将动点R 的坐标代入已知的曲线方程,即得动点T 在定直线上.【典型考题解析】热点一定值问题【典例1】已知抛物线C :2y =2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N .(Ⅰ)求直线l 的斜率的取值范围;(Ⅱ)设O 为原点,QM QO λ= ,QN QO μ= ,求证:11λμ+为定值.【典例2】如图,已知抛物线2:4C x y =,过点(0,2)M 任作一直线与C 相交于,A B 两点,过点B 作y 轴的平行线与直线AO 相交于点D (O 为坐标原点).(1)证明:动点D 在定直线上;(2)作C 的任意一条切线l (不含x 轴)与直线2y =相交于点1N ,与(1)中的定直线相交于点2N ,证明:2221||MN MN -为定值,并求此定值.【典例3】已知抛物线C :22(0)y px p =>的焦点为F ,过F 且斜率为43的直线l 与抛物线C 交于A ,B 两点,B 在x 轴的上方,且点B 的横坐标为4.(1)求抛物线C 的标准方程;(2)设点P 为抛物线C 上异于A ,B 的点,直线PA 与PB 分别交抛物线C 的准线于E ,G 两点,x 轴与准线的交点为H ,求证:HG HE ⋅为定值,并求出定值.【典例4】已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过()30,2,,12A B ⎛--⎫ ⎪⎝⎭两点.(1)求E 的方程;(2)设过点()1,2P -的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT TH = .证明:直线HN 过定点.【典例5】已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅= ,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程;(2)证明:直线CD 过定点.【典例6】已知抛物线C :x 2=−2py 经过点(2,−1).(Ⅰ)求抛物线C 的方程及其准线方程;(Ⅱ)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =−1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.【总结提升】动直线l 过定点问题的常见思路设动直线方程(斜率存在)为y =kx +t ,由题设条件将t 用k 表示为t =mk ,得y =k(x +m),故动直线过定点(-m,0).【典例7】设椭圆的焦点在x 轴上(Ⅰ)若椭圆的焦距为1,求椭圆的方程;(Ⅱ)设分别是椭圆的左、右焦点,为椭圆上第一象限内的点,直线交轴与点,并且,证明:当变化时,点在某定直线上.【典例8】已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别是()11,0F -,()21,0F ,点()0,A b ,若12AF F △的内切圆的半径与外接圆的半径的比是1:2.(1)求椭圆C 的方程;(2)过C 的左焦点1F 作弦DE ,MN ,这两条弦的中点分别为P ,Q ,若0DE MN ⋅= ,证明:直线PQ 过定点.【典例9】设12,F F 是双曲线()2222:10,0x y C a b a b-=>>的左、右两个焦点,O 为坐标原点,若点P 在双曲线C 的右支上,且1122,OP OF PF F == 的面积为3.(1)求双曲线C 的渐近线方程;(2)若双曲线C 的两顶点分别为()()12,0,,0A a A a -,过点2F 的直线l 与双曲线C 交于M ,N 两点,试探究直线1A M 与直线2A N 的交点Q 是否在某条定直线上?若在,请求出该定直线方程;若不在,请说明理由.1.已知椭圆2222:1x y C a b+=的右焦点为(1,0),且经过点(0,1)A .(Ⅰ)求椭圆C 的方程;(Ⅱ)设O 为原点,直线:(1)l y kx t t =+≠±与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,若|OM |·|ON |=2,求证:直线l 经过定点.2.在平面直角坐标系中,动点(),M x y 与定点()5,0F 的距离和M 到定直线16:5l x =的距离的比是常数54,设动点M 的轨迹为曲线C .(1)求曲线C 的方程;(2)设()2,0P ,垂直于x 轴的直线与曲线C 相交于,A B 两点,直线AP 和曲线C 交于另一点D ,求证:直线BD 过定点.3.已知双曲线2222:1(0,0)x y C a b a b -=>>的离心率为32,右焦点F.(1)求双曲线C 的方程;(2)若12,A A 分别是C 的左、右顶点,过F 的直线与C 交于,M N 两点(不同于12,A A ).记直线12,A M A N 的斜率分别为12,k k ,请问12k k 是否为定值?若是定值,求出该定值;若不是,请说明理由.4.已知椭圆C :()222210x y a b a b+=>>的左焦点为()11,0F -,上、下顶点分别为A ,B ,190AF B ∠=︒.(1)求椭圆C 的方程;(2)若椭圆上有三点P ,Q ,M 满足OM OP OQ =+uuu r uu u r uuu r ,证明:四边形OPMQ 的面积为定值.5.已知动圆M 过定点()2,0A ,且在y 轴上截得的弦长为4,圆心M 的轨迹为曲线L .(1)求L 的方程;(2)已知点()3,2B --,()2,1C ,P 是L 上的一个动点,设直线PB ,PC 与L 的另一交点分别为E ,F ,求证:当P 点在L 上运动时,直线EF 恒过一个定点,并求出这个定点的坐标.6.已知椭圆()2222:10x y C a b a b +=>>,一个焦点1F 与抛物线2y =-的焦点重合.(1)求椭圆C 的方程;(2)若直线:l y kx m =+交C 于,A B 两点,直线1F A 与1F B 关于x 轴对称,证明:直线l 恒过一定点.7.在直角坐标系xOy 中,已知定点(0,1)F ,定直线:3l y =-,动点M 到直线l 的距离比动点M 到点F 的距离大2.记动点M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线?(2)设0(2,)P y 在C 上,不过点P 的动直线1l 与C 交于A ,B 两点,若90APB ∠=︒,证明:直线1l 恒过定点.8.椭圆()2222:10x y C a b a b+=>>的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C 的标准方程;(2)设F 为椭圆C 的左焦点,M 为直线3x =-上任意一点,过F 作MF 的垂线交椭圆C 于点P ,Q .证明:OM 经过线段PQ 的中点N .(其中O 为坐标原点)9.已知椭圆E :()222210x y a b a b +=>>的离心率为2,短轴长为2.(1)求E 的方程;(2)过点()4,0M -且斜率不为0的直线l 与E 自左向右依次交于点B ,C ,点N 在线段BC 上,且MB NBMC NC =,P 为线段BC 的中点,记直线OP ,ON 的斜率分别为1k ,2k ,求证:12k k 为定值.10.已知椭圆C :22221x y a b+=()0a b >>的右焦点为F ,过点F 作一条直线交C 于R ,S 两点,线段RS,C的离心率为2.(1)求C 的标准方程;(2)斜率不为0的直线l 与C 相交于A ,B 两点,(2,0)P ,且总存在实数R λ∈,使得PA PB PF PA PB λ⎛⎫ ⎪=+ ⎪⎝⎭ ,问:l 是否过一定点?若过定点,求出该定点的坐标11.已知椭圆C :()222210x y a b a b+=>>的右焦点为F ,圆O :222x y a +=,过F 且垂直于x 轴的直线被椭圆C 和圆O.(1)求C 的方程;(2)过圆O 上一点P (不在坐标轴上)作C 的两条切线1l ,2l ,记1l ,2l 的斜率分别为1k ,2k ,直线OP 的斜率为3k ,证明:()123k k k +为定值.12.已知椭圆C :22221(0)x y a b a b +=>>的离心率为2,且过点()2,1A .(1)求C 的方程:(2)点M ,N 在C 上,且AM AN ⊥,AD MN ⊥,D 为垂足.证明:存在定点Q ,使得DQ 为定值.。

圆锥曲线中的定点、定值问题(含解析)

圆锥曲线中的定点、定值问题(含解析)

圆锥曲线中的定点、定值问题一、题型选讲题型一 、 圆锥曲线中过定点问题圆锥曲线中过定点问题常见有两种解法: (1)、求出圆锥曲线或直线的方程解析式,研究解析式,求出定点(2)、从特殊位置入手,找出定点,在证明该点符合题意(运用斜率相等或者三点共线)。

例1、【2020年高考全国Ⅰ卷理数】已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,P A 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程;(2)证明:直线CD 过定点.例2、(2020届山东省临沂市高三上期末)如图,已知点F 为抛物线C :22y px =(0p >)的焦点,过点F 的动直线l 与抛物线C 交于M ,N 两点,且当直线l 的倾斜角为45°时,16MN =.(1)求抛物线C 的方程.(2)试确定在x 轴上是否存在点P ,使得直线PM ,PN 关于x 轴对称?若存在,求出点P 的坐标;若不存在,请说明理由.例3、【2019年高考北京卷理数】已知抛物线C :x 2=−2py 经过点(2,−1).(1)求抛物线C 的方程及其准线方程;(2)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =−1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.题型二、圆锥曲线中定值问题圆锥曲线中常见的定值问题,属于难题.探索圆锥曲线的定值问题常见方法有两种:①从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值例4、【2020年新高考全国Ⅰ卷】已知椭圆C :22221(0)x y a b a b +=>>的离心率为2,且过点A (2,1).(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.例5、(2020届山东省泰安市高三上期末)已知椭圆()2222:10x y E a b a b+=>>的离心率e 满足2220e −+=,右顶点为A ,上顶点为B ,点C (0,-2),过点C 作一条与y 轴不重合的直线l ,直线l 交椭圆E 于P ,Q 两点,直线BP ,BQ 分别交x 轴于点M ,N ;当直线l 经过点A 时,l .(1)求椭圆E 的方程;(2)证明:BOM BCN S S ∆∆⋅为定值.例6、(2019苏州三市、苏北四市二调)如图,在平面直角坐标系xOy 中,已知椭圆C 1:x 24+y 2=1,椭圆C 2:x 2a 2+y 2b 2=1(a>b>0),C 2与C 1的长轴长之比为2∶1,离心率相同.(1) 求椭圆C 2的标准方程; (2) 设点P 为椭圆C 2上的一点.①射线PO 与椭圆C 1依次交于点A ,B ,求证:PAPB 为定值;②过点P 作两条斜率分别为k 1,k 2的直线l 1,l 2,且直线l 1,l 2与椭圆C 1均有且只有一个公共点,求证k 1·k 2为定值..思路分析 (1)根据已知条件,求出a ,b 的值,得到椭圆C 2的标准方程.(2)①对直线OP 斜率分不存在和存在两种情况讨论,当OP 斜率存在时,设直线OP 的方程为y =kx ,并与椭圆C 1的方程联立,解得点A 横坐标,同理求得点P 横坐标,再通过弦长公式,求出PAPB 的表达式,化简整理得到定值.②设P(x 0,y 0),写出直线l 1的方程,并与椭圆C 1联立,得到关于x 的一元二次方程,根据直线l 1与椭圆C 1有且只有一个公共点,得到方程只有一解,即Δ=0,整理得(x 20-4)k 21-2x 0y 0k 1+y 20-1=0,同理得到(x 20-4)k 22-2x 0y 0k 2+y 20-1=0,从而说明k 1,k 2是关于k 的一元二次方程的两个根,运用根与系数的关系,证得定值.二、达标训练1、(2020届浙江省温州市高三4月二模)如图,已知椭圆22:14x C y +=,F 为其右焦点,直线()0:k y x m l m k +<=与椭圆交于1122(,),(,)P x y Q x y 两点,点,A B 在l 上,且满足,,PA PF QB QF OA OB ===.(点,,,A P Q B 从上到下依次排列)(I )试用1x 表示PF :(II )证明:原点O 到直线l 的距离为定值.2、【2018年高考北京卷理数】已知抛物线C :2y =2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线P A 交y 轴于M ,直线PB 交y 轴于N . (1)求直线l 的斜率的取值范围;(2)设O 为原点,QM QO λ=,QN QO μ=,求证:11λμ+为定值.3、(2019苏锡常镇调研)已知椭圆E :x 2a 2+y 2b 2=1(a>b>0)的离心率为32,焦点到相应准线的距离为33.(1) 求椭圆E 的标准方程;(2) 已知P(t ,0)为椭圆E 外一动点,过点P 分别作直线l 1和l 2,直线l 1和l 2分别交椭圆E 于点A ,B 和点C ,D ,且l 1和l 2的斜率分别为定值k 1和k 2,求证:PA ·PBPC ·PD 为定值.4、(2018苏州暑假测试)如图,已知椭圆O :x 24+y 2=1的右焦点为F ,点B ,C 分别是椭圆O 的上、下顶点,点P 是直线l :y =-2上的一个动点(与y 轴的交点除外),直线PC 交椭圆于另一个点M.(1) 当直线PM 经过椭圆的右焦点F 时,求△FBM 的面积;(2) ①记直线BM ,BP 的斜率分别为k 1,k 2,求证:k 1•k 2为定值;5、(2016泰州期末)如图,在平面直角坐标系xOy 中, 已知圆O :x 2+y 2=4,椭圆C :x 24+y 2=1,A 为椭圆右顶点.过原点O 且异于坐标轴的直线与椭圆C 交于B ,C 两点,直线AB 与圆O 的另一交点为P ,直线PD 与圆O 的另一交点为Q ,其中D (-65,0).设直线AB ,AC 的斜率分别为k 1,k 2.(1) 求k 1k 2的值;(2) 记直线PQ ,BC 的斜率分别为k PQ ,k BC ,是否存在常数λ,使得k PQ =λk BC ?若存在,求λ的值;若不存在,说明理由;(3) 求证:直线AC 必过点Q .圆锥曲线中的定点、定值问题解析一、题型选讲例1【解析】(1)由题设得A (–a ,0),B (a ,0),G (0,1).则(,1)AG a =,GB =(a ,–1).由AG GB ⋅=8得a 2–1=8,即a =3.所以E 的方程为29x +y 2=1.(2)设C (x 1,y 1),D (x 2,y 2),P (6,t ).若t ≠0,设直线CD 的方程为x =my +n ,由题意可知–3<n <3.由于直线P A 的方程为y =9t (x +3),所以y 1=9t (x 1+3).直线PB 的方程为y =3t (x –3),所以y 2=3t(x 2–3).可得3y 1(x 2–3)=y 2(x 1+3).由于222219x y +=,故2222(3)(3)9x x y +−=−,可得121227(3)(3)y y x x =−++, 即221212(27)(3)()(3)0.m y y m n y y n ++++++=①将x my n =+代入2219x y +=得222(9)290.m y mny n +++−=所以12229mn y y m +=−+,212299n y y m −=+.代入①式得2222(27)(9)2(3)(3)(9)0.m n m n mn n m +−−++++=解得n =–3(含去),n =32.故直线CD 的方程为3=2x my +,即直线CD 过定点(32,0). 若t =0,则直线CD 的方程为y =0,过点(32,0).综上,直线CD 过定点(32,0).例2、【解析】(1)当直线l 的倾斜角为45°,则l 的斜率为1,,02p F ⎛⎫⎪⎝⎭,l ∴的方程为2p y x =−.由2,22,p y x y px ⎧=−⎪⎨⎪=⎩得22304p x px −+=.设()11,M x y ,()22,N x y ,则123x x p +=, ∴12416x x p M p N ++===,4p =, ∴抛物线C 的方程为28y x =.(2)假设满足条件的点P 存在,设(),0P a ,由(1)知()2,0F , ①当直线l 不与x 轴垂直时,设l 的方程为()2y k x =−(0k ≠),由()22,8,y k x y x ⎧=−⎨=⎩得()22224840k x k x k −++=,()22222484464640k k k k ∆=+−⋅⋅=+>,212248k x x k++=,124x x =. ∵直线PM ,PN 关于x 轴对称, ∴0PM PN k k +=,()112PM k x k x a −=−,()222PNk x k x a−=−. ∴()()()()()()122112128(2)222240a k x x a k x x a k x x a x x a k+−−+−−=−+++=−=⎡⎤⎣⎦, ∴2a =−时,此时()2,0P −.②当直线l 与x 轴垂直时,由抛物线的对称性,易知PM ,PN 关于x 轴对称,此时只需P 与焦点F 不重合即可. 综上,存在唯一的点()2,0P −,使直线PM ,PN 关于x 轴对称. 例3、【解析】(1)由抛物线2:2C x py =−经过点(2,1)−,得2p =.所以抛物线C 的方程为24x y =−,其准线方程为1y =.(2)抛物线C 的焦点为(0,1)F −. 设直线l 的方程为1(0)y kx k =−≠.由21,4y kx x y=−⎧⎨=−⎩得2440x kx +−=.设()()1122,,,M x y N x y ,则124x x =−. 直线OM 的方程为11y y x x =. 令1y =−,得点A 的横坐标11A x x y =−. 同理得点B 的横坐标22B x x y =−. 设点(0, )D n ,则1212,1,,1x x DA n DB n y y ⎛⎫⎛⎫=−−−=−−− ⎪ ⎪⎝⎭⎝⎭, 21212(1)x x DA DB n y y ⋅=++ 2122212(1)44x x n x x =++⎛⎫⎛⎫−− ⎪⎪⎝⎭⎝⎭21216(1)n x x =++ 24(1)n =−++.令0DA DB ⋅=,即24(1)0n −++=,则1n =或3n =−. 综上,以AB 为直径的圆经过y 轴上的定点(0,1)和(0,3)−.例4、【解析】(1)由题设得22411a b +=,22212a b a −=,解得26a =,23b =. 所以C 的方程为22163x y +=. (2)设11(,)M x y ,22(,)N x y .若直线MN 与x 轴不垂直,设直线MN 的方程为y kx m =+,代入22163x y +=得222(12)4260k x kmx m +++−=. 于是2121222426,1212km m x x x x k k −+=−=++.①由AM AN ⊥知0AM AN ⋅=,故1212(2)(2)(1)(1)0x x y y −−+−−=,可得221212(1)(2)()(1)40k x x km k x x m ++−−++−+=.将①代入上式可得22222264(1)(2)(1)401212m kmk km k m k k−+−−−+−+=++. 整理得(231)(21)0k m k m +++−=.因为(2,1)A 不在直线MN 上,所以210k m +−≠,故2310k m ++=,1k ≠.于是MN 的方程为21()(1)33y k x k =−−≠.所以直线MN 过点21(,)33P −.若直线MN 与x 轴垂直,可得11(,)N x y −.由0AM AN ⋅=得1111(2)(2)(1)(1)0x x y y −−+−−−=.又2211163x y +=,可得2113840x x −+=.解得12x =(舍去),123x =. 此时直线MN 过点21(,)33P −.令Q 为AP 的中点,即41(,)33Q .若D 与P 不重合,则由题设知AP 是Rt ADP △的斜边,故1||||2DQ AP =. 若D 与P 重合,则1||||2DQ AP =. 综上,存在点41(,)33Q ,使得||DQ 为定值.例5、【解析】(1)由2220e −+=解得2e =或e =,∴a =,又222a b c =+,a ∴=,又()020AC k a −−==−a ∴=1b ∴=,∴椭圆E 的方程为2212x y +=;(2)由题知,直线l 的斜率存在,设直线l 的方程为2y kx =−,设()()1122,,,P x y Q x y ,由22212y kx x y =−⎧⎪⎨+=⎪⎩得()2221860k x kx +−+=, ∴12122286,2121k x x x x k k +==++, ()()22=84621k k −−⨯⨯+=216240k −> 232k ∴>, ∴()121224421y y k x x k −+=+−=+,()()121222y y kx kx =−−()21212=24k x x k x x −++=224221k k −+, 直线BP 的方程为1111y y x x −=+,令0y =解得111x x y =−,则11,01x M y ⎛⎫⎪−⎝⎭,同理可得22,01x N y ⎛⎫⎪−⎝⎭, 12123411BOMBCNx x SSy y ∴=−−=()()()12121212123341141x x x x y y y y y y =−−−++=22226321444212121k k k k +−++++=12, BOM BON S S∆∴为定值12. 例6、 (1) 规范解答 设椭圆C 2的焦距为2c ,由题意,a =22,c a =32,a 2=b 2+c 2,解得b =2,因此椭圆C 2的标准方程为x 28+y 22=1.(3分)(2)①1°当直线OP 斜率不存在时,PA =2-1,PB =2+1,则PAPB =2-12+1=3-2 2.(4分) 2°当直线OP 斜率存在时,设直线OP 的方程为y =kx ,代入椭圆C 1的方程,消去y ,得(4k 2+1)x 2=4, 所以x 2A =44k 2+1,同理x 2P =84k 2+1.(6分)所以x 2P =2x 2A ,由题意,x P 与x A 同号,所以x P =2x A ,从而PAPB=|x P-x A||x P-x B|=|x P-x A||x P+x A|=2-12+1=3-2 2.所以PAPB=3-22为定值.(8分)②设P(x0,y0),所以直线l1的方程为y-y0=k1(x-x0),即y=k1x-k1x0+y0,记t=-k1x0+y0,则l1的方程为y=k1x+t,代入椭圆C1的方程,消去y,得(4k21+1)x2+8k1tx+4t2-4=0,因为直线l1与椭圆C1有且只有一个公共点,所以Δ=(8k1t)2-4(4k21+1)(4t2-4)=0,即4k21-t2+1=0,将t=-k1x0+y0代入上式,整理得,(x20-4)k21-2x0y0k1+y20-1=0,(12分)同理可得,(x20-4)k22-2x0y0k2+y20-1=0,所以k1,k2为关于k的方程(x20-4)k2-2x0y0k+y20-1=0的两根,从而k1·k2=y20-1x20-4.(14又点在P(x0,y0)椭圆C2:x28+y22=1上,所以y20=2-14x20,所以k1·k2=2-14x20-1x20-4=-14为定值.(16分)二、达标训练1、【解析】(I) 椭圆22:14xC y+=,故)F,1 ||22FP x ====−.(II)设()33,A x y,()44,B x y,则将y kx m=+代入2214xy+=得到:()222418440k x kmx m+++−=,故2121222844,4141km mx x x xk k−−+==++,21241x xk−=+,OA OB=,故()3434343421k x x my yx x x x k+++==−++,得到34221kmx xk−+=+,PA PF=13122x x−=−42222x x−=−,由已知得:3124x x x x<<<或3124x x x x>>>,)()123421x x x x x+−+=−,2228241141km kmk k k−+=+++,化简得到221m k=+.故原点O到直线l的距离为1d==为定值.2、【解析】(1)因为抛物线y2=2px经过点P(1,2),所以4=2p,解得p=2,所以抛物线的方程为y2=4x.由题意可知直线l的斜率存在且不为0,设直线l的方程为y=kx+1(k≠0).由241y xy kx⎧=⎨=+⎩得22(24)10k x k x+−+=.依题意22(24)410k k∆=−−⨯⨯>,解得k<0或0<k<1.又P A,PB与y轴相交,故直线l不过点(1,-2).从而k≠-3.所以直线l斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1).(2)设A(x1,y1),B(x2,y2).由(1)知12224kx xk−+=−,1221x xk=.直线P A的方程为1122(1)1yy xx−−=−−.令x=0,得点M的纵坐标为1111212211My kxyx x−+−+=+=+−−.同理得点N的纵坐标为22121Nkxyx−+=+−.由=QM QOλ,=QN QOμ得=1Myλ−,1Nyμ=−.所以2212121212122224112()111111=2111(1)(1)11M Nkx x x x x x k ky y k x k x k x x kk λμ−+−−−++=+=+=⋅=⋅−−−−−−.所以11λμ+为定值.3、规范解答(1)设椭圆的半焦距为c,由已知得,ca=32,则a2c-c=33,c2=a2-b2,(3分)解得a=2,b=1,c=3,(5分)所以椭圆E的标准方程是x24+y2=1.(6分)(2) 解法1 由题意,设直线l 1的方程为y =k 1(x -t),代入椭圆E 的方程中,并化简得(1+4k 21)x 2-8k 21tx +4k 21t 2-4=0,(8分)设A(x 1,y 1),B(x 2,y 2).则x 1+x 2=8k 21t 1+4k 21,x 1x 2=4k 21t 2-41+4k 21,因为PA =1+k 21|x 1-t|,PB =1+k 21|x 2-t|,(10分)所以PA·PB =(1+k 21)|x 1-t||x 2-t|=(1+k 21)|t 2-(x 1+x 2)t +x 1x 2| =(1+k 21)|t 2-8k 21t 21+4k 21+4k 21t 2-41+4k 21|=(1+k 21)|t 2-4|1+4k 21,(12分) 同理,PC ·PD =(1+k 22)|t 2-4|1+4k 22,(14分) 所以PA·PB PC·PD =(1+k 21)(1+4k 22)(1+k 22)(1+4k 21)为定值.(16分)解法2 由题意,设直线l 1的方程为y =k 1(x -t),直线l 2的方程为y =k 2(x -t),设A(x 1,y 1),B(x 2,y 2),C(x 3,y 3),D(x 4,y 4).直线l 1的方程为y =k 1(x -t),代入椭圆E 的方程中,并化简得(1+4k 21)x 2-8k 21tx +4k 21t 2-4=0,(8分) 则x 1+x 2=8k 21t 1+4k 21,x 1x 2=4k 21t 2-41+4k 21,同理则x 3+x 4=8k 22t1+4k 22,x 3x 4=4k 22t 2-41+4k 22,PA →·PB →=(x 1-t ,y 1)(x 2-t ,y 2)=(x 1-t)(x 2-t)+k 21(x 1-t)(x 2-t)=(x 1-t)(x 2-t)(1+k 21), PC →·PD →=(x 3-t ,y 3)(x 4-t ,y 4)=(x 3-t)(x 4-t)+k 22(x 3-t)(x 4-t)=(x 3-t)(x 4-t)(1+k 22).(12分) 因为P ,A ,B 三点共线,所以PA →·PB →=PA·PB ,同理,PC →·PD →=PC ·PD.PA ·PB PC ·PD =PA →·PB →PC →·PD →=(x 1-t )(x 2-t )(1+k 21)(x 3-t )(x 4-t )(1+k 22)=(1+k 21)(1+k 22)·(x 1-t )(x 2-t )(x 3-t )(x 4-t )=(1+k 21)(1+k 22)·x 1x 2-t (x 1+x 2)+t 2x 3x 4-t (x 3+x 4)+t 2.代入x 1+x 2=8k 21t 1+4k 21,x 1x 2=4k 21t 2-41+4k 21,x 3+x 4=8k 22t 1+4k 22,x 3x 4=4k 22t 2-41+4k 22,化简得PA ·PB PC ·PD =(1+k 21)(1+4k 22)(1+k 22)(1+4k 21),(14分)因为是定值,所以PA ·PB PC ·PD =(1+k 21)(1+4k 22)(1+k 22)(1+4k 21)为定值.(16分)4规范解答 (1) 由题意B(0,1),C(0,-1),焦点F(3,0),当直线PM 过椭圆的右焦点F 时,则直线PM 的方程为x 3+y -1=1,即y =33x -1,联立⎩⎨⎧x 24+y 2=1,y =33x -1,解得⎩⎨⎧x =837,y =17或⎩⎪⎨⎪⎧x =0,y =-1(舍),即M ⎝⎛⎭⎫837,17.(2分)连结BF ,则直线BF :x 3+y1=1,即x +3y -3=0,而BF =a =2,点M 到直线BF 的距离为d =⎪⎪⎪⎪837+3×17-312+(3)2=2372=37.故S △MBF =12·BF ·d =12×2×37=37.(4分)(2) 解法1(点P 为主动点) ①设P(m ,-2),且m≠0,则直线PM 的斜率为k =-1-(-2)0-m =-1m , 则直线PM 的方程为y =-1m x -1,联立⎩⎨⎧y =-1m x -1,x 24+y 2=1化简得⎝⎛⎭⎫1+4m 2x 2+8m x =0,解得M ⎝ ⎛⎭⎪⎫-8m m 2+4,4-m 2m 2+4,(6分)所以k 1=4-m 2m 2+4-1-8m m 2+4=-2m 2-8m =14m ,k 2=1-(-2)0-m =-3m ,(8分)所以k 1·k 2=-3m ·14m =-34为定值.(10分)5、规范解答 (1) 设B (x 0,y 0),则C (-x 0,-y 0),x 204+y 20=1,因为A (2,0),所以k 1=y 0x 0-2,k 2=y 0x 0+2,所以k 1k 2=y 0x 0-2·y 0x 0+2=y 20x 20-4=1-14x 20x 20-4=-14.(4分)(2) 设直线AP 方程为y =k 1(x -2),联立⎩⎪⎨⎪⎧y =k 1x -2,x 2+y 2=4得(1+k 21)x 2-4k 21x +4(k 21-1)=0,解得x P =2k 21-11+k 21,y P =k 1(x P -2)=-4k 11+k 21, 联立⎩⎪⎨⎪⎧y =k 1x -2,x24+y 2=1得(1+4k 21)x 2-16k 21x +4(4k 21-1)=0,解得x B =24k 21-11+4k 21,y B =k 1(x B -2)=-4k 11+4k 21,(8分) 所以k BC =y B x B =-2k 14k 21-1,k PQ =y Px P +65=-4k 11+k 212k 21-11+k 21+65=-5k 14k 21-1, 所以k PQ =52k BC ,故存在常数λ=52,使得k PQ =52k BC .(10分) (3) 设直线AC 方程为y =k 2(x -2),当直线PQ 与x 轴垂直时,Q ⎝⎛⎭⎫-65,-85,则P -65,85,所以k 1=-12,即B (0,1),C (0,-1),所以k 2=12,则k AQ =-85-65-2=12=k 2,所以直线AC 必过点Q .当直线PQ 与x 轴不垂直时,设直线PQ 方程为y =-5k 14k 21-1⎝⎛⎭⎫x +65, 联立⎩⎪⎨⎪⎧y =-5k 14k 21-1⎝⎛⎭⎫x +65,x 2+y 2=4解得x Q =-216k 21-116k 21+1,y Q =16k 116k 21+1, 因为k 2=-y B -x B -2=4k 11+4k 2121-4k 211+4k 21-2=-14k 1, 所以k AQ =16k 116k 21+1-216k 21-116k 21+1-2=-14k 1=k 2,故直线AC 必过点Q .(16分) (不考虑直线与x 轴垂直的情形扣1分)。

2022年高考数学专题圆锥曲线中的“三定问题”(定点、定值、定直线)

2022年高考数学专题圆锥曲线中的“三定问题”(定点、定值、定直线)

圆锥曲线中的“三定问题”(定点、定值、定直线)1.定点、定值问题多以直线与圆锥曲线为背景,常与函数与方程、向量等知识交汇,形成了过定点、定值等问题的证明.解决此类问题的关键是引进参变量表示所求问题,根据等式的恒成立、数式变换等寻找不受参数影响的量.可以先研究一下特殊情况,找出定点或定值,再视具体情况进行研究.同时,也要掌握巧妙利用特殊值解决相关的定点、定值问题,如将过焦点的弦特殊化,变成垂直于对称轴的弦来研究等.2.定点问题解决步骤:①设直线代入二次曲线方程,整理成一元二次方程;②根与系数关系列出两根和及两根积;③写出定点满足的关系,整体代入两根和及两根积;④整理③所得表达式探求其恒成立的条件.3.探索圆锥曲线的定值问题常见方法有两种:①从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.4.存在型定值问题的求解,解答的一般思路如下:①确定一个(或两个)变量为核心变量,其余量均利用条件用核心变量进行表示;②将所求表达式用核心变量进行表示(有的甚至就是核心变量),然后进行化简,看能否得到一个常数.5.求定线问题常见的方法有两种:①从特殊入手,求出定直线,再证明这条线与变量无关.②直接推理、计算,并在计算推理的过程中消去变量,从而得到定直线.1.在平面直角坐标系xOy 中,已知动点P 到 0,1F 的距离比它到直线2y 的距离小1. (1)求动点P 的轨迹C 的方程;(2)过点F 的直线与曲线C 交于A ,B 两点, 2,1Q ,记直线QA ,QB 的斜率分别为1k ,2k ,求证:1211k k为定值.2.已知抛物线y2=2px(p>0)的焦点F到准线的距离为2.(1)求抛物线的方程;(2)过点P(1,1)作两条动直线l1,l2分别交抛物线于点A,B,C,D.设以AB为直径的圆和以CD为直径的圆的公共弦所在直线为m,试判断直线m是否经过定点,并说明理由.3.已知椭圆22221(0)x y a b a b 的一个焦点到双曲线2212x y 渐近线的距离为3,且点2M 在椭圆上.(1)求椭圆的方程;(2)若四边形ABCD 的顶点在椭圆上,且对角线AC 、BD 过原点O ,直线AC 和BD 的斜率之积-22b a,证明:四边形ABCD 的面积为定值.4.已知点(1,2)P 在抛物线2:2C y px 上,过点(0,1)Q 的直线l 与抛物线C 有两个不同的交点A 、B ,且直线P A 交y 轴于M ,直线PB 交y 轴于N . (1)求直线l 的斜率的取值范围;(2)设O 为原点,QM QO ,QN QO uuu r uuu r ,试判断11+ 是否为定值,若是,求11+ 值;若不是,求11+的取值范围.5.已知双曲线的对称中心在直角坐标系的坐标原点,焦点在坐标轴上,双曲线的一条渐近线的方程为4,6,过双曲线上的一点P(P在第一象限)作斜率不为l,l与直线y ,且双曲线经过点x 交于点Q且l与双曲线有且只有一个交点.1(1)求双曲线的标准方程;(2)以PQ为直径的圆是否经过一个定点?若经过定点,求出定点的坐标;若不经过定点,请说明理由.6.已知双曲线C :22221x y a b 0,0a b 的两条渐近线互相垂直,且过点D.(1)求双曲线C 的方程;(2)设P 为双曲线的左顶点,直线l 过坐标原点且斜率不为0,l 与双曲线C 交于A ,B 两点,直线m 过x 轴上一点Q (异于点P ),且与直线l 的倾斜角互补,m 与直线PA ,PB 分别交于,M N (,M N 不在坐标轴上)两点,若直线OM ,ON 的斜率之积为定值,求点Q 的坐标.7.已知椭圆2222:1x y C a b,离心率为12,过椭圆左焦点1F 作不与x 轴重合的直线与椭圆C 相交于M ,N 两点,直线m 的方程为2x a ,过点M 作ME 垂直于直线m 交直线m 于点E . (1)求椭圆C 的标准方程;(2)①求证线段EN 必过定点P ,并求定点P 的坐标;②点O 为坐标原点,求OEN 面积的最大值.22a b 122一点.(1)求椭圆C 的标准方程;(2)设(,)R s t 是椭圆C 上的一动点,由原点O 向22()()4x s y t 引两条切线,分别交椭圆C 于点,P Q ,若直线,OP OQ 的斜率均存在,并分别记为12,k k ,求证:12k k 为定值.22a b 12221:()1F x c y 与圆222:()9F x c y 相交,两圆交点在椭圆E 上.(1)求椭圆E 的方程;(2)设直线l 不经过 0,1P 点且与椭圆E 相交于,A B 两点,若直线PA 与直线PB 的斜率之和为2 ,证明:直线l 过定点.10.已知抛物线2:4C y x 的焦点为F ,斜率为k 的直线与抛物线C 交于A 、B 两点,与x 轴交于 ,0P a (1)当1k ,3a 时.求AF BF 的值;(2)当点P 、F 重合时,过点A 的圆 2220x y r r 与抛物线C 交于另外一点D .试问直线BD 是否过x轴上的定点Q ?若是,请求出点Q 坐标;若不是,请说明理由.11.已知抛物线22(0)y px p 上一点 4,t 到其焦点的距离为5. (1)求p 与t 的值;(2)过点 21M ,作斜率存在的直线l 与拋物线交于,A B 两点(异于原点O ),N 为M 在x 轴上的投影,连接AN 与BN 分别交抛物线于,P Q ,问:直线PQ 是否过定点,若存在,求出该定点,若不存在,请说明理由.12.已知抛物线 21:20C y px p 的焦点是椭圆 22222:10x y C a b a b的右焦点,且两条曲线的一个交点为 000,2p E x y x,若E 到1C 的准线的距离为53,到2C 的两焦点的距离之和为4.(1)求椭圆2C 的方程;(2)过椭圆2C 的右顶点的两条直线1l ,2l 分别与抛物线1C 相交于点A ,C ,点B ,D ,且12l l ,M 是AC 的中点,N 是BD 的中点,证明:直线MN 恒过定点.13.已知抛物线C : 220y px p 的焦点到准线的距离是12.(1)求抛物线方程;(2)设点 ,1P m 是该抛物线上一定点,过点P 作圆O : 2222x y r (其中01r )的两条切线分别交抛物线C 于点A ,B ,连接AB .探究:直线AB 是否过一定点,若过,求出该定点坐标;若不经过定点,请说明理由.14.已知抛物线 2:20C y px p 的焦点为F ,点M 在抛物线C 上,O 为坐标原点,OMF 是以OF 为底边的等腰三角形,且OMF 的面积为 (1)求抛物线C 的方程.(2)过点F 作抛物线C 的两条互相垂直的弦AB ,DE ,设弦AB ,DE 的中点分别为P ,Q ,试判断直线PQ 是否过定点.若是,求出所过定点的坐标;若否,请说明理由.15.如图,已知抛物线 2:20C y px p 与圆 22:412M x y 相交于A ,B ,C ,D 四点.(1)若8OA OD ,求抛物线C 的方程;(2)试探究直线AC 是否经过定点,若是,求出定点坐标;若不是,请说明理由.16.已知抛物线 2:20C y px p 上一点01,4y到焦点的距离为54.(1)求抛物线C 的标准方程;(2)若点A ,B 为抛物线位于x 轴上方不同的两点,直线OA ,OB 的斜率分别为1k ,2k ,且满足1212444k k k k ,求证:直线AB 过定点.17.如图,已知抛物线2:2(0)C y px p 与圆22:(4)12M x y 相交于A ,B ,C ,D 四点. (1)若以线段AD 为直径的圆经过点M ,求抛物线C 的方程;(2)设四边形ABCD 两条对角线的交点为E ,点E 是否为定点?若是,求出点E 的坐标;若不是,请说明理由.18.设双曲线22221x y a b ,其虚轴长为(1)求双曲线C 的方程;(2)过点 3,1P 的动直线与双曲线的左右两支曲线分别交于点A 、B ,在线段AB 上取点M 使得AM APMB PB,证明:点M 落在某一定直线上.19.在平面直角坐标系xOy 中,已知双曲线2222:1(0,0)x y C a b a b 的左右焦点分别为F 1(-c ,0),F 2(c ,0),离心率为e ,且点(e ,3),b )都在双曲线C 上. (1)求双曲线C 的标准方程;(2)若A ,B 是双曲线C 上位于x 轴上方的两点,且AF 1//BF 2.证明:1211AF BF 为定值.20.已知双曲线2222:1(0,0)x y C a b a b2,1F ,2F为其左右焦点,Q 为其上任一点,且满足120QF QF,122QF QF .(1)求双曲线C 的方程;(2)已知M ,N 是双曲线C 上关于x 轴对称的两点,点P 是C 上异于M ,N 的任意一点,直线PM 、PN 分别交x 轴于点T 、S ,试问:||||OS OT 是否为定值,若不是定值,说明理由,若是定值,请求出定值(其中O 是坐标原点).21.已知双曲线 2222:10,0x y C a b a b ,四点13M , 2M ,32,3M ,43M中恰有三点在C 上. (1)求C 的方程;(2)过点 3,0的直线l 交C 于P ,Q 两点,过点P 作直线1x 的垂线,垂足为A .证明:直线AQ 过定点.22.已知动点P 与定点(1,0)F 的距离和它到定直线:4l x 的距离之比为12,记P 的轨迹为曲线C . (1)求曲线C 的方程;(2)过点(4,0)M 的直线与曲线C 交于,A B 两点,,R Q 分别为曲线C 与x 轴的两个交点,直线,AR BQ 交于点N ,求证:点N 在定直线上.23.在平面直角坐标系xOy 中,椭圆C : 22210xy a a的左右顶点为A ,B ,上顶点K 满足3AK KB .(1)求C 的标准方程:(2)过点 1,0的直线与椭圆C 交于M ,N 两点.设直线MA 和直线NB 相交于点P ,直线NA 和直线MB 相交于点Q ,直线PQ 与x 轴交于S .①求直线PQ 的方程; ②证明:SP SQ 是定值.24.已知椭圆C : 222210x y a b a b ,左、右顶点分别为1A ,2A ,上、下顶点分别为1B ,2B ,四边形1122A B A B 的面积为(1)求椭圆C 的方程;(2)过点 0,1D 且斜率存在的直线与椭圆相交于E ,F 两点,证明:直线2EB ,1FB 的交点G 在一定直线上,并求出该直线方程.25.在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b的左,右顶点分别为A 、B ,点F 是椭圆的右焦点,3AF FB uu u r uu r ,3AF FB. (1)求椭圆C 的方程;(2)不过点A 的直线l 交椭圆C 于M 、N 两点,记直线l 、AM 、AN 的斜率分别为k 、1k 、2k .若 121k k k ,证明直线l 过定点,并求出定点的坐标.26.已知O 为坐标原点,椭圆2222Γ:1(0)x y a b a b 的右顶点为A ,动直线1:(1)l y x m 与相交于,B C 两点,点B 关于x 轴的对称点为B ,点B 到 的两焦点的距离之和为4.(1)求 的标准方程;(2)若直线B C 与x 轴交于点M ,,OAC AMC 的面积分别为12,S S ,问12S S 是否为定值?若是,求出该定值;若不是,请说明理由.。

高中数学-圆锥曲线中的定点、定值与最值问题

高中数学-圆锥曲线中的定点、定值与最值问题

[例 2] 如图,在平面直角
坐标系 xOy 中,椭圆xa22+by22=1(a>b>0)的左、
右焦点分别为 F1(-c,0),F2(c,0).已知点(1,e)
和e,
23都在椭圆上,其中
e
为椭圆的离心率.
(1)求椭圆的方程;
(2)设 A,B 是椭圆上位于 x 轴上方的两点,且直线 AF1 与直
线 BF2 平行,AF2 与 BF1 交于点 P,
法二:同(2)法一假设前内容. 假设平面内存在定点M满足条件,由图形对称性知,点M 必在x轴上. 取k=0,m= 3,此时P(0, 3),Q(4, 3), 以PQ为直径的圆为(x-2)2+(y- 3)2=4, 交x轴于点M1(1,0),M2(3,0); 取k=-12,m=2,此时P1,32,Q(4,0), 以PQ为直径的圆为x-522+y-342=4156, 交x轴于点M3(1,0),M4(4,0).
因为 MP =-4mk-x1,m3 , MQ =(4-x1,4k+m), 由 MP ·MQ =0,得-1m6k+4kmx1-4x1+x12+1m2k+3=0, 整理,得(4x1-4)mk +x12-4x1+3=0.(**) 由于(**)式对满足(*)式的m,k恒成立, 所以4x1x2-1-4x41=+03,=0, 解得x1=1. 故存在定点M(1,0),使得以PQ为直径的圆恒过点M.
圆锥曲线中的最值问题
[例3] 如图,在直角坐标系xOy中,点 P1,12到抛物线C:y2=2px(p>0)的准线的距 离为54.点M(t,1)是C上的定点,A,B是C上的 两动点,且线段AB被直线OM平分.
(1)求p,t的值; (2)求△ABP面积的最大值.
[思路点拨] (1)利用点M(t,1)在曲线上及点P 1,12 到准线的距 离为54求p与t的值;

圆锥曲线定值,定点

圆锥曲线定值,定点

过圆锥曲线上定点和斜率和积为定值直线,则直线过定点(一)一般性推论:过圆锥曲线上一定点产生的两条直线斜率和积为定,则另外两点的连线过定点。

数学表达:若点定一上线曲锥圆为点定过线直值定者或值定⎩⎨⇒⎧∙=+=P k k k k PA PB PA PB AB点定一上线曲锥圆为值定者或值定点定过线直⎩⎨⇒∙=+=⎧P k k k k PA PB PA PB AB 其次法的使用要点:“齐次”即次数相等的意思,例如=++x cy f ax bxy 22)(称为二次齐式,即二次齐次式的意思,因为f x )(中每一项都是关于x 、y 的二次项。

当圆锥曲线遇到斜率之和或者斜率之积的问题,可以先平移图形,将公共点平移到原点,注意平移口诀是“左加右减,上减下加”,注意此处因为是在y 同侧进行加减,故为“上减下加”,而我们以往记的“上加下减”都是在y 的异侧。

例如要证明直线AP 与AQ 的斜率之和或者斜率之积为定值,可将公共点A 平移到原点,设平移后的直线为+=mx ny 1(为什么这样设?因为这样齐次化能更加方便解题),与圆锥曲线方程联立,一次项乘以+mx ny ,常数项乘以+mx ny 2)(,构造++=ay bxy cx 022,然后等式两边同时除以x 2(前面注明x 不等于0),得到⎝⎭⎪++=⎛⎫x x a b c y y 02,化简为++=ak bk c 02,可以直接利用韦达定理得出斜率之和或者斜率之积,即可得出答案,如果是过定点题目,还需要还原直线,之前如何平移,现在就如何反平移回去。

解题的方法步骤为: (1)平移直线; (2)联立方程并齐次化; (3)同除x 2:(4)利用韦达定理证明,如果过定点,还需要还原直线。

优点;大大减小了计算量,提高准确率,缺点:+=mx ny 1不能表示过原点的直线。

一. 构造法解整式问题在抛物线中的应用引题:证明:已知直线l 与抛物线 2p (p>0,p为常数)交于点A ,B 两点,若OA ⊥OB,则直线l 恒过定点(2p,0)设,B(x ,y ))x ,y (A 1122,⊥⇒∙=∙=-x x OA OB k k y y OA OB 11212设AB 直线方程为+=mx ny 1(截距式的变形式可以表示任意直线,该种设法可以利用1的妙用,快速制作齐次式)联立⎩=⎨⎧+=y pxmx ny 212第一步:构造齐次式-∙+=⇒--=y px ny pnxy pmx 2(mx )0y 220222易知A ,B 两点不与O 点重合,所以x 0令则==y p 0,x 2,所以直线过定点(2p,0) 常规证明方法(略)例1:(2017•新课标Ⅰ文)设A ,B 为曲线C :y =上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.第一步:平移抛物线,将抛物线沿→M O 方向平移,及左移2个单位,下移1个单位,及抛物线方程变为=+-y 4(x 2)112化简得+-x x 42联立方程=0⎩⎧+=-⎨-y y mx m x x 4142第二步:构造齐次式--∙-=⇒+-+=x mxy my 4(x y)m(x y)0(14m)x 840222,第四步平移回去:右2,上1,=-++=+y x x 28171.(2020春•江西月考)过抛物线E:y2=2px(p>0)上一点M(1,﹣2)作直线交抛物线E于另一点N.(Ⅰ)若直线MN的斜率为1,求线段|MN|的长;(Ⅱ)不过点M的动直线l交抛物线E于A,B两点,且以AB为直径的圆经过点M,问动直线l是否恒过定点.如果有求定点坐标,如果没有请说明理由.题型拓展:2.(2021•齐齐哈尔一模)已知抛物线C1:y2=2px(p>0)的焦点F是椭圆C2:x2+2y2=1的一个顶点.(1)求抛物线C1的方程;(2)若点P(1,2),M,N为抛物线C1上的不同两点,且PM⊥PN.求证:直线MN过定点.斜率和积为定值,直线过定点问题在椭圆中的数学模型建立k k PA PB ⋅=定值或者k k PA PB +=定值,直线过定点,P 点坐标之间的转化证明 将椭圆C 按向量--x y ,00)(平移得椭圆C x x ay y b'+++=2222:001)()(又点P x y ,00)(在椭圆xa yb+=22221上,所以x a y b +=2222001,代入上式得+++=a b a b x y x y x y 022********①。

高中数学:圆锥曲线中的定点定值问题

高中数学:圆锥曲线中的定点定值问题

高中数学:圆锥曲线中的定点定值问题
定点定值方法归纳
一、研究定点、定值问题的基本思路
解析几何中的定点、定值及探索性问题主要以解答题形式考查,一般以椭圆或抛物线为背景,试题难度较大.解决问题时注意代数方程是解决定点定值问题的桥梁。

二、定点问题基本有一下两种思考方式
(1)引进参数法:引进动点坐标或者动线中的系数作为参数,表示变化量,再通过条件,构造变化量对应的方程,研究变化量方程的关系(特别是变化量任意改变对应方程恒成立问题),找到定点。

(2)探索法:根据动点或动线的一些特殊情况,先探索出定点,再证明该定点与变量无关。

三、解决定值问题也有如下类似的思考方式
(1)引进参数法:引进参数作为变化量,最后利用代数式说明所求定值的代数式与参数无关。

(2)探索法:用特殊情况探索出定值,最后再利用代数式证明定值。

高考真题
例题精选
参考答案

▍ ▍▍。

圆锥曲线中的典型问题与方法:圆锥曲线的定值、定点问题

圆锥曲线中的典型问题与方法:圆锥曲线的定值、定点问题

圆锥曲线中的定值、定点问题一、直线恒过定点问题例1. 已知动点E 在直线:2l y =-上,过点E 分别作曲线2:4C x y =的切线,EA EB , 切点为A 、B , 求证:直线AB 恒过一定点,并求出该定点的坐标;解:设),2,(-a E )4,(),4,(222211x x B x x A ,x y x y 214'2=∴=,)(2141121点切线过,的抛物线切线方程为过点E x x x x y A -=-),(21421121x a x x -=--∴整理得:082121=--ax x同理可得:222280x ax --=8,2082,2121221-=⋅=+∴=--∴x x a x x ax x x x 的两根是方程)24,(2+a a AB 中点为可得,又2212121212124442ABx x y y x x a k x x x x --+====-- 2(2)()22a a AB y x a ∴-+=-直线的方程为,2()2ay x AB =+∴即过定点0,2.例2. 已知点是椭圆22:12x E y +=上任意一点,直线l 的方程为0012x xy y +=, 直线0l 过P 点与直线l 垂直,点M (-1,0)关于直线0l 的对称点为N ,直线PN 恒过一定点G ,求点G 的坐标。

解:直线0l 的方程为0000()2()x y y y x x -=-,即000020y x x y x y --=设)0,1(-M 关于直线0l 的对称点N 的坐标为(,)N m n则0000001212022x nm y x n m y x y ⎧=-⎪+⎪⎨-⎪⋅--=⎪⎩,解得320002043200002002344424482(4)x x x m x x x x x n y x ⎧+--=⎪-⎪⎨+--⎪=⎪-⎩∴ 直线PN 的斜率为4320000032000042882(34)n y x x x x k m x y x x -++--==---+ 从而直线PN 的方程为: 432000000320004288()2(34)x x x x y y x x y x x ++---=---+ 即3200043200002(34)14288y x x x y x x x x --+=+++--从而直线PN 恒过定点(1,0)G 二、恒为定值问题例3. 已知椭圆两焦点1F 、2F 在y 轴上,短轴长为22,离心率为22,P 是椭圆在第一象限弧上一点,且121PF PF ⋅=,过P 作关于直线F 1P 对称的两条直线PA 、PB 分别交椭圆于A 、B 两点。

【高中数学课件】圆锥曲线中的定值、定点问题

【高中数学课件】圆锥曲线中的定值、定点问题

总结提炼:
• 有关定点问题,多出现在直线过定点问题,一种 方法是先求出直线方程,后把参数的同次项合并, 令各次项系数为0即可得到定点,另一种方法是利 用特殊情况找到定点,后证明曲线过该点即可。
思考:
• 如图,椭圆
的两焦点F1,F2与短轴
两端点B1,B2构成∠B2F (2)若直线l:y=kx+m与椭
成立。 • 例2、已知一动圆M,恒过点F (1,0),且总与直线x=-1 • 相切,(Ⅰ)求动圆圆心M的轨迹C的方程;(Ⅱ)探究在
曲线C上,是否存在异于原点的 A(x1, y1), B(x2, y2 ) 两点, 当 y1 y2 16 , 直线AB恒过定点?若存在,求出定点坐标; 若不存在,说明理由.
圆锥曲线中的定值、定点问题
一、曲线过定点问题:
• 例1、(课本P79页第19题)设直线L与抛物线y2=2px(p> 0)交于A(x1,y1),B(x2,y2)两点,其中y1>y2。
• (1)若 OA • OB 0,AB • OX 0,求L与x轴的交点坐标。 • (2)是否存在定点M,使得当L经过M点时,总有OA • OB 0
且MA MB , 若M为定点,证明:直线
EF的斜率为定值.
总结提炼:
• 定值问题:
• 解决定值问题主要通过两类方法,一是通过特殊 位置得出定值,然后通过证明在一般位置也成 立.二是通过把所要证明为定值的量表示为另外 一个或两个引起变化的量的函数或方程,然后通
过化简变形,证明结果与引起变化的量无关.
• 例5、已知抛物线Q:x2=2py(p>0)上任意一点到焦 点F的距离的最小值为1.
• (1)求实数p的值; • (2)设圆M过A(0,2),且圆心M在抛物线Q上,EG是圆
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学:圆锥曲线中的定值、定点问题【基础回顾】
一、课本基础提炼
1.将直线方程与圆锥曲线方程联立,消去y得到关于x的方程mx2+nx+p=0.
(1)若m≠0,当△>0时,直线与圆锥曲线有两个交点. 当△=0时,直线与圆锥曲线有且只有一个公共点,此时直线与双曲线相切. 当△<0时,直线与圆锥曲线无公共点. (2)当m=0时,若圆锥曲线为双曲线,则直线与双曲线只有一个交点,此时直线与双曲线的渐近线平行;若圆锥曲线为抛物线,则直线与抛物线只有一个交点,此时直线与抛物线的对称轴平行.
(3)设直线与圆锥曲线的交点A(x1,y1),B(x2,y2),则
2. 直线y=kx+b(k≠0)与椭圆相交于A(x1,y1),B(x2,y2)两点,则弦长
二、二级结论必备
1.对与圆锥曲线有关的中点弦问题,常用点差法,及设出弦的端点坐标,代入曲线方程,两式相减,利用中点公式和直线的斜率公式即可得出直线的斜率.
2. 已知抛物线y2=2px(p>0),过其焦点的直线交抛物线于
A、B两点(如右图所示),设A(x1,y1),B(x2,y2).则有以下结论:
(1)|AB|=x1+x2+p,或
(α为AB所在直线的倾斜角);
(3)y1y2=-p2.
(4)以AB为直径的圆与抛物线的准线相切.
3.过抛物线焦点且与对称轴垂直的弦称为抛物线的通径,抛物线的通径长为2p
4.椭圆与双曲线的通径长为
5.P(x0,y0)是抛物线C上一点,F为抛物线的焦点.
(1)当焦点在x轴正半轴上时,
(2)当焦点在x轴负半轴上时,
(3)当焦点在x轴正半轴上时,
(4)当焦点在x轴正半轴上时,
【技能方法】
定点问题解题技巧:
(1)引进参数法。

设定点坐标,根据题意选择参数,建立一个直线系或曲线系方程,而该方程与参数无关,故得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点,即为所求定点。

(2)特殊到一般法。

从特殊位置入手,找到定点,再证明该定点与变量无关。

定值问题解题技巧:
(1)特殊方法。

通过考查极端位置探索出“定值”是多少,
然后再证明这个值与变量无关。

如果试题以客观题的形式出现,特殊方法往往比较容易奏效。

(2)引进变量法。

具体步骤为:
①引入变量。

选择适当的动点坐标或动直线的斜率为变量。

②构建函数。

把要证明为定值的量表示成上述变量的函数。

③推导定值。

把得到的函数化简,消去变量得到定值。

共线问题解题技巧:
解析几何中的共线问题的处理方法,常利用向量共线定理来证,即先设出向量的坐标,利用题中给出的关系,证明坐标交叉积的差等于零即可.正确理解向量共线与解析几何中平行、三点共线等的关系,把有关解析几何的问题转化为向量问题.三点共线是解析几何中常见问题之一,根据向量共线的充要条件,只要在三点中任意两点的向量间存在倍数关系,向量法解决共线问题更简单明了.
1.圆锥曲线中的定点问题
求解直线和曲线过定点问题的基本思路是:把直线或曲线方程中的变量x,y当作常数看待,把方程一端化为零,既然
是过定点,那么这个方程就要对任意参数都成立,这时参数
的系数就要全部等于零,这样就得到一个关于x,y的方程组,这个方程组的解所确定的点就是直线或曲线所过的定点,或者可以通过特例探求,再用一般化方法证明.
例1已知动圆过定点A(4,0), 且在y轴上截得的弦MN的长
为8.
(Ⅰ) 求动圆圆心的轨迹C的方程;
(Ⅱ) 已知点B(-1,0), 设不垂直于x轴的直线l与轨迹C
交于不同的两点P, Q, 若x轴是∠PBQ的角平分线, 证明直线l过定点.
【答案】
(Ⅰ)y2=8x;
(Ⅱ) 定点(1,0)
【解析】
(Ⅰ) A(4,0),设圆心C(x,y),MN线段的中点为E,由几何
图像知:
CA2=CM2=ME2+EC2
⇒(x-4)2+y2=42+x2⇒y2=8x
(Ⅱ)点B(-1,0),设P(x1,y1),Q(x2,y2)由题知 .
y1+y2≠0,y1y2<0,
⇒8(y1+y2)+y1y2(y2+y1)=0⇒8+y1y2=0
直线PQ方程为:
⇒y(y2+y1)-y1(y2+y1)
⇒y(y2+y1)+8=8x⇒y=0,x=1
所以,直线PQ过定点(1,0)
【点评】
对于定点问题解题技巧:(1)在处理定点与定值问题时,注意从特殊入手这一方法的应用,可以避免盲目的探索.(2)在处理这一问题时,注意整体代换的应用,和设而不求思想的应用.
2. 圆锥曲线中的定值问题
解析几何中的定值问题是指某些几何量(线段的长度、图形的面积、角的度数、直线的斜率等)的大小或某些代数表达
式的值等和题目中的参数无关,不依参数的变化而变化,而始终是一个确定的值,求定值问题常见的方法有两种:
①从特殊入手,求出定值,再证明这个值与变量无关;
②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.
例2如图,已知双曲线
(a>0)的右焦点F,点A,B分别在C的两条渐近线上,AF⊥x 轴,AB⊥OB,BF∥OA(O为坐标原点).
(1)求双曲线C的方程;
(2)过C上一点P(x0,y0)(y0≠0)的直线
与直线AF相交于点M,与直线
相交于点N,证明点P在C上移动时,
恒为定值,并求此定值.
【答案】
【解析】
(1)设F(c,0),因为b=1,所以直线OB方程为
直线BF的方程为
,解得
又直线OA的方程为

又因为AB⊥OB,所以
,解得a2=3,故双曲线C的方程为
(2)由(1)知,则直线l的方程为(y≠0),即
因为直线AF的方程为x=2,所以直线l与AF的交点
直线l与直线的交点为
因为是C上一点,则
,代入上式得
故所求定值为
【点评】
圆锥曲线中的定值、定点问题要善于从运动中寻找不变的要素,可以先通过特例、极限位置等探求定值、定点,然后利用推理证明的方法证明之.
圆锥曲线中的定点、定值问题求解有两大方法,即参数法和由特殊到一般的方法.
一参数法
圆锥曲线的定点、定值问题会涉及到曲线上的动点及动直线,所以很常用的方法就是设动点或设动直线,即引入参数解决问题,那么设参数就有两种情况,第一种是设点的坐标,第二种是设直线的斜率.
用参数法解决定点和定值问题时,对参数的处理是不同的. 1
应用参数法求定值问题
利用题设写出已知点的坐标(或直线的方程),设出动点的坐标(或直线的方程),引入参数,结合已知条件将目标式用参变量表示,再根据点在某曲线上代入消参求得定值,或经过整理化简后恒为定值. 应注意到繁难的代数运算是此类问题的特点,设而不求法、整体思想和消元的思想的运用可有效地简化运算.
2
应用参数法求定点问题
二由特殊到一般法
如果要解决的问题是一个定值(定点)问题,而题设条件又没有给出这个定值(定点),那么我们可以这样思考:由于这个定值(定点)对符合要求的一些特殊情况必然成立,那么我们根据特殊情况先找到这个定值(定点),明确了解决问题的目标,然后进行一般情况下的推理证明.
解题步骤:
第一步:研究特殊情形从问题的特殊情形出发,如直线的斜率不存在,或直线过原点等,得到目标关系所要探求的定值(定点).
第二步:探究一般情况
第三步:下结论综合上面两种情况定结论.
总结
求解圆锥曲线的定点、定值问题,着重考查考生运用圆锥曲线的知识进行逻辑推理的能力.用设参法和由特殊到一般的方法一般能解决该类问题,这类问题的最大杀手就是式子复杂,计算量大,只要认真、仔细,确保计算不出错,一般没有问题.还有一些特殊类型的要特殊对待,如需结合图形的对称性、结合圆锥曲线的特殊性质等解题会找到巧妙方法和提高效率.。

相关文档
最新文档