《直线参数方程的应用》

合集下载

直线的参数方程及应用

直线的参数方程及应用

直线的参数方程及应用直线的参数方程及应用直线参数方程的标准式过点P(x,y),倾斜角为α的直线l的参数方程是x = x + tcosαy = y + tsinα其中t为参数,表示有向线段PP的数量,P(x,y)为直线上的任意一点。

直线l上的点与对应的参数t是一一对应关系。

若P1、P2是直线上两点,所对应的参数分别为t1、t2,则P1P2 = t2 - t1,|P1P2| = |t2 - t1|。

若P1、P2、P3是直线上的点,所对应的参数分别为t1、t2、t3,则P1P2中点P3的参数为t3 = (t1 + t2)/2,|PP3| = |(t1 + t2)/2|。

若P为P1P2的中点,则t1 + t2 = 0,t1·t2 < 0.直线参数方程的一般式过点P(xb,y),斜率为k = a的直线的参数方程是x = x + aty = y + bt其中t为参数,表示有向线段PP的数量,P(xb,y)为直线上的任意一点。

直线的参数方程给定点P(xl,y),倾斜角为α,求经过该点的直线l的参数方程。

直线l的参数方程为x = x + tcosαy = y + tsinα其中t为参数,表示有向线段PP的数量,P(xl,y)为直线上的任意一点。

特别地,若直线l的倾斜角α = 90°,直线l的参数方程为x = x + ty = y其中t为参数,表示有向线段PP的数量,P(xl,y)为直线上的任意一点。

2、直线的参数方程与标准形式如果直线的方向已知,那么可以使用参数方程来表示直线。

对于倾斜角为 $\alpha$,过点 $M(x,y)$ 的直线 $l$,其参数方程一般式为:begin{cases}x=x_M+t\cos\alpha \\y=y_M+t\sin\alphaend{cases}其中 $t$ 是参数,表示从点 $M$ 沿着直线 $l$ 方向前进的距离。

如果要将参数方程转化为标准形式,可以通过以下步骤:1.消去参数 $t$,得到 $y-y_M=\dfrac{\sin\alpha}{\cos\alpha}(x-x_M)$。

直线的参数方程及应用word精品文档5页

直线的参数方程及应用word精品文档5页

直线的参数方程及应用一、直线的参数方程1.定义:若α为直线l 的倾斜角,则称(cos ,sin )e =rαα为直线l 的(一个)方向向量.2.求证:若,P Q 为直线l 上任意两点,(cos ,sin )e =rαα为l 的方向向量,则有//PQ e u u u r r .证明:3.设直线l 过点000(,)M x y 的倾斜角为α,求它的一个参数方程. 归纳小结二、弦长公式、线段中点参数值 例1 已知直线:10l x y +-=与抛物线2y x =交于,A B 两点,求线段AB 的长和点(1,2)M -到,A B 两点的距离之积.例2 经过点(2,1)M 作直线l ,交椭圆221164x y +=于,A B 两点.如果点M 恰好为线段AB 的中点,求直线l 的方程.练习1.设直线l 经过点0(1,5)M ,倾斜角为π.(1)求直线l 的参数方程;(2)求直线l 和直线0x y --=的交点到点0M 的距离;(3)求直线l 和圆2216x y +=的两个交点到点0M 的距离的和与积.2.已知经过点(2,0)P ,斜率为43的直线l 和抛物线22y x =相交于,A B 两点,设线段AB 的中点为M .求点M 的坐标.3.经过点(2,1)M 作直线l 交双曲线221x y -=于,A B 两点,如果点M 为线段AB 的中点,求直线AB 的方程.4.经过抛物线22(0)y px p =>外的一点(2,4)A --且倾斜角为45︒的直线l 与抛物线分别相交于12,M M .如果1||AM ,12||M M ,2||AM 成等比数列,求p 的值.5.已知曲线14cos ,:3sin .x t C y t =-+⎧⎨=+⎩(t 为参数),曲线28cos ,:3sin .x C y θθ=⎧⎨=⎩(θ为参数).(1)化1C 、2C 的方程为普通方程,并说明它们分别表示什么曲线;(2)若1C 上的点P 对应的参数为2t π=,Q 为2C 上的动点,求PQ 中点M 到直线332,:2.x t C y t =+⎧⎨=-+⎩(t 为参数)距离的最小值. 解:练习:1.直线l 的方程为12,2 3.x t y t =+⎧⎨=-⎩(t 为参数),则l 上任一点到点(1,2)的距离是A .tB .||t C|t D|t2.直线sin 203,cos 20.x t y t =-+⎧⎨=⎩o o(t 为参数)的倾斜角是 A .20o B .70o C .110o D .160o 3.已知直线00cos ,sin .x x t y y t αα=+⎧⎨=+⎩(t 为参数)上的点A 、B 所对应的参数分别为1t 、2t ,点P 分AB 所成的比为λ,则点所对应的参数是A .122t t + B .121t t λ++ C .121t t λλ++ D .211t t λλ++ 4.直线3490x y --=与圆2cos ,2sin .x y θθ=⎧⎨=⎩的位置关系是A .相交但直线不过圆心B .相交且直线过圆心C .相切D .相离5.下列参数方程都表示过点0(1,5)M ,斜率为2的直线,其中有一个方程的参数的绝对值表示动点M 和0M 的距离,这个参数方程是A .1,52.x t y t =+⎧⎨=+⎩ B.1,5.x y ⎧=⎪⎪⎨⎪=⎪⎩C.1,5x y ⎧=⎪⎨⎪=⎩D .11,25.x t y t ⎧=+⎪⎨⎪=+⎩6.直线3cos ,2sin .x a y a θθ=+⎧⎨=-+⎩(a 为参数)与直线2sin ,3cos .x b y b θθ=--⎧⎨=-⎩(b 是参数)的位置关系为 CA .关于y 轴对称B .关于原点对称C .关于直线y x =对称D .互相垂直 7.曲线C 的参数方程为2cos ,sin .x y θθ=-+⎧⎨=⎩(θ为参数,02θπ≤≤),则yx 的取值范围是A.[B.(,)-∞+∞U C.[D.(,)-∞+∞U 8. 参数方程2cos ,2sin .x y θθ=-⎧⎨=⎩(22ππθ-≤≤)所表示的曲线是 .9.直线2,3.x y ⎧=⎪⎪⎨⎪=-⎪⎩(t 为参数)上到点(2,3)M -M 下方的点的坐标是 .10.点(1,5)-与两直线1,5x t y =+⎧⎪⎨=-⎪⎩(t是参数)及0x y --=的交点的距离是 .11.两圆32cos ,42sin .x y θθ=+⎧⎨=+⎩(θ是参数)与3cos ,3sin .x y θθ=⎧⎨=⎩(θ是参数)的位置关系是 .12.已知直线l 经过点(1,0)P ,倾斜角为6πα=.(1)写出直线l 的参数方程;(2)设直线l 与椭圆2244x y +=相交于两点A 、B ,求点P 到A 、B 两点的距离之积. B.化一般参数方程00,.x x at y y bt =+⎧⎨=+⎩为标准参数方程【巩固与应用】例 将下列直线的一般参数方程化成标准参数方程形式:(1) 42,3.x t y t =+⎧⎨=+⎩(t 为参数) (2)4,3.x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数) (3)00,.x x at y y bt =+⎧⎨=+⎩ (t 为参数)结果(1) 43x y ⎧=⎪⎪⎨⎪=⎪⎩(t '为参数) (2) 4,3.x y ⎧'=⎪⎪⎨⎪'=⎪⎩(2t t '=为参数) (3)令00cos ,sin x x t y y t =+⋅⎧⎨=+⋅⎩ϕλϕλ则cos ,sin .a b ⋅=⎧⎨⋅=⎩ϕλϕλ于是22222(cos )(sin )a b ⋅+⋅==+ϕλϕλλ,取λ则cos ϕ,sin ϕ,t ',于是得直线的标准参数方程为00x x y y ⎧=⎪⎪⎨⎪=⎪⎩(t '为参数).例求直线14,:3.x l y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数)与直线2:20l x y +-=的交点到定点(4,3)的距离 题型三:参数方程00,.x x at y y bt =+⎧⎨=+⎩中参数t 具有几何意义的条件【巩固与应用】例4 求直线l :12,2.x t y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数)被曲线cos ,.x y ϕϕ=⎧⎪⎨=⎪⎩(ϕ为参数)所截得的弦长.编排本题意图:通过两种解法说明“非标准参数方程中,只要参数t 系数平方和为1,则参数t 就有几何意义”这个事实.解一:消参得直线与椭圆的普通方程分别为:y 2213y x +=,联立消元,整理得 20x x -=,于是两交点为(0,A ,(1,0)B ,故||2AB =.解二:椭圆的普通方程为:2213y x +=,将直线参数方程代入并整理得,2680t t -+=,解得12t =或24t =,故12|||||24|2AB t t =-=-=.。

直线的参数方程的应用

直线的参数方程的应用

直线的参数方程的应用一、几何学应用1.直线的参数方程的可视化表示直线参数方程可以帮助我们直观地理解直线的特点和性质,例如直线在平面上的位置、方向、长度等。

通过改变参数的取值,可以观察到直线的移动、旋转、延长等变化,进而更直观地了解几何图形的特征。

2.直线的交点设有两条直线的参数方程分别为:L1:x=x1+a1t,y=y1+b1t,z=z1+c1tL2:x=x2+a2s,y=y2+b2s,z=z2+c2s我们可以通过求解参数方程的参数,找到这两条直线的交点。

通过求解方程组,可以得到唯一的交点坐标。

3.直线的方位角和倾斜角直线参数方程中的参数可以用来表示直线的方位角和倾斜角。

方位角是指直线与坐标轴的夹角,可以通过直线的参数方程中的系数进行计算。

倾斜角是指直线与xy平面的夹角,可以通过直线的参数方程中的系数进行计算。

二、物理学应用1.运动学中的直线运动在物理学中,直线运动是指质点或物体在直线上的运动轨迹。

直线的参数方程可以用来描述其中一时刻的位置。

例如,设有直线运动的质点在t时刻的位置为(x(t),y(t),z(t)),则可以表示成参数方程形式:x(t) = x0 + vxty(t) = y0 + vytz(t) = z0 + vzt其中,(x0, y0, z0)表示质点的初始位置,(vx, vy, vz)表示质点在x、y、z方向上的速度分量。

2.力学中的直线运动在力学中,直线运动还涉及质点或物体在直线上的加速度、力和运动的规律。

通过直线的参数方程,可以计算质点或物体在不同时刻的速度和加速度,并进一步得出运动的规律。

例如,设有质点在t时刻的位置为(x(t),y(t),z(t)),则可以通过参数方程求导得到速度和加速度:vx(t) = dx/dtvy(t) = dy/dtvz(t) = dz/dt3.光学中的直线传播在光学中,直线传播是指光线沿着直线路径传播的现象。

直线的参数方程可以用于描述光线在空间中的传播路径。

直线参数方程的应用

直线参数方程的应用

由题意得,离心率为 e 2 , 焦参数为 p 2
1050
Fx Q
建立如图所示的极坐标系,则双曲线的极坐标方程为
2
1 2 cos
故 | FP | | FQ |
2
2
1 2 cos1050 1 2 cos1050
4
1 2 cos2 1050
4 cos 2100
8 3 3
(7)(2007年重庆)过双曲线 x2 y 2 4的右焦点F作倾斜角
M始(x0 , y0 )
M 0 (x0 , y0 )
M终 (x, y) M (x, y)
x
二、直线参数方程的应用:
(t为参数)
1.求直线上某一个点的坐标:
2.求直线上某线段中点的坐标:
3.求直线上两点间的距离:
4.求直线的方程:
注:若l 上两点M1,M2对应的参数分别为t1,t2.则
① | M1 M2 || t1 t2 |
y x
求极坐标方程常用的方法
公式法 方程法
直接法 间接法
1.公式法:知型巧用公式法 建系设式求系数 2.方程法: 未知型状方程法 建系设需列方程 ①直接法:一般地,与正余弦定理有关 ②间接法:先求出普通方程,再转成为极坐标方程
特殊直线的极坐标方程

l
θ0
O
x

l
(a,0)
Ox
l
(a, )
Ox
l
(a, )
A.
30 3
B.6
C.12
法3:参数方程+设而不求
D.7 3
由题意得AB:x
3 4
y
t 2
3t 2 (t为参数)
F B
A

直线参数方程的应用

直线参数方程的应用

直线参数方程的应用直线是平面几何中最基本的图形之一,具有广泛的应用。

直线参数方程是表示直线的一种常用方法,它通过参数化的方式,将直线上的每一个点表示为一个参数关于坐标的函数。

直线参数方程的应用范围广泛,涉及到建模、计算、曲线运动等多个领域。

下面将介绍一些直线参数方程的应用。

1.绘制直线图形直线参数方程可以用于绘制各种直线图形,如图形学中的线段、射线等。

通过给定直线的起点和终点,可以根据参数方程计算出每一个点的坐标,然后将这些点连起来,就可以得到一条直线。

绘制直线图形在计算机图形学、几何学等领域有广泛的应用,如绘制曲线、图形变换等。

2.直线的交点计算3.直线的切线计算直线参数方程可以用于计算曲线在其中一点的切线。

给定曲线的参数方程,通过对参数进行微分,求解导数,可以得到曲线在其中一点的切线的斜率,然后根据切线方程的形式,可以计算出切线的方程。

直线的切线计算在微积分、物理学、工程学等领域有广泛的应用,如计算物体运动轨迹、求解函数的导数等。

4.直线的方向向量计算直线参数方程可以表示直线的方向向量。

给定直线的参数方程,可以通过计算参数的变化量,得到直线上两个点的连线向量,从而得到直线的方向向量。

直线的方向向量计算在几何学、物理学、机器学习等领域有广泛的应用,如计算导航路径、计算梯度向量等。

5.表示平面内直线的垂线、平行线直线参数方程可以用于表示平面内直线的垂线、平行线。

给定直线的参数方程,可以通过求解两条直线的参数之间的关系,判断它们是否垂直或平行。

垂线、平行线的计算在几何学、物理学、工程学等领域有广泛的应用,如计算平行导线的电阻、计算直线的交点等。

6.参数方程与一般方程的转化直线的参数方程与一般方程之间可以相互转化。

给定直线的参数方程,可以通过计算参数表达式,得到直线的一般方程。

同样地,给定直线的一般方程,可以通过求解参数方程的参数,得到直线的参数方程。

参数方程与一般方程的转化在几何学、代数学等领域有广泛的应用,如计算函数的参数表示、计算曲线的方程等。

直线的参数方程及应用

直线的参数方程及应用

直线的参数方程及应用x = x0 + aty = y0 + bt其中(x0,y0)是直线上的一个固定点,a和b是表示直线方向的参数。

参数t的取值范围根据实际问题的情况来确定,可以是实数、整数或者其他范围。

1.直线与平面的交点在三维空间中,直线与平面的交点可以通过参数方程求解。

假设平面的方程为Ax+By+Cz+D=0,直线的参数方程为:x = x0 + aty = y0 + btz = z0 + ct将直线的参数方程代入平面的方程,可以得到一个关于参数t的二次方程:A(x0+at) + B(y0+bt) + C(z0+ct) + D = 0通过求解这个二次方程,可以得到直线与平面的交点坐标。

2.直线的斜率直线的斜率是表示直线的倾斜程度的一个重要指标,可以通过直线的参数方程求得。

考虑直线上两个点P(x1,y1)和Q(x2,y2),它们对应的参数分别为t1和t2、直线的斜率可以表示为:m=(y2-y1)/(x2-x1)=(y0+b*t2-y0-b*t1)/(x0+a*t2-x0-a*t1)=b/a因此,直线的斜率可以通过参数a和b的比值得到。

当a=0时,直线是垂直于x轴的;当b=0时,直线是垂直于y轴的。

3.直线的长度直线的长度可以通过参数方程和积分来求解。

考虑直线上两个点P(x1,y1)和Q(x2,y2),它们对应的参数分别为t1和t2、直线的长度可以表示为:L = ∫√((dx/dt)²+(dy/dt)²) dt (t=t1到t2)其中 dx/dt 和 dy/dt 分别是直线参数方程关于 t 的导数。

将直线的参数方程代入到上式中,化简可得:L = ∫√(a²+b²) dt (t=t1到t2)=√(a²+b²)*(t2-t1)因此,直线的长度可以通过直线参数方程中的参数a和b计算得到。

4.直线的切线和法线y = y0 + (dy/dt) * (t-t0)其中 dy/dt 是直线参数方程关于 t 的导数。

直线参数方程的应用最新版


y

1

t
cos
20
0
(t 为 参 数 ),
经过定点
(2,
-
1) ,
倾 斜 角 为 110°
2

线

x


3 1t 2 (t 为 参 数 )方 程 中 , t 的 几 何 意 义 是

y

1
3t 2
(B)
( A) ( B) ( C) ( D)
一条有向线段的长度
定 点 P0( 3 , 1) 到 直 线 上 动 点 P(x, y)的 有 向 线 段 的 数 量 动 点 P(x, y) 到 定 点 P0( 3 , 1) 的 线 段 的 长 直 线 上 动 点 P(x, y) 到 定 点 P0( 3 , 1) 的 有 向 线 段 的 数 量
y
B
o
x
C
A
P
直线参数方程的应用(标准形式)
1) 求一端点是M0(x0,y0)的线段长 2) 求弦长 3) 求一端点是M0(x0,y0)的两线段
长 的和与积
练习与作业

1.

线
x

2

2t 2
(t 为 参 数 )上 到 点 M(2, 3)距 离 为 2 且

y

3

2t 2
在 点 M 下 方 的 点 的 坐 标 是 __(_3__,___4_)___

例1
已 知 直 线 L 过 点 M 0( 4 , 0 ), 倾 斜 角 为 6
(1 )求 直 线 L 的 参 数 方 程
( 2 ) 若 点 M 的 坐 标
(3 )若 L 与 直 线 y= x + 4 3 交 与 点 M , 求 M 0M

直线的参数方程


3
直线参数方程可以用于解决一些与直线相关的 解析几何问题,如交点、距离等。
在物理中的应用
在力学中,直线参数方程可以用于描述物体的运 动轨迹。
在电磁学中,直线参数方程可以用于描述电流和 电压的关系。
在光学中,直线参数方程可以用于描述光的传播 路径。
在计算机图形学中的应用
在计算机图形学中 ,直线参数方程可 以用于绘制直线和 曲线。
在计算机图形学中,直线的参数方程可以用来描述物体的形状和轮廓。例如,在 绘制一条直线时,可以使用直线的参数方程来表示。这种方程形式可以方便地表 示出直线的方向和位置,并且可以方便地进行绘制和控制。
直线参数方程与三维建模
在三维建模中,直线的参数方程可以用来描述物体的表面和边缘。例如,在创建 一个立方体或球体时,可以使用直线的参数方程来表示。这种方程形式可以方便 地表示出物体的形状和轮廓,并且可以方便地进行修改和控制。
THANK YOU.
用点斜式推导直线参数方程
总结词
利用点斜式的直线方程,推导出直线参数方程的表达式 。
详细描述
已知直线通过点 $P_{1}(x_{1}, y_{1})$ 和斜率为 $k$, 则直线的点斜式方程为 $y - y_{1} = k(x - x_{1})$。为 了将其转化为参数方程形式,引入参数 $t$ 并令 $y y_{1} = t$,则 $x = x_{1} + \frac{t}{k}$
直线参数方程的特殊形式包括
当 θ = π/2 时,直线垂直于 y 轴 ,t 为任意实数;
直线参数方程的性质还包括:通 过改变 t 的值可以得到直线上不 同的点,t 的取值范围为全体实数 。
02
直线参数方程的应用
在解析几何中的应用

直线的参数方程及其应用

一、求直线上点的坐标
例1.一个小虫从P(1,2)出发,已知它在x轴方向的分速度是−3,在y轴方向的分速度是4,问小虫3s后的位置Q。

解:由题意知则直线PQ的方程是,其中时间t是参数,将t=3s代入得Q(−8,12)。
例2.求点A(−1,−2)关于直线l:2x−3y+1 =0的对称点A'的坐标。
分析:中点问题与弦长有关,考虑用直线的参数方程,并注意有t1+t2=0。
解:设M(x0,y0)为轨迹上任一点,则直线P1P2的方程是(t是参数),代入双曲线方程得:(2cos2θ−sin2θ)t2+2(2x0cosθ−y0sinθ)t+(2x02−y02−2) = 0,
由题意t1+t2=0,即2x0cosθ−y0sinθ=0,得。
又直线P1P2的斜率,点P(2,1)在直线P1P2上,
∴,即2x2−y2−4x+y= 0为所求的轨迹的方程。
三、求定点到动点的距离
例4.直线l过点P(1,2),其参数方程为(t是参数),直线l与直线2x+y−2 =0交于点Q,求PQ。
解:将直线l的方程化为标准形式,代入2x+y−2 =0得t' =,
直线的参数方程及其应用
江苏省丹阳高级中学杨松扣
在必修本和选修本中分别学习了直线的方程和圆锥曲线的内容,它们都是高考的重点内容,也是学生学习的难点之一,若将两者结合起来,复杂的推理和大量的运算更使学生望而生畏。如果通过直线方程的另一种形式——参数式,则可能使问题的解决变得简单了,而且可以让我们从一个崭新的角度去认识这些问题。
解:由条件,设直线AA'的参数方程为(t是参数),
∵A到直线l的距离d=,∴t=AA'=,

直线的参数方程及其应用举例

直线的参数方程及其应用举例一条直线的参数方程由以下形式给出:x = x₀ + aty = y₀ + bt其中,(x₀,y₀)是直线上的一点,a和b是常数,t是参数。

在这个参数方程中,通过改变参数t的值,我们可以得到直线上的每一个点的坐标。

例如,考虑一个小车在直线上做匀速运动的例子。

假设小车的初始位置为(x₀,y₀),它向右移动,速度为v。

那么小车的位置可以用参数方程来描述:x = x₀ + vty=y₀对于给定的t值,我们可以根据这个参数方程计算小车在其中一时刻的位置。

通过改变参数t的值,我们可以得到小车在线上的每一个点的坐标。

这个参数方程可以帮助我们分析小车的运动过程,比如计算其中一点的速度、加速度等。

x = r*cos(θ)y = r*sin(θ)其中,r是点到原点的距离。

这个参数方程描述了点在以原点为中心的圆上运动的轨迹。

通过改变参数θ的值,我们可以得到圆上的每一个点的坐标。

这个参数方程可以帮助我们分析旋转体的运动规律,比如计算旋转角速度、加速度等。

此外,直线的参数方程还可以用于表示平面内的曲线。

例如,椭圆的参数方程可以表示为:x = a*cos(t)y = b*sin(t)其中,a和b分别是椭圆主轴和副轴的长度,t是参数。

通过改变参数t的值,我们可以得到椭圆上的每一个点的坐标。

这个参数方程描述了椭圆的形状和位置。

总结起来,直线的参数方程在几何学和物理学中有广泛的应用。

它可以用于描述物体的运动轨迹、旋转体的轨迹以及平面内的曲线等。

直线的参数方程可以帮助我们分析和理解各种物理现象和几何问题,从而推导出更多的结论和结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线参数方程的应用》
教材说明:人教版选修4-4 《直线的参数方程》
课型:习题课
课时:1 课时
学情分析
(一)学生已有知识基础或学习起点学生刚刚学习了曲线的参数方程,以及直线的参数方程,本班学生具备较好的知识基础对直线的参数方程的一般形式和标准形式都已经了解,并且能够进行标准参数方程和一般参数方程的互化,对参数的几何意义相对也比较熟悉.
(二)学生已有生活经验和学习该内容的经验在前面学生已经学过了直线的标准参数方程和一般方程, 具备了把一般参数方程转化为标准参数方程的能力, 能解决一些实际问题, 并能够进行合作
交流,具备合作探究的能力
(三)学生的思维水平以及学习风格
学生的思维系统不够完善, 缺乏逻辑思维能力和发散能力.学生中沉思型的学生少, 在碰到问题时不愿意深思熟虑,不用充足的时间考虑、审视问题,更不会权衡各种问题解决的方法,然后从中选择一个满足多种条件的最佳方案;多数是冲动型学习,看到题倾向于很快地检验假设,根据问题的部分信息或未对问题做透彻的分析就仓促作出决定,反应速度较快,但容易发生错误。

(四)学生学习该内容可能的困难学生学习该内容时可能遇到如下困难:不看参数方程的形式是否标准,直接套用,t 的几何意义找不准,欠缺转化能力,数形结合能力和计算能力.
(五)学生学习的兴趣、学习方式和学法分析由于学生自我归纳能力较差又习惯于就题论题,因此适合提问引导启发式授课方式和层层设疑的学习方法。

授课讲解的时候,应做到帮助学生分析题干,引发学生对问题的思考,引导学生找到解题思路并选择简洁的解题方法,并能及时归纳总结.
教学内容分析
(一)教学的主要内容
参数方程是以参变量为中介来表示曲线上点的坐标的方程,是曲线在同一坐标系下的又一种表示形式。

某些曲线用参数方程表示比用普通方程表示更方便。

学习直线参数方程有助于学生进一步体会解决问题中数学方法的灵活多变。

本专题是解析几何初步、平面向量、三角函数等内容的综合
应用和进一步深化。

学习直线的参数方程为接下来的圆等复杂曲线的参数方程打下基础, 通过对本专题的学习,学生将掌握直线参数方程的基本应用,了解直线的多种表现形式,体会从实际问题中抽象出数学问题的过程,培养探究数学问题的兴趣和能力,体会数学在实际中的应用价值,提高应用意识和实践能力。

二)教材编写的特点和设计意图
1、教材特点:
直线参数方程的意义,以及参数的几何的意义的应用,让学生了解参数方程的作用
2、设计意图:
通过具体题让学生明白为何引进参数,以及参数方程的真正用处河意义,培养学生转化的能力和灵活解决问题的能力.
教学目标
(一)知识与技能:
应用直线的参数方程中 t 的几何意义解决求距离,求线段长度、与中点有关的问题。

(二)过程与方法:通过学生联系已有的知识,采用学生探究,观察,讨论的方式,引导学生分析思路,体验解题方法。

(三)情感态度与价值观:通过对教学思维的转变,激发学生的求知欲,鼓励学生大胆尝试,勇于探索的思维品质,培养学生积极探索,勇于钻研的科学精神、严谨求实的科学态度。

教学重点
利用直线的参数方程求线段的长,求距离、求与中点有关等问题 .
教学难点
对 t 的几何意义的理解和应用。

教学策略的选择与设计为了教给学生学习思路,训练科学方法,发展学生应用知识的能力,以更好地培养他们分析问题和解决问题的能力,使他们能够在较高层次上更加有效地学习。

具体来说,在习题教学中应突出以下策略:
(一)例题精选策略
所选习题应该既要全面,以利于知识技能的巩固,又要具有代表性、典型性,能体现科学方法和观念的渗透以及直线参数方程与实际生活的联系。

(二)思路点拨策略
习题课应该重视解题思路的启迪与解题方法的引导,使学生学会如何审题、如何分析问题、如何找思路、如何选择解题方法、如何规范化地把解决问题的过程呈现出来。

(三)引导反思策略
习题教学应该使学生学会反思自己的解题活动,体验知识的理论价值和应用价值,达成知识的迁移。

(四)借题发挥策略
习题课不能就题论题,重要的是“借题发挥”,挖掘习题的多重价值,对选定的习题进行精心研究与设计,达到巩固知识和提高能力的双重目的。

教学资源与手段
资源:三角板、彩粉笔、多媒体
手段:通过多媒体大屏幕显示,更加直观形象,提高速度•
教学过程设计
大连开发区第八高级中学于丹
教学反思
我感到本节课成功之处在于:教学理念的更新:以人为本,面向全体学生,注重了学习,教学、研究同步协调的原则和“二主” 方针,表现在:
1、由生活实例引入课题收到了良好的效果,由教师举例到学生举例,再由教师点拔的方式,激起了学生强烈的学习欲望,活跃了课堂气氛,同时实现由具体到抽象的自然地过渡。

从简单而又熟悉的标准参数方程开始研究,符合循序渐进的原则,缩短了学生思维的“跨度”。

同时在探求过程中,打破了传统教学中“一言堂”的陈旧模式,由学生分组讨论,给学生展示自己思维成果的时间和空间,再在学生提问,学生解答的互动过程中使学生对问题得到了多层次、多角度地透彻地理解,这对于培养学生的表达能力、
应变能力及数学思维的严谨性等方面都起到了重要作用,真正发挥了学生的主体作用,创造了一种开放、民主、愉悦、和谐的学习氛围。

可以充分调动主体的积极性,学生们都情不自禁地加入到探索、求知的行列中,同时,学生还能从中品味发现新知的乐趣,体会知识的应用价值。

2、在对例 2作进一步研究时,通过对直线的参数方程的不同表述,使学生体会到对同一问题,可有不同解法,既培养了学生发散思维的能力,又培养了学生优化选择的意识。

3、小结以学生畅谈收获和体会,教师点拔的方式来完成,培养了学生归纳能力,使学生在回忆和归纳中再对本节课的内容和解题思想进行反思,这无疑对学生今后的学习是有指导作用的,而且是学生自我总结的东西,记忆将更为深刻和久远。

通过学生自主探究,合作交流,在学习数学的过程中,培养了学生的综合能力,这也是素质教育对课堂教学的要求。

5 、本课利用了多媒体辅助教学,节省了时间,弥补了传统教学手段的不足。

本节课的不足之处:由于探究性学习会出现许多课前无法估计的因素,如学生的提问的多样性、学生思维水平和表达能力的差异等,所以对课堂时间的把握也并不能如预期所至,若能再有一些时间在例 2 的基础上让学生通过参数方程求解时学生的反应并不如想象中的好。

教学评析
直线参数方程是解析几何中研究曲线及其性质的重要方法。

于丹老师本节课设计的知识目标、能力目标和品质素养目标,体现了以人为本,面向全体学生,学习、教学、研究同步协调的原则,很有新意。

在实施教学和完成教学目标的过程中,教师根据循序渐进的教学原则,从学生既熟悉的问题开始,缩短了学生的思维“跨度”;然后,通过题对知识的再巩固,进一步引导学生研究实际应用中参数方程问题,这样的处理对于发展学生的合情推理能力和逻辑思维能力是十分有益的。

教师注意到渗透“教学来源于实践又服务于实践” 的数学思想,恰当地选择了风暴的问题,激发了学生的学习兴趣,使课堂教学自然地过渡到直线参数方程的应用上。

于丹老师能将多种教学方法有机地运用于教学实践,例如:将学生分组讨论、师生对话、学生讲授、学生归纳小结等方法服务于“参数方程”知识的重点和难点的教学中,充分体现了以人为本,鼓励全体学生参与以及重视学法指导的教学新理念。

本课恰当地利用多媒体辅助教学,增强了教学中的直观性。

本课在教学中注意到学生数学素养的形成和培养,例如对直线的参数方程的不同表述和选取不同变数作为参数的研究,体现了教师对学生数学素养形成的重视;在教学中的种方法渗透,培养了学生的综合能力的基本素质,是数学课堂教学中实施素质教育的一次很好的尝试。

由于教师对学生思维水平和表达能力方面的差异估计不足,在时间安排上有点“前松后紧”的感觉;另外对学生思维的进一步延续和开拓的教学设想实施得也不够理想。

相关文档
最新文档