整式的乘除经典教案

合集下载

整式的乘除教案原文

整式的乘除教案原文

整式的乘除教案原文一、教学目标1. 知识与技能:(1)理解整式的乘除概念;(2)掌握整式乘除的运算法则;(3)能够熟练进行整式的乘除运算。

2. 过程与方法:(1)通过实例演示,引导学生发现整式乘除的规律;(3)设计适量练习,提高学生的运算能力。

3. 情感态度与价值观:(1)培养学生积极参与数学学习的兴趣;(2)培养学生克服困难的意志品质;(3)培养学生合作交流的能力。

二、教学重点与难点1. 教学重点:(1)整式乘除的概念;(2)整式乘除的运算法则;(3)整式乘除的运算步骤。

2. 教学难点:(1)整式乘除的运算法则的灵活运用;(2)复杂整式乘除的运算。

三、教学准备1. 教师准备:(1)熟记整式乘除的运算法则;(2)准备典型例题和练习题;(3)准备多媒体教学设备。

2. 学生准备:(1)掌握整式的基本概念;(2)了解整式加减的运算方法;(3)预习整式乘除的相关内容。

四、教学过程1. 导入新课:(1)复习整式的基本概念;(2)复习整式加减的运算方法;(3)引导学生思考整式乘除的概念及运算法则。

2. 知识讲解:(1)通过实例演示,引导学生发现整式乘除的规律;(3)讲解整式乘除的运算步骤。

3. 课堂练习:(1)设计适量练习题,让学生独立完成;(2)引导学生互相讨论,共同解决问题;(3)讲解练习题,巩固所学知识。

五、课后作业2. 布置适量课后练习题,巩固所学知识;3. 鼓励学生进行合作学习,互相交流学习心得。

六、教学拓展1. 引导学生思考:整式乘除在实际生活中的应用;2. 举例说明整式乘除在其他学科中的应用;3. 引导学生探索整式乘除的运算规律。

七、课堂小结2. 强调整式乘除在数学中的重要性;3. 鼓励学生积极参与课后练习,巩固所学知识。

八、课后作业2. 布置适量课后练习题,巩固所学知识;3. 鼓励学生进行合作学习,互相交流学习心得。

九、教学反思2. 针对学生的学习情况,调整教学策略;3. 思考如何提高学生的学习兴趣和积极性。

初中整式的乘除教案

初中整式的乘除教案

初中整式的乘除教案教学目标:1. 理解整式的乘法概念,掌握整式乘法的方法和步骤。

2. 掌握整式的除法概念,能够进行简单的整式除法运算。

3. 能够应用整式的乘除法解决实际问题。

教学重点:1. 整式的乘法方法。

2. 整式的除法概念和步骤。

教学难点:1. 整式乘法中的项的合并。

2. 整式除法中的除法法则的应用。

教学准备:1. 教学课件或黑板。

2. 练习题。

教学过程:一、导入(5分钟)1. 引导学生回顾已学的整式加减法,复习相关的数学概念和运算规则。

2. 提问:我们已经学习了整式的加减法,那么有没有什么方法可以将整式相乘或相除呢?二、整式的乘法(15分钟)1. 讲解整式乘法的概念:将两个整式相乘,得到一个新的整式。

2. 示例:给出两个整式 a(x + y) 和 b(x + y),引导学生通过分配律进行乘法运算,得到 (ax + ay + bx + by)。

3. 练习:让学生独立进行一些简单的整式乘法运算,并及时给予指导和反馈。

三、整式的除法(15分钟)1. 讲解整式除法的概念:将一个整式除以另一个整式,得到一个新的整式。

2. 示例:给出一个整式 ax + b 和另一个整式 cx + d,引导学生通过长除法或其他方法进行除法运算,得到 (ax + b) ÷ (cx + d)。

3. 练习:让学生独立进行一些简单的整式除法运算,并及时给予指导和反馈。

四、应用和拓展(15分钟)1. 给出一些实际问题,让学生应用整式的乘除法进行解决。

2. 引导学生思考整式的乘除法在实际生活中的应用,例如代数表达式的计算、几何图形的面积计算等。

五、总结和作业布置(5分钟)1. 对本节课的内容进行总结,强调整式的乘除法的概念和运算规则。

2. 布置一些练习题,让学生巩固所学的内容。

教学反思:本节课通过讲解和练习,让学生掌握了整式的乘除法概念和运算方法。

在教学过程中,要注意引导学生理解和掌握运算规则,并通过练习及时给予指导和反馈。

整式的乘除教案

整式的乘除教案

整式的乘除教案教案:整式的乘除一、教学内容本节课的教学内容选自人教版小学数学五年级上册第三单元《整式的乘除》。

本节课主要内容包括:1. 整式的乘法:单项式乘以单项式,单项式乘以多项式,多项式乘以多项式。

2. 整式的除法:单项式除以单项式,多项式除以单项式,多项式除以多项式。

二、教学目标1. 理解整式乘除的概念,掌握整式乘除的计算方法。

2. 能够运用整式乘除解决实际问题,提高解决问题的能力。

3. 培养学生的逻辑思维能力和团队合作能力。

三、教学难点与重点1. 教学难点:整式的乘除运算规则,以及如何运用这些规则解决实际问题。

2. 教学重点:整式乘除的计算方法,以及如何将这些方法应用到实际问题中。

四、教具与学具准备1. 教具:黑板、粉笔、多媒体课件。

2. 学具:练习本、铅笔、橡皮。

五、教学过程1. 实践情景引入:假设有一块长方形的地,长为8米,宽为6米,求这块地的面积。

2. 例题讲解:(1) 单项式乘以单项式:例如,3x × 4x = 12x²。

(2) 单项式乘以多项式:例如,2x × (x + 3) = 2x² + 6x。

(3) 多项式乘以多项式:例如,(x + 2) × (x + 3) = x² + 3x+ 2x + 6 = x² + 5x + 6。

(4) 单项式除以单项式:例如,12x² ÷ 4x = 3x。

(5) 多项式除以单项式:例如,(x² + 5x + 6) ÷ x = x + 5 +6/x。

(6) 多项式除以多项式:例如,(x² + 5x + 6) ÷ (x + 2) = x+ 3。

3. 随堂练习:a. 3x × 4xb. 2x × (x + 3)c. (x + 2) × (x + 3)a. 12x² ÷ 4xb. (x² + 5x + 6) ÷ xc. (x² + 5x + 6) ÷ (x + 2)4. 板书设计:整式的乘法:a. 3x × 4x = 12x²b. 2x × (x + 3) = 2x² + 6xc. (x + 2) × (x + 3) = x² + 5x + 6整式的除法:a. 12x² ÷ 4x = 3xb. (x² + 5x + 6) ÷ x = x + 5 + 6/xc. (x² + 5x + 6) ÷ (x + 2) = x + 35. 作业设计:a. 4y × 5yb. 3x × (2x 3)c. (2x + 4) × (3x 2)a. 15x² ÷ 5xb. (x² 5x + 6) ÷ xc. (x² 5x + 6) ÷ (x + 3)六、课后反思及拓展延伸1. 课后反思:本节课通过实践情景引入,使学生能够更好地理解整式的乘除概念。

初中数学整式乘除教案

初中数学整式乘除教案

初中数学整式乘除教案教学目标:1. 理解整式的概念,掌握整式乘除的基本运算法则;2. 能够熟练地进行整式的乘除运算;3. 培养学生的逻辑思维能力和解决问题的能力。

教学内容:1. 整式的概念及基本性质;2. 整式的乘法法则;3. 整式的除法法则;4. 整式乘除的综合应用。

教学步骤:一、导入(5分钟)1. 引导学生回顾小学学过的乘法和除法运算,如2×3=6,6÷3=2等;2. 提问:大家想过吗,这些运算在数学中有什么更高级的应用呢?二、新课讲解(20分钟)1. 引入整式的概念,举例说明整式的形式,如2x、3x^2、4x^3等;2. 讲解整式的乘法法则,通过具体的例子来说明,如(2x+3)×(4x-1)、(a+b)×(c+d)等;3. 讲解整式的除法法则,同样通过具体的例子来说明,如(2x^2+4x+3)÷(2x+1)、(a+b)÷(c+d)等;4. 强调整式乘除运算中的注意事项,如符号的判断、系数的处理等。

三、课堂练习(15分钟)1. 布置一些整式乘除的题目,让学生独立完成;2. 选取一些学生的作业进行讲解和点评,指出其中的错误和不足。

四、巩固提高(10分钟)1. 引导学生总结整式乘除的运算规律和技巧;2. 提供一些综合性的题目,让学生进行思考和解答,如(2x^2+4x+3)÷(2x+1)×(2x+1)、(a+b)÷(c+d)×(c+d)等。

五、课堂小结(5分钟)1. 回顾本节课所学的内容,让学生明确整式乘除的重要性;2. 提醒学生在平时的学习中多加强整式乘除的练习,提高自己的数学水平。

教学评价:1. 课后收集学生的作业,评估学生的掌握情况;2. 在下一节课开始时,进行一次整式乘除的测试,检验学生的学习效果;3. 关注学生在课堂上的参与度和提问反馈,了解学生的学习状况。

教学反思:本节课通过讲解整式乘除的基本运算法则,让学生掌握了整式乘除的方法和技巧。

七年级数学下册《整式的乘除知识结构》教案、教学设计

七年级数学下册《整式的乘除知识结构》教案、教学设计
3.加强对符号处理的训练,设计专门的习题,让学生在练习过程中注意符号的变化,培养严谨的计算习惯。
4.教学过程中,注重以下设想:
a.情境创设:结合生活实际,创设有趣的问题情境,激发学生学习兴趣,引导学生主动参与课堂讨论。
b.分层教学:针对学生的个体差异,设计不同难度的教学活动,使每个学生都能在原有基础上得到提高。
四、教学内容与过程
(一)导入新课
在导入新课阶段,我将采用以下方法:
1.利用生活实例:通过展示实际生活中的问题,如房屋面积计算、购物优惠等,引导学生发现整式乘除在生活中的应用,从而引出整式的乘除知识结构。
2.复习旧知识:简要回顾上节课所学的整式加减法,为新课的学习做好铺垫。
3.提出问题:向学生提问:“我们已经学会了整式的加减,那么整式的乘除法则是怎样的呢?”引发学生思考,激发学习兴趣。-计算某长方形的面积和体,给出长方形的长度、宽度和高度;
-根据购物打折问题,计算原价、折后价以及节省的金额;
-利用整式乘除法则解决简单的行程问题。
3.提高题:针对学有余力的学生,布置一些难度较大的整式乘除题目,培养学生的高级思维能力和解决问题的深度。
-涉及多项式乘以多项式的复合运算题;
-含有未知数的整式乘除问题;
3.教师引导:在讨论过程中,适时给予提示和引导,帮助学生更好地理解和掌握整式乘除法则。
(四)课堂练习
在课堂练习阶段,我将设计以下环节:
1.基础练习:针对整式乘除法则,设计基础习题,让学生独立完成,巩固所学知识。
2.提高练习:设计具有一定难度的练习题,让学生在解决问题的过程中,提高整式乘除运算能力。
3.答疑解惑:针对学生在练习中遇到的问题,进行解答和指导,帮助学生掌握整式乘除法则。
1.对整式乘除法则的理解不够深入,容易混淆不同乘除法则的使用场景。

整式的乘除教案

整式的乘除教案

整式的乘除教案教学目标:1. 理解整式的乘法和除法概念。

2. 掌握整式的乘法和除法运算方法。

3. 能够运用整式的乘除法解决实际问题。

教学重点:1. 整式的乘法运算。

2. 整式的除法运算。

教学难点:1. 运用整式的乘除法解决实际问题。

教学准备:教师准备黑板、白板、彩色粉笔、教师用书、学生用书、习题。

教学过程:一、导入新知1. 提出问题:同学们,我们今天要学习什么内容?2. 回答问题:今天我们要学习整式的乘法和除法。

3. 引入新知:回顾一下,什么是整式?如何进行整式的加减运算?二、整式的乘法1. 提问:整式的乘法是指什么意思?2. 解释:整式的乘法指的是将两个整式相乘得到一个新的整式。

3. 解答疑惑:同学们,你们对整式的乘法有什么疑问吗?三、整式的乘法运算方法1. 教师讲解:在进行整式的乘法运算时,我们需要将每一个项按照指数从大到小的顺序进行排列,并且将相同指数的项合并。

然后,使用乘法分配律将没有相同指数的项进行相乘,最后将所有项相加得到最终的结果。

2. 教师示范:我们来看一个例子:(3x^2 + 2x + 1) * (2x + 1)首先,我们将每一个项按照指数从大到小的顺序排列:3x^2 * 2x + 3x^2 * 1 + 2x * 2x + 2x * 1 + 1 * 2x + 1 * 1然后,将相同指数的项合并:6x^3 + 3x^2 + 4x^2 + 2x + 2x + 1最后,将所有项相加得到最终结果:6x^3 + 7x^2 + 4x + 13. 同学们,请你们跟着我一起做几个习题,加深对整式乘法运算方法的理解。

四、整式的除法1. 提问:整式的除法是指什么意思?2. 解释:整式的除法是指将一个整式除以另一个整式得到商式和余式的过程。

3. 解答疑惑:同学们,你们对整式的除法有什么疑问吗?五、整式的除法运算方法1. 教师讲解:在进行整式的除法运算时,我们需要按照除法的步骤,从被除式中取出与除式相同次数的项,然后进行相除,将得到的商式写在上方,得到的余式写在下方。

《整式的乘除》优秀教案

《整式的乘除》优秀教案

第一章整式的乘除单元备课教学目标1.经历探索同底数幂的乘法和除法、幂的乘方、积的乘方运算性质的过程,发展抽象、概括能力和符号感,会根据指数运算的性质进行相应的运算。

2.经历探索单项式乘单项式、单项式乘多项式、多项式乘多项式运算法则(其中多项式相乘仅指一次式相乘)的过程,理解整式乘法的算理,会进行简单的整式的乘法的运算。

进一步发展观察、归纳、类比、概括的能力,发展有条理的思维和语言表达能力。

3.了解零指数幂及负整数指数幂的意义,体验指数概念的扩充方式,发展合情推理的能力。

4.会用科学记数法表示绝对值小于1的非零数。

(包括在计算器上表示)教学重点难点本章的重点是整式的乘法,这是由整式的乘法地位和作用所决定,因而要有针对性的加强练习,使学生能熟练地运用运算法则进行运算。

本章的难点是零指数与负指数。

正整数幂的运算法则是在底数是有理数的基础上讨论的,幂的运算把乘除运算转化为指数的加减运算,把乘方运算转化为指数的乘法运算。

它既是对有理数运算的综合,又是从数到式的抽象,法则中的字母,既可以表示数,又可以表示整式。

本章的关键是单项式的乘法。

整式的乘法在运算过程中,最终都要转化成单项式的乘法,而单项式是有理数与字母的积(包括乘方)组成的代数式,所以解决单项式的乘法问题,应抓住两点:其一是系数与系数之间的乘除,其二是字母的幂与字母的幂的乘法。

而系数与系数的乘法,是有理数的乘法,字母的幂与字母的幂的乘法,要按照同底数幂的乘法法则进行。

课时划分111 同底数幂的乘法1课时112 积的乘方与幂的乘方2课时113 单项式的乘法2课时114 多项式乘多项式2课时115 同底数幂的除法1课时116 零指数和负整数指数幂3课时回顾与总结1课时共计12课时。

整式的乘除教案

整式的乘除教案

整式的乘除教案教案标题:整式的乘除教案教学目标:1. 理解整式的概念,并能够将其与分式进行比较。

2. 掌握整式的乘法原理,能够进行整式的乘法运算。

3. 掌握整式的除法原理,能够进行整式的除法运算。

4. 培养学生的逻辑思维和解决问题的能力。

教学准备:白板、黑板笔、教学PPT、教材教学步骤:步骤一:导入(5分钟)通过举例比较整式和分式的相同点和不同点,引发学生对整式的兴趣。

步骤二:概念讲解(10分钟)1. 讲解整式的定义及其组成,强调整式中只包含有理数和代数式,没有分母为零的字母。

2. 比较整式和分式的区别,分析其异同点。

步骤三:整式的乘法(20分钟)1. 讲解整式的乘法原理,引导学生注意整式乘法中要注意项数和指数的运算规律。

2. 通过具体例子进行讲解和演示,教学PPT的运用将有助于学生理解乘法原理。

3. 针对不同难度的乘法练习题,分别进行课堂讲解和个别辅导。

步骤四:整式的除法(20分钟)1. 讲解整式的除法原理,引导学生注意除法中的项数和指数的运算规律。

2. 通过具体例子进行讲解和演示,教学PPT的运用将有助于学生理解除法原理。

3. 针对不同难度的除法练习题,分别进行课堂讲解和个别辅导。

步骤五:习题训练(15分钟)布置一定数量的练习题,让学生独立进行练习,并及时纠正他们的错误。

通过教师的巡视和个别辅导,解决学生在习题训练中遇到的问题。

步骤六:课堂小结(5分钟)对整节课的内容进行小结,并强调整式乘除的重点和难点。

鼓励学生留意课下的习题复习,巩固所学知识。

课后拓展:指导学生找一种生活实例,列出相关的整式,并通过乘法和除法运算,计算相关问题的答案。

教学反思:此教案针对整式的乘除运算进行设计,通过理论讲解、例题演示和习题训练等多种教学手段,旨在帮助学生全面理解整式的乘除原理,掌握相应的运算技巧,并培养学生的逻辑思维和解决问题的能力。

在教学过程中,要注意根据学生的实际情况及时调整教学节奏,因材施教,保证教学效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教师姓名学生姓名填写日期
学科年级教材版本
课题名称乘法公式、整式的化

课时计划上课时间
教学目标同步教学知识运用平方差公式,完全平方式进行计算、运用平方差公式和完全
平方公式来进行整式化简
个性化问题解决
教学重点平方差公式的推导及应用、理解完全平方公式,运用公式进行计算
教学难点理解公式中的字母a,b、综合运用平方差公式和完全平方公式进行整式的化简、运用乘法公式解决实际问题
教学过程
教师活动学生活动作业情况反馈:
回顾:
1、利用旋转变换构造出全等三角形(重点)
例1、如图,已知点E、F分别在正方形ABCD的边BC、CD上,
并且∠DAF=∠EAF.
求证:BE+DF=AE
例2、如图,正方形ABCD的边BC、CD上取E、F两点,使∠
EAF=45°,AG⊥EF于G.
求证:AG=AB.
课堂练习
例2、综合提高:
3、单项式的乘法
单项式与单项式相乘的法则:单项式与单项式相乘,把它们的系数、同底数幂分别相乘,
其余字母连同它的指数不变,作为积的因式。

单项式与多项式相乘的法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,
再把所得的积相加。

4、多项式的乘法
多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项分别乘另一个多项式的每一项,再把所得的积相加。

例1、当x=1时,代数式8
ax的值为18,这时,代数式2
-bx
3
22+
-a
b=()
9+
6
例2、如图,正方形卡片A类,B类和长方形卡片C类若干张,如果要用A、B、C三类卡片拼一个边长为(a+2b)的正方形,则需要C类卡片多少张()
如果要用A、B、C三类卡片拼一个长为(a+2b)、宽为(a+b)的大长方形,则需要C类卡片多少张()
5、乘法公式
①平方差公式:(a+b)(a-b)=a2-b2
即两数和与这两数差的积等于这两数的平方差。

②两数和的完全平方公式:(a+b)2=a2+2ab+b2
即两数和的平方,等于这两个数的平方和,加上这两数积的2倍。

两数差的完全平方公式:(a-b)2=a2-2ab+b2
即两数差的平方,等于这两个数的平方差,减去这两数积的2倍。

上述两个公式统称完全平方公式。

例1、阅读题;我们在计算(2+1)(22+1)(24+1)(28+1)(216+1)(232+1),发现直接运算很麻烦,如果在算式前乘以(2-1),即1,原算式的值不变,而且还使整个算是能用乘法公式计算,解答过程如下;原式=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)
=(22-1)(22+1)(24+1)(28+1)(216+1)(232+1)
=(24-1)(24+1)(28+1)(216+1)(232+1)
=....=264-1
你能用上述方法算出(3+1)(32+1)(34+1)(38+1)(316+1)的值吗请试试看
例2、仔细观察,探索规律
(x-1)(x+1)=x2-1
(x-1)(x2+x+1)=x3-1
(x-1)(x3+x2+x+1)=x4-1
(x-1)(x4+x3+x2+x+1)=x5-1
……
(1)试求25+24+23+22+2+1的值;
(2)写出22006+22005+22004+…+2+1的个位数.
例3、32-12=4×2; ②42-22=4×3; ③52-32=4×4; ④62-42=4×5;
(1)第5个等式是( );
(2)第100个等式是( );
(3)第N个等式是( );
(4)说明第N个等式的正确性
6、整式的化简
整式的化简应遵循先乘方、再乘除、最后算加减的顺序。

能运用乘法公式的则运用乘法公式
例1、如图所示,用该几何图形的面积可以表示的乘法公式是
例2、按下图中所示的两种方式分割正方形,你能利用面积的不同表示方法写出两个等式,并检验等式的正确性吗
例3、图①是一个边长为()
m n
+的正方形,小颖将图①中的阴影部分拼成图②的形状,由图①和图②,能验证的式子是()
A.22
()()4
m n m n mn
+--= B.222
()()2
m n m n mn
+-+= C.222
()2
m n mn m n
-+=+ D.22
()()
m n m n m n
+-=-
例4、从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算两个图形阴影部分的面积,可以验证成立的公式为()
A.222
()
a b a b
-=-
B.222
()2
a b a ab b
+=++
C.222
()2
a b a ab b
-=-+
←→
→←
m n
m
n
m
n
图①图②
a
b
a b
甲乙
D. 22()()a b a b a b -=+-
例5、任何一个正整数n 都可以进行这样的分解:n s t =⨯(s t ,是正整数,且s t ≤),如果p q ⨯在n 的所有这种分解中两因数之差的绝对值最小,我们就称p q ⨯是n 的最佳分解,并规定:()p
F n q
=
.例如18可以分解成118⨯,29⨯,36⨯这三种,这时就有31(18)62
F =
=.
给出下列关于()F n 的说法:(1)1(2)2F =;(2)3
(24)8F =;(3)(27)3F =;(4)若n 是一个完全平方数,则()1F n =.其中正确说法的个数是( ) A.1
B.2
C.3
D.4
例6、
提交时间
教研组长审批 教研主任审批。

相关文档
最新文档