抽水试验报告
抽水试验报告

(三)、抽水试验现场资料整理
进行抽水试验时,需要在现场整理编制下列曲线图表,可及时了解试验进行情况,检查有无反常。
1、Q、s~t过程曲线;
2、Q=f(s)关系曲线;
(四)、成井工艺
主抽水井T2W1、T2W2,孔径Ф200,泥浆钻进,钻至预定深度,然后下井管(井径Ф108),用清水冲孔洗井后填砾。
第一层微承压含水层为③-2c3+d3-4粉土夹粉砂,隔水顶板为②-1b2-3粘土、粉质粘土、②-2b4粉质粘土、淤泥质粉质粘土、②-3b2-3粉质粘土和③-1b1-2层粉质粘土,隔水底板为③-3b1-2层粉质粘土(层顶埋深)。
第二层微承压含水层为③-4b2-3粉质粘土(含团块状粉细砂)、③-4c1-2+d1-2层粉砂夹粉土、③-4e层含卵砾石粉细砂,隔水顶板为③-3b1-2层粉质粘土、③-3b2-3层粉质粘土和③-3b3-4层淤泥质粉质粘土、粉质粘土,隔水底板为下伏岩层(层顶埋深)。
1、地表水
场地内地表水体极为发育,沟塘众多,深浅不一。场地南侧有东西向的洋山河,西侧前庄南路以西为内河。勘察期间场地内地表水体水面高程为~(吴淞高程系),水深~,淤泥厚度~。经调查了解,洋山河近十年最高水位约为(吴淞高程系)、内河近十年最高水位约为(吴淞高程系)。
场地内及周边地表水与地下水存在着较为密切的水力关系——互补关系,且对工程建设有较大影响。
(2)基岩裂隙水
基岩裂隙水按含水岩层的岩性划分为碎屑岩类裂隙水。勘探揭示,碎屑岩类裂隙水的含水层为白垩系葛村组(K1g)泥质粉砂岩。岩层风化强烈,强风化岩层中含有少量风化裂隙水;
试 验报告
深部风化裂隙减弱,存在构造裂隙,但裂隙呈闭合状,多泥质充填,根据区域水文地质资料,其渗透性较差,水量贫乏。
抽水试验报告

铜仁骏逸江山商住楼钻孔抽水试验报告1、钻孔抽水试验选用钻孔ZK69作单孔抽水试验,位于ZK39和ZK40轴线的之间,孔口高程253.7m,孔深26.8m,孔径φ130。
钻孔地质资料详见ZK69柱状图。
单孔稳定流抽水试验作三次降深: S1=4.98m, Q1=0.513L/S; S2=3.00m, Q2=0.349L/S;S3=1.50m, Q3=0.203L/S。
本次抽水试验参照现行《贵州省地方标准》(DB22/46—2004),作反向抽水,动水位观测时间在开始抽水后第3、5、10、30、45、60、90分钟进行观测,以后每30分钟观测一次,稳定后可延至1小时1次,并与流量观测同步。
每次降深稳定的延长时间分别为16、8、6小时。
停泵后立即进行恢复水位观测,观测时间间隔与抽水试验要求相同,观测孔的水位观测时间与抽水孔同步,抽水试验情况详见抽水试验综合成果表。
根据抽水试验资料,降深及流量随时间的过程曲线见图2,Q-S曲线为抛物线特点,结合场地岩性特征可确定场地地下水为岩溶潜水,根据钻孔水文地质结构和区域水文地质资料,抽水孔为潜水非完整井。
2、影响半径的确定据地质出版社《水文地质手册》P546图解法确定影响半径,在抽水试验中,特选用与抽水孔在同一线上的ZK70、ZK71、ZK72作水位变化观测孔。
在直角坐标系上,将抽水孔最大降深S1=4.98m抽水时,与分布在同一直线上的各观测孔的同一时刻所测得的动水位连起来,沿曲线趋势延长,与抽水前的静止水位线相交,该交点至抽水孔的距离就是影响半径,R=19.20m,见图4。
3、渗透系数K的计算按地下水动力学中单孔潜水非完整井考虑,渗透系数K 按下列公式计算:式中:Q—涌水量,m3/d,取值: Q=0.513L/s =44.32m3/dS—水位降深,m,取值:S=4.98mL—有效进水段长度,m,取值:L=19.48mR—影响半径,m,取值:R=19.20m,由观测孔资料确定。
抽水试验报告

抽水试验报告一、引言深基坑是城市建设中常见的工程,其施工过程中常会涉及地下水。
为了了解地下水的水质和水位,以及对基坑施工的可能影响,需要进行抽水试验。
本次试验旨在通过抽水试验,获取并研究深基坑地下水的相关参数,为基坑工程的施工提供科学依据。
二、试验设备和方法1.试验设备:本次试验使用了水泵、水位计以及水样采集器等设备。
2.试验方法:(1)确定试验地点:选择一深基坑工地作为试验地点,并将试验点确定在基坑附近,以确保地下水的获取。
(2)安装水位计:在试验地点附近挖掘一个试验井,将水位计安装在试验井中,并记录初始水位。
(3)设置水泵:在试验地点附近安装水泵,并与试验井相连。
通过控制水泵的开启和关闭,实现地下水位的改变,并记录不同时间段的水位变化。
(4)采集水样:在试验的不同时间点,使用水样采集器采集地下水样本,送至实验室进行水质分析。
三、试验结果与分析1.水位变化曲线图:根据试验结果,我们制作了基于时间的水位变化曲线图。
从图中可以看出,在开始抽水后,地下水位逐渐下降,直至稳定。
当停止抽水后,水位开始逐渐恢复至初始水位。
这表明水位与抽水的时间和强度密切相关。
2.水质分析结果:将试验期间采集的水样送至实验室进行水质分析,结果显示,在试验地点的水质为优良。
水样中包含的主要物质为溶解性氧、硫酸盐、硝酸盐、氯化物等。
其中,硫酸盐和硝酸盐的含量较高,这可能与周围环境和地质条件有关。
四、结果讨论通过本次实验,我们获得了深基坑地下水的水位变化和水质情况。
根据水位变化曲线,我们可以估计地下水位和抽水时间的关系,并掌握抽水过程中水位的变化规律。
根据水质分析结果,我们对地下水的水质进行了初步评估,发现了硫酸盐和硝酸盐的较高含量。
五、结论1.地下水位与抽水时间和强度相关,可以通过抽水控制地下水位。
2.试验地点的地下水水质为优良,但硫酸盐和硝酸盐的含量较高。
六、试验总结与改进建议通过本次试验,我们对深基坑地下水的水位和水质有了初步了解。
钻孔抽水试验报告

钻孔抽水试验报告目录第一章抽水试验成果报告 (4)1工程概况 (4)2实施深井降水背景 (4)2.1 搅拌桩试桩 (4)2.2 地质条件勘探 (4)2.3 降水方案的确定 (5)3降水试验的目的和任务 (6)4试验场地的选择 (6)5降水试验方案的实施 (6)5.1 试验井的结构及平面布置 (6)5.2 试验井及观测井技术参数 (7)5.3 降水设备 (7)5.4 试验步骤 (8)5.5 试验数据记录表 (8)5.6 抽水试验设备器具配置 (8)5.7 人员配置 (9)5.8 抽水试验数据观测要求: (9)6试验数据成果汇总 (10)7水文地质参数计算及整理分析 (12)7.1 渗透系数k值计算 (12)7.2影响半径R计算: (14)7.3 水文地质参数成果 (14)第二章基坑深井降水设计方案 (15)1降水深度 (15)2含水层水文地质参数确定 (15)3基坑总涌水量 (15)4干扰井单井出水量 (16)5总井数 (16)6降水井布置 (16)7降水井结构 (17)8水泵选型 (17)9降水供电设计 (17)10降水运行工期安排 (18)11深井降水工程量 (19)12意见与建议 (19)第三章深井降水施工方案 (20)1施工方案 (20)2施工顺序及工期安排 (20)3降水井成井施工 (20)3.1 施工工艺流程 (20)3.2 施工方法 (20)4排水施工 (22)5供电设施 (22)5.1 变压器 (22)5.2 备用电源 (22)5.3电缆敷设 (22)6降水井运行及管理 (22)6.1 水位和水量控制 (22)6.2 井管保护 (22)6.3 降水运行保障措施 (22)7降水井施工设备、人员配置 (24)8质量保证措施 (26)9安全和文明施工、环境保护措施 (27)第四章降水施工、运行管理费用 (28)1钻井费用 (28)2降水井运行费用 (28)3电缆、排水管费用 (28)4合计费用 (28)黑龙江干流堤防工程第二十标街津口闸现场抽水试验成果报告及基坑深井降水设计和施工方案第一章抽水试验成果报告1 工程概况街津口闸址河床高程43.3~45.28m左右,揭露的地层岩性主要有:①低液限粉土、②级配不良中砂、③级配良好中砾、③-1级配不良中砂、④低液限粉土、⑤级配良好中砾、⑥低液限粘土、⑦级配良好中砾等。
抽水试验报告

抽水试验报告抽水试验是指对地下水井进行测试,以确定井的水文地质特性,包括井的生产能力、水位变化、水化学特性等等。
本报告将详细介绍抽水试验的过程和结果。
一、抽水试验的目的及意义抽水试验的主要目的是为了测定井的储水能力、地下水的流动状态和水文地质条件,进而确定井的生产能力、水位变化规律和水化学特性,指导水资源的开发和管理。
抽水试验对于地下水开发利用具有重要的意义,尤其对于确定井的生产能力和水位变化规律等方面有重要的指导作用。
二、抽水试验的方法本次抽水试验采用了静态抽水试验的方法进行,测试周期为48小时。
在试验期间,以恒定流量的方式排出水井的地下水量,从而确定井的水文地质特性。
三、试验过程1.试验前的准备工作a. 检查设备在进行试验前,首先需要检查设备,确保设备齐全完好、使用安全可靠。
检查设备包括泵、试验管、计时器、空气压缩机等,确保这些设备能够正常运转。
b. 制定试验计划制定试验计划是试验的关键,需要根据实际情况制定合理的试验方案。
试验计划需要考虑井的深度、直径、孔径以及孔隙度、渗透系数等地下水文地质参数,在此基础上确定试验周期。
c. 安装试验管试验管是连接地下水井和地面设备的管道,安装试验管需要特别小心谨慎。
在安装试验管时,需要确保试验管与井壁之间的空隙足够小,以防止地下水通过空隙渗透入土壤和岩石中。
2.试验过程中的数据测量a. 测量地下水位在试验中需要不断地测量井口的水位,以便了解井的液位变化情况。
为了确保水位的准确性,测量需要同时进行多次,然后取平均值。
在试验期间,需要测量地下水的流量,以确定井的生产能力。
测量地下水流量的方法有多种,包括喷嘴测量法、磁流量计法、涡街流量计法等。
3.试验后的数据处理和分析在试验结束后,需要对试验数据进行处理和分析,以确定井的水文地质特性。
数据处理和分析包括流量曲线绘制、水位变化规律分析、水力学参数的计算。
四、试验结果及分析本次试验的结果显示,井的水位随时间的变化呈现出一个典型的随时间逐渐下降的趋势,而井的流量则随时间的变化对应呈现出一个典型的随时间逐渐上升的趋势。
吉田国际广场水文地质抽水试验报告(04-T-038)

金墅国际二期9幢高层及地下室基坑降水工程勘察报告一、工程概况我院受吉田建设开发(昆山)有限公司的委托,对其拟建吉田国际广场进行了岩土工程详细勘察,由于拟建国际广场内均有1~2层地下室(开挖深度4~10米)。
为了保证地下基坑的顺利进行,故对该场地进行了专门的水文地质抽水试验,以提供基坑设计所需的水文地质参数。
二、执行规范及参考文献1、《供水水文地质勘察规范》(GB50027-2001);2、《岩土工程勘察规范》(GB 50021-2001);3、《供水水文地质手册》(第二册1986版);4、《水文地质手册》(1983版)。
三、区域水文地质概况据《我院近年来搜集的资料,昆山市历史最高潜水位为0.50m(埋深)。
四、场地水文地质条件1.场地地形地貌拟建场地位于昆山市柏庐路、中华园路、创业路、嵩山路所围地块,本场地地貌形态单一,隶属太湖冲击平原,成井深度28.0米内为一套第四纪晚更新世以来的冲积相~浅海相沉积物,本场地地势较平坦,测得勘探点地面为189~1.97米。
2.场地地层概况根据现场钻探揭示,本场地28.0米以浅地层主要由粘性土及粉土(砂)构成,其土层分布情况见表1:场地地层概况表13.1 地表水场地内的地表水主要为场地东侧河道中的水,主要接受大气降水及河流注入,主要排泄方式为自然蒸发。
3.2 潜水潜水主要分布于①素填土、②粉质粘土、③淤泥质粉质粘土中,富水性差。
主要接受大气降水及农田灌溉补给,以地面蒸发为主要排泄途径,水位随季节性变化明显。
3.3 微承压水微承压水主要赋存于⑦1粉土夹粉砂、⑦2粉砂夹粉土、⑨粉砂夹粉土中,富水性一般,透水性较好。
主要补给来源为大气降水,以民井抽取及地下水侧向迳流为主要排泄方式。
4、静止水位的量测4.1 潜水位稳定水位量测本次潜水位量测方法是在场地内钻3只3米深干钻孔,24小时后见潜水位。
4.3 微承压水稳定水位量测本次微承压稳定水位量测利用MF47型万能用电表在抽水井中量测,测得的微承压稳定水位标高为0.02~0.35米。
抽水试验报告4.24

4.2 资料整理 现场资料整理主要是绘制 Q-t 曲线、s-t 曲线,详见以下:
8
Q-t 曲线、s-t 曲线表
第二章:试验场地工程工程地质及水文地质条件 2.1 气象水文 杭州市地属亚热带季风气候区。四季分明,温暖湿润,雨量充沛。多年平均 气温 16.5℃,极端最高气温 40.3℃(2003 年 8 月 1 日),极端最低气温-9.6℃ (1969 年 2 月 6 日)。历年平均降雨量 1400.7mm,年最大降水量 2354.6mm,年 最小降水量 951.7mm,年均大雨(日雨量≥25mm/d)以上日数 16 天左右,年均暴 雨(日雨量≥50mm/d)以上日数 3.5 天,年均大暴雨(日雨量≥100mm/d)以上 日数不到 0.5 天。降雨主要集中在 4~6 月(梅雨季)和 7~9 月(台风雨季), 梅雨季降水强度不大,但持续时间长,极有利于地下水的补给,是地下水的丰水 季 节 。 日 最 大 降 雨 量 191.3mm ( 2007.10.7 ) , 1 小 时 最 大 降 雨 量 77.6mm(1987.7.22)。年均蒸发量 1252.8mm,多年平均相对湿度 80~82%;多年
m m
各观测井降深情况见下表: 各观测井降深情况表
抽水次序 第一级降深 第二级降深 第三级降深
.40 9.50 11.10
第四章:试验资料整理 4.1 原始记录整理 将现场采集的每阶段数据进行了汇编,详见以下: 第一阶段:抽水孔与观测孔的抽水及恢复的 t-s 记录;流量观测记录 第二阶段:每个落程的水位观测记录、流量观测记录 第三阶段:抽水孔与观测孔的抽水及恢复的 t-s 记录;流量观测记录
1
平均雷暴日数 36 天,最多雷暴年 56 天;多年平均大雾 51 天,最多大雾年 64 天;全年平均日照 1899.9 小时,无霜期 209 天;最大积雪厚度为 30cm。 夏季盛行南-西南风,年平均风速 1.3~2.4m/s,冬季盛行西北风,全年主导 风向以西南风和西北风为主,其频率分为 10%~25%。全年 0~3.0m/s 风速所见 比例为 92.4%。 7~9 月份易受台风影响, 据杭州气象台实测历史最大风速为 28m/s (1967 年 8 月),风向 ESE。 2.2 场地工程地质条件 根据详勘报告,各地基岩土层的分层描述如下: ①1 杂填土:杂色,松散,以碎石、砖块、砼块、建筑垃圾等为主,粘性土、 粉土充填其中,含较多植物根茎,夹有少量有机质、腐殖质,局部为硬度较高的 老建筑物基础,层厚 2.20~5.50m。 ③-1 粘质粉土:灰色、灰黄色,湿~很湿,稍密,含云母碎片,该层全场分 布,层顶高程 1.38~4.89m,层厚 5.90~9.50m。 ③-2 砂质粉土夹粉砂:灰色、灰黄色,湿,稍密~中密,含云母碎片,夹粉 砂,该层全场分布,层顶高程-3.16~-6.18m,层厚 2.50~5.80m。 ③-3 粘质粉土:灰色,很湿,稍密,含云母碎片,底部粘粒含量较高,该 层全场分布,层顶高程-7.44~-10.45m,层厚 2.80~6.60m。 ④淤泥质粉质粘土:灰色,流塑,含腐殖质、有机质,局部夹薄层粉土,该 层全场分布,层顶高程-11.54~-14.67m,层厚 2.10~6.80m。 ⑤粉质粘土:上部灰绿色、下部灰黄色,可塑~硬可塑,含云母及氧化铁斑 点,局部夹薄层状粉土,该层全场分布,层顶高程-16.76~-19.78m,层厚 2.70~ 6.70m。 ⑦-1 粉质粘土混粉砂:灰黄色,可塑,含氧化铁斑点和少量云母碎片,混粉 砂,局部粉砂含量较高,该层全场分布,层顶高程-20.64~-24.34m,层厚 1.20~ 6.00m。 ⑦-2 粉砂:灰黄色,饱和,中密,以粉砂为主,局部含细砂和少量粘性土, 偶见少量砾石,底部砾石含量增多,⑦-1 粉质粘土混粉砂:灰黄色,可塑,含氧 化铁斑点和少量云母碎片,混粉砂,局部粉砂含量较高,该层全场分布,层顶高 程-22.70~-27.46m,层厚 1.20~6.20m。
吉林大学抽水试验设计报告

目录第一章、项目概况 (2)第二章、工作区概况 (2)1、地理位置 (2)2、地形地貌 (2)3、气象水文 (3)4、地质条件 (3)5、水文地质条件 (4)6、井孔及地下水流场 (4)第三章、抽水试验目的 (5)第四章、抽水试验设计依据 (5)第五章、抽水试验方案 (5)第六章、抽水试验技术要求 (6)1、水位监测 (6)2、流量监测 (6)3、水温监测 (6)4、水质监测 (7)第七章、水文地质参数计算方法 (7)1、稳定流Dupuit公式法 (7)2、Theis 配线法 (7)3、Jacob 直线图解法 (7)4、水位恢复法 (7)第八章、预期成果 (7)(吉林大学2012级地下水秘)第一章、项目概况吉林大学地下水长期观测试验场位于吉林大学朝阳校区地质宫后侧的小型地下水原位试验场,始建于2010年10月,占地约1500m2。
配置TRM-ZS2型小型气象站、PC-2S型土壤水分测定系统以及8眼地下水位动态长期监测井。
作为吉林大学地下水科学与工程专业、水文与水资源工程专业的综合实践场所,试验场具备气象观测、地下水位动态观测、土壤水分观测、地下水水质监测等功能。
自2012年开始,该试验场地增加了本科三年级生产实习的抽水试验内容。
第二章、工作区概况(地理位置,分布范围,地形地貌,气象水文,地质与水文地质条件,井孔位置分布,井径、深度、高程,初始流场等值线)1、地理位置抽水试验场位于长春市中部吉林大学朝阳校区内,长春市是吉林省省会,是全省的政治、经济、文化和交通中心。
地处我国松辽平原东部,是东部低山丘陵向西部台地平原的过渡地带。
地理坐标为E 125°11′~125°27′,N 43°45′~44°00′。
西北与松原市毗邻,西南和四平市相连,东南与吉林市相依,东北同黑龙江省接壤。
第二松花江、饮马河、伊通河纵贯其间,伊通河为主要河流,沿河两岸则为平坦的冲积平原。
2、地形地貌长春到四平深断裂是一条分割山地与平原的朱构造线,构造线以东为隆起区,以西为沉降区,长春地区位于隆起区和沉降区之间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
深部风化裂隙减弱,存在构造裂隙,但裂隙呈闭合状,多泥质充填,根据区域水文地质资料,其渗透性较差,水量贫乏。
三、试验设计与实施
(一)、抽水井及观测井的设计与布置
本次试验采用承压水完整井的稳定流方法测试承压含水层③-2d+c3-4层粉土夹粉砂的渗透系数。在场地内布置两组试验井,一组由抽水井(T2W1)和水位观测井 (T2G1)组成,孔深分别为13.0m、11.0m;另一组由抽水井(T2W2)和水位观测井 (T2G2)组成,孔深分别为8.0m、7.0m。具体位置详见《试验点平面布置图》。抽水井结构见《抽水井结构图》。
(8)置泵洗井试抽水:本次抽水设备采用的是180柴油机带动的160(l/s)的泥浆泵,将浑浊的水抽至清水后,正式进行抽水试验。
2、观测井成井工艺
观测井采用泥浆钻进,孔径Ф146,钻至预定深度,然后下井管(井径Ф89),用清水洗孔,水变清后填砾。
(五)、试验实施情况
试验自2010年5月18日进场至2010年5月24日结束。5月18日开始开始抽水井T2W1、及T2W2与观测井T2G1、T2G2的施工,T2W1开孔口径Φ200mm,3.6m至③-2c3+d3-4粉土、粉砂层,11.5m至③-3b1-2粉质粘土层,钻至13.0m,下13.5mΦ108mm井管,其中下部滤水管9.5m,上部井管4m,然后洗井,至清水后,开始小泵量下砾料,填至3.0m,上部再用粘土封堵隔死,最后开始试抽水,当天完成;T2W2开孔口径Φ200mm,4.6m至③-2c3+d3-4粉土、粉砂层,9.8m至③-3b1-2粉质粘土层,钻至11.0m,下11.5mΦ108mm井管,其中下部滤水管6.5m,上部井管5m,然后洗井,至清水后,开始小泵量下砾料,填至4.0m,上部再用粘土封堵隔死,最后开始试抽水,当天完成;当天还完成另外两口观测井T2G1、T2G2的施工,孔径Φ146,分别清水钻至8.0m、7.0m,下Φ89井管后洗井,分别填砾料至3.0m、4.0m,上部用粘土球封堵隔死。待水位稳定后进行抽水试验。
孔号
流量L/s
降深(m)
孔号
流量L/s
降深(m)
T2W1
1.29
4.19
T2W2
0.81
4.03
T2G1
1.05
T2G2
0.97
根据Q-s曲线,基本呈直线, 符合承压水特征。影响半径,按下式计算:
试 验报告
计算结果如下:
③-2c3+d3-4:
孔号
T2W1
T2W2
渗透系数(10-4cm/s)
9.64
9.44
第二层微承压含水层为③-4b2-3粉质粘土(含团块状粉细砂)、③-4c1-2+d1-2层粉砂夹粉土、 -4e层含卵砾石粉细砂,隔水顶板为③-3b1-2层粉质粘土、③-3b2-3层粉质粘土和③-3b3-4层淤泥质粉质粘土、粉质粘土,隔水底板为下伏岩层(层顶埋深24.7-37.6m)。
(2)基岩裂隙水
基岩裂隙水按含水岩层的岩性划分为碎屑岩类裂隙水。勘探揭示,碎屑岩类裂隙水的含水层为白垩系葛村组(K1g)泥质粉砂岩。岩层风化强烈,强风化岩层中含有少量风化裂隙水;
2、稳定水位观测
要求每半小时测定一次,三次所测数据相同或4小时内水位相差不超过2cm,即为稳定水位。稳定延续时间要求不少于8小时。
3、恢复水位观测
抽水试验结束或中途因故停泵,需进行恢复水位观测。观测时间间距为:1、3、5、10、15、30分钟,以后每隔30分钟观测一次,直至恢复至稳定水位,观测精度要求同稳定水位的观测。
2、《岩土工程勘察规范》GB50021-2001
二、场地工程地质及水文地质条件
(一)、场区地形地貌
拟建场地位于南京市江宁区绕越高速南侧,南京协鑫生活污泥发电有限公司以北,东北侧位前庄南路,西南为双龙大道。东北部原为江丘垂钓中心,垂钓中心内有多处鱼塘,垂钓中心南侧为南京民光汽车贸易有限公司及青源产业园,有部分低层建筑。场地东北部有少量低层建筑,详勘期间青源产业园已拆除。场地内的沟塘众多,深浅不一。场地地形略有起伏,陆域地面高程在7.05~14.66m之间,水域水底高程5.54~7.32m之间。详勘期间场地内的沟塘已大部分被清淤填埋。
①潜水
勘探揭示,浅层潜水含水层包括①层人工填土、②层中~晚全新世冲淤积成因的软弱粘性土。
②弱承压水
第一层微承压含水层为③-2c3+d3-4粉土夹粉砂,隔水顶板为②-1b2-3粘土、粉质粘土、②-2b4粉质粘土、淤泥质粉质粘土、②-3b2-3粉质粘土和③-1b1-2层粉质粘土,隔水底板为③-3b1-2层粉质粘土(层顶埋深5.0-14.1m)。
5月22日,T2W1水位稳定在1.50m,T2W2水位稳定在2.13m,开始试验井(T2W1、T2W2)
试 验报告
的抽水试验,共计抽水12小时,然后进行水位恢复;23日水位稳定。
四、试验成果与分析
(一)计算基本原理与方法
抽水试验确定渗透系数
抽水试验确定渗透系数的公式很多,本次抽水试验属承压含水层完整井的稳定流抽水试验。
(4)清孔:终孔后及时进行清孔,确保井管到预定位置。
(5)下井管:采用钢管。管身中、下部设扶正装置,要求逐节连接,井管下在井孔中央。
(6)填砾:将砂砾均匀填至含水层顶板以上0.5m左右后,投粘土球,并捣实至孔口。
(7)洗井:用钻杆包上胶皮组成活塞,上下提动钻杆多次直至冲洗出井管内所有泥浆,并出清水为止。
2、本次试验方法为单孔抽水试验,本次试验稳定延续时间均≥8小时,满足《地下铁道、轻轨交通岩土工程勘察规范》的基本要求。
六、附件
1、试验点平面布置图 1张
2、抽水井地层剖面图 2张
3、水位观测记录 4张
-2c3+d3-4
粉土夹粉砂
灰黄色
稍密
饱和,粉砂局部松散,夹薄层粉质粘土,具水平层理。摇振反应迅速,无光泽反应,干强度和韧性低。
-3b1-2
粉质粘土
灰黄色、灰色
硬-可塑
局部为粘土。摇振反应轻微,光泽反应弱,干强度、韧性中等偏低。
-3b2-3
粉质粘土
灰色
软-可塑
饱和,夹薄层粉土。无摇振反应,切面稍有光泽,干强度、韧性中等偏低。
抽水试验的水要求排入离抽水井较远的下水道中。
(三)、抽水试验现场资料整理
进行抽水试验时,需要在现场整理编制下列曲线图表,可及时了解试验进行情况,检查有无反常。
1、Q、s~t过程曲线;
2、Q=f(s)关系曲线;
(四)、成井工艺
主抽水井T2W1、T2W2,孔径Ф200,泥浆钻进,钻至预定深度,然后下井管(井径Ф108),用清水冲孔洗井后填砾。
粉质粘土、淤泥质粉质粘土
灰色
流塑
饱和,局部夹薄层粉土,具水平沉积层理。无摇振反应,切面稍有光泽,干强度、韧性中等,
②-3b2-3
粉质粘土
灰色
软-可塑
饱和,切面稍有光泽,干强度、韧性中等。
-1b1-2
粘粉质粘土
灰黄、褐黄色
可-硬塑
局部为粘土,见少量铁锰质结核。无摇振反应,切面有光泽,干强度、韧性中等偏高。
影响半径(m)
20.3
18.9
Kcp=(9.64+9.44)×10-4=9.54×10-4cm/s(0.82m/d)
五、结语
1、本次承压水试验属单孔完整井稳定流抽水试验,计算结果如下:③-2c3+d3-4粉土、粉砂K=9.54×10-4cm/s(0.82m/d),降深为4.03米时影响半径18.9米,降深为4.19米时影响半径20.3米,T2W1单位涌水量1.11m3/h·m,T2W2单位涌水量0.72m3/h·m。
K1g-2
强风化泥质粉砂岩
棕红色
砂土状
风化强烈,岩石结构完全破坏,岩芯呈砂土状及柱状,手捏易碎,胶结较差,岩芯呈短柱状,取芯率60~100%。
试 验报告
(三)、场地水文地质概况
根据南京地铁三号线D3-XK03标秣周车辆基地岩土工程初步勘察报告资料,秣周车辆基地分布有密集地表水体,地下水类型较多,地下水赋存条件,地下水类型主要为孔隙潜水、微承压水。
-3b3-4
淤泥质粉质粘土、粉质粘土
灰色
流-软塑
饱和,局部为淤泥质粘土。无摇振反应,切面稍有光泽,干强度、韧性中等偏低。
-4b2-3
粉质粘土
灰色
软-可塑(局部硬塑)
饱和,局部混团块状粉细砂。无摇振反应,切面稍有光泽,干强度、韧性中等偏低。
-4a3-4+b3-4
粘土、粉质粘土
灰色
软-流塑
饱和,局部为淤泥质粉质粘土,无摇振反应,切面稍有光泽,干强度、韧性中等偏低。
场地地貌单元为秦淮河冲积平原。
(二)、场区地层
试 验报告
岩土层分布特征
层号
地层
名称
颜色
状态
特征描述
①-1a
杂填土
黄灰、褐色、灰色
松散
由碎砖、碎石、瓦片混粉质粘土填积,均匀性较差,局部夹有大量混凝土块和块石,最大块径超过1m。填龄不足1年。
①-1
杂填土
褐色、黄灰、灰色
松散~稍密
由碎砖、碎石、瓦片混粉质粘土填积,均匀性较差,水
场地内地表水体极为发育,沟塘众多,深浅不一。场地南侧有东西向的洋山河,西侧前庄南路以西为内河。勘察期间场地内地表水体水面高程为7.13~7.29(吴淞高程系),水深0.5~1.4m,淤泥厚度0.1~0.3m。经调查了解,洋山河近十年最高水位约为10.20m(吴淞高程系)、内河近十年最高水位约为7.90m(吴淞高程系)。
(二)、试验方法及要求
根据设计方案,抽水试验主要采用稳定流完整井抽水试验。
1、动水位及涌水量观测
抽水孔动水位用电测仪观测、涌水量用水表量测。抽水量观测与观测孔水位的测量工作同时进行。