《常微分方程》期末模拟试题

合集下载

常微分方程期末考试题大全(东北师大)

常微分方程期末考试题大全(东北师大)

证明题:设在上连续,且,又,求证:对于方程的一切解,均有。

证明由一阶线性方程通解公式,方程的任一解可表示为,即.由于,则存在,当时,.因而,由,从而有,显然。

应用洛比达法则得。

证明题:线性齐次微分方程组最多有个线性无关的解,其中是定义在区间上的的连续矩阵函数.证要证明方程组最多有个线性无关的解,首先要证明它有个线性无关的解,然后再证明任意个解都线性相关。

由于是定义在区间上的的连续矩阵函数,所以对任意给定的初始条件,,方程组存在唯一的解。

分别取初始条件,,...,它们对应的解分别为且这个解在时的朗斯基行列式为,则是个线性无关的解。

任取方程组的个解,,这个解都是维向量,于是由线性代数有关理论知,它们线性相关。

这就证明了方程组最多有个线性无关的解。

证明题:如果已知二阶线性非齐次方程对应齐次方程的基本解组为,证明其有一特解是,其中及是区间I上的连续函数,是的朗斯基行列式。

证已知是对应齐次方程的基本解组,则齐次方程的通解为。

用常数变易法,求原方程的特解。

设是原方程的特解,则满足下列关系,解得,,积分得 .原方程的一个特解为故是原方程的一个特解。

证明题:设是常系数线性齐次方程组……(1)的解,的分量都是次数的多项式,但至少有一个分量是的次多项式,证明向量组,,.。

,是方程组(1)的线性无关解组.证: 设是常系数线性齐次方程组(1)的解,的分量都是次数的多项式,但至少有一个分量是的次多项式,证明向量组,,。

,,是方程组(1)的线性无关的解组。

证先证明,,.。

.,都是方程组(1)的解。

由于方程组(1)的解,则有,即其中表示单位矩阵。

由易得。

(2),由(2),上式变为,.故,,...,都是方程组(1)的解。

再证明向量组,,.。

,线性无关。

因为的分量都是次数的多项式,但至少有一个分量是的次多项式,所以,而当时,.若,,即,,给上式两边关于求阶导数,得,,则必有。

给,两边关于求阶导数,则必有。

同理,可得,。

故向量组,,...,线性无关.综上所述,我们证明了向量组,,。

(有答案)常微分方程模拟题(浙江师范大学)

(有答案)常微分方程模拟题(浙江师范大学)

模拟试题1一、填空题: (每小题2分,共8分)1. 方程()()0dyp x y Q x dx++=的通解是 ① ; 2. (,)(,)0M x y dx N x y dy +=是全微分方程(恰当方程)的充要条件② ;3. 方程432432250d y d y d ydt dt dt++=的通解是 ③ ;4. 方程 ''2'x y y y xe -+=的特解可设为 ④ . 二、是非判断题: (每小题2分,共12分)1. 如果()()X t i t ϕψ=+是微分方程组()()dXA t X b t dt=+的复值解(这里()t ϕ、()t ψ、()b t 都是实向量函数,()A t 是实矩阵函数),那么()X t ψ=是微分方程组()()dXA t X b t dt=+的解; 2. 方程2220d ya y dx+=(a 是实数)的通解是12cos()sin()y C x C x =+;3. 如果存在定负函数V (X ),使得V 通过方程组()dXf X dt=其中()0f X ≠)的全导数dtdV定正,那么这个方程组的零解渐近稳定; 4. 方程''()'()()y a x y b x y c x ++=(其中a (x ),b(x ),c(x )连续)可以有三个线性无关的解;5. 如果()t Φ、()t ψ均为方程组()dXA t X dt=的基解矩阵,那么必存在可逆常数矩阵C 使得()()t t C Φ=ψ成立;6. 方程dxdy:x =0时y =0的解只有y =0 .三、(24分)求解下列各方程:1. dx dy =y x xy y 321++; 2.dx dy =331y x xy +;3. xy dy y e dx x +=;4. 220dy dy x y x dx dx ⎛⎫-+= ⎪⎝⎭.四、(20分)求下列各方程的通解:1. '''28sin 2x x x t +-=;2. 2''4'60t x tx x -+=.五、(14分)解方程组:⎪⎪⎪⎩⎪⎪⎪⎨⎧+=+=-=z x dt dz y x dtdyz y dt dx六、(12分)已知微分方程'()y y g x +=,其中g(x )=⎩⎨⎧>≤≤.1,010,2时当时,当x x试求一连续函数y=y(x ),满足条件y(0)=0,且在区间(0,1),(1,)+∞内满足上述方程.七、(10分)判断下列方程组的零解的稳定性:1.⎪⎩⎪⎨⎧---=+=y y e dt dy y x dt dx xcos 32sin 82 2.⎪⎩⎪⎨⎧--=-=53y x dt dy x y dt dx模拟试题2一.填空题:(第1小题4分,其它每小题3分,共25分)1.方程0)(24=+'-'''y x y y 是 阶是(非) 线性方程.2.若方程(,)(,)0M x y dx N x y dy +=((,)(,)M x y N x y ,连续)是全微分方程,则(,)(,)M x y N x y ,满足关系 .3.李普希兹条件是保证初值问题 00(,)()dyf x y dx y x y ⎧=⎪⎨⎪=⎩解唯一性的 条件.4.对于一阶方程)()(x q y x p dxdy+=(p (x ),q (x )∈C (a ,b )), 则其任一解的存在区间是 .5.对于欧拉方程 0222=+-y dx dy x dxy d x ,只需作变换 ,即可将其化为常系数线性方程.6.对于二阶方程0)(=+''x t a x ,其由解)(),(21t x t x 所构成的Wronski行列式必为 .7.对于常系数线性齐次方程组X =X 'A ,若常系数矩阵A 的特征根的实部都是负的,则方程组的任一解当+→t ∞时 .8.单摆运动方程0sin =+'+''ϕϕμϕlgm 可化为一阶方程组 .二.求解下述方程:(每小题6分,共42分)1.y x e dx dy-=2.22y x ydx dy -=3.02)(2=+-xydy dx y x4.2)(22x dx dy x dx dy y +-=5.12+=-''t x a x6.t x x sin =+''7.0)(2='+''x x x三.(本题11分)1.何谓)(t Φ是线性齐次方程组X =X 'A 的基解矩阵?2.试求系数矩阵A=⎪⎪⎪⎭⎫⎝⎛---244354332上述方程组的基解矩阵.四.讨论题:(本题12分) 研究方程22xy dx dy n -= 1.当n =1, 方程是什么类型的方程?并求解之。

《常微分方程》期末练习

《常微分方程》期末练习

B)一阶变量可分离方程 D)一阶隐方程 ( C)特解; D)不是解 )
班级:________姓名:______学号:________

x
0
e t dt 是 y"2 xy' 0 的
B)通解;
2
一.填空题(15 分)
1. 已知一曲线上任一点 ( x, y ) 处的切线斜率为 y 则曲线方程为: 2.二阶线性常系数非齐次方程 x x (t 1)e 的特解可待定为:
( ; )
*
则下列结论正确的是: A) x (t ) cos 2t 是(1)式的解
x * (t ) =
线
1 8
3.设 X 1 (t ), , X n (t ) 是一阶 n 维齐线性方程组
dX (t ) A(t ) X (t ) 的 n 个线性无关解, dt

X * (t ) 是非齐线性方程组
t
A)解;
1 :且曲线过(1,1)点, x2
3.已知 x * (t ) ie 2 it i cos 2t
1 1 1 sin 2t 是方程 x 4 x 4 x e 2it 的解 8 8 8 记方程: x 4x 4x cos 2t (1) (2) x 4x 4x sin 2t (3) x 4x 4x cos 2t sin 2t
1.
dy xy x 2 y 4 dx
2.
x y x x t t y 2 x y e
班级:________姓名:______学号:________
四.求下列方程的通解或特解(共 42 分)
线
1. (6 分)求方程 3x y dx 2 x ydy cos xdx 0 的满足初始条件 y( ) 1 解

常微分期末考试试题和答案

常微分期末考试试题和答案

《 常微分方程 》期末考试试卷(1)班级 学号 姓名 成绩.一、填空(每格3分,共30分)1、方程(,)(,)M x y d x N x y d y +=有只与x有关的积分因子的充要条件是 。

2、若12(),(),,()n x t x t x t 为n 阶齐线性方程的n 个解,则它们线性无关的充要条件是 。

3、若()t Φ和()t ψ都是'()x A t x=的基解矩阵,则()t Φ和()t ψ具有的关系是_____________________________。

4、函数),(y x f 称为在矩形域R上关于y 满足利普希兹条件,如果 。

5、当 时,方程0),(),(=+dy y x N dx y x M 称为恰当方程,或称全微分方程。

6、若()t Φ是x t A x )(='的基解矩阵,则x t A x )(=')(t f =满足η=)(0t x的解 。

7、若()(1,2,,)i x t i n =为n 阶齐线性方程()()1()()0n n n x a t x a t x +++=的n 个线性无关解,则这一齐线性方程的通解可表为 。

8、求dxdy=f(x,y)满足00()y x y =的解等价于求积分方程 的解。

9、如果),(y x f 在R 上 且关于y 满足李普希兹条件,则方程),(y x f dxdy=存在唯一的解)(x y ϕ=,定义于区间h x x ≤-0上,连续且满足初始条件00)(y x =ϕ,其中h = ,),(max ),(y x f M Ry x ∈=。

二、计算题(每题10分,共50分)10、求方程 221dy y dx xy x y +=+ 的解。

11、求方程2dyx y dx=-通过点(1,0)的第二次近似解。

12、求非齐线性方程sin x xt ''+=的特解。

13、求解恰当方程 0)4()3(2=---dy x y dx x y 。

(完整版)常微分方程期末考试试卷

(完整版)常微分方程期末考试试卷

常微分方程期末考试试卷学院 ______ 班级 _______ 学号 _______ 姓名 _______ 成绩 _______一. 填空题 (30分)1.)()(x Q y x P dxdy+= 称为一阶线性方程,它有积分因子 ⎰-dx x P e )( ,其通解为 _________ 。

2.函数),(y x f 称为在矩形域R 上关于y 满足利普希兹条件,如果_______ 。

3. 若)(x ϕ为毕卡逼近序列{})(x n ϕ的极限,则有)()(x x n ϕϕ-≤ ______ 。

4.方程22y x dxdy+=定义在矩形域22,22:≤≤-≤≤-y x R 上,则经过点(0,0)的解的存在区间是 _______ 。

5.函数组t t t e e e 2,,-的伏朗斯基行列式为 _______ 。

6.若),,2,1)((n i t x i =为齐线性方程的一个基本解组,)(t x -为非齐线性方 程的一个特解,则非齐线性方程的所有解可表为 ________ 。

7.若)(t Φ是x t A x )('=的基解矩阵,则向量函数)(t ϕ= _______是)()('t f x t A x +=的满足初始条件0)(0=t ϕ的解;向量函数)(t ϕ= _____是)()('t f x t A x +=的满足初始条件ηϕ=)(0t 的解。

8.若矩阵A 具有n 个线性无关的特征向量n v v v ,,,21 ,它们对应的特征值分别为n λλλ ,,21,那么矩阵)(t Φ= ______ 是常系数线性方程组Ax x ='的一个基解矩阵。

9.满足 _______ 的点),(**y x ,称为驻定方程组。

二. 计算题 (60分)10.求方程0)1(24322=-+dy y x dx y x 的通解。

11.求方程0=-+x e dxdydx dy的通解。

12.求初值问题⎪⎩⎪⎨⎧=--=0)1(22y y x dx dy1,11:≤≤+y x R 的解的存在区间,并求第二次近似解,给出在解的存在区间的误差估计。

常微分方程期末考试题

常微分方程期末考试题

常微分方程期末考试题以下是某校 ode 期末考试题一:计算题( 1,2,3,5 各8分,第4题18分,总50分)1) \frac{dy}{dx}=\frac{x+y-3}{x-y+1}2) \frac{dy}{dx}+2xy+xy^4=03) x'=Ax,A=\left(\begin{matrix}3&-1\\-1&3\end{matrix}\right) 求基解矩阵4) x^2y''+xy'-y=x (该题给出3种解法)5) x''+2x'-3x=e^t+cost二:解答题(每题10分,总50分)6)证明:如已知 Riccati 方程的一个特解,则可用初等解法得到它的通解.7)方程 \frac{dy}{dx}=x^2+y^2 定义在矩形域 \left| x\right|\leq1,\left| y \right|\leq1 试利用存在唯一性定理确定经过 y(0)=0 的解存在区间,并写出 \varphi_n(x) 的迭代序列,求第二次近似解及误差估计。

8)微分方程 \frac{dy}{dx}+ay=f(x)(a>0)\\f(x) 是以 2\pi 为周期的连续函数,试求方程的 2\pi 周期解。

9)设 \phi(x) 是齐次线性微分方程组\frac{dy}{dx}=A(x)y\\ 的一个基解矩阵,并且 n 维向量函数 f(x,y) 在区域 a<x<b,\left| \left| y\right|\right|<+\infty 上连续,试证明:求解初值问题\frac{dy}{dx}=A(x)y+f(x,y),y(x_0)=y_0\\ 等价于求解积分方程 y(x)=\phi (x)\phi^{-1}(x_0)y_0+\int_{x_0}^{x}\phi (x)\phi^{-1}(s)f(s,y(s))ds\\ 其中 x_0\in(a,b)10)证明:方程 y'=\sqrt[5]{\frac{y^4+2}{x^6+2}} 的每条积分曲线有两条水平渐近线。

常微分方程期末考试练习题及答案.

常微分方程期末考试练习题及答案.
y
( c>0) .
即: t 1
cy ,变量回代得:
x ln
c1 y +1 ( c1
c)
y
类型二: 形式: dy f ( a1x b1y c1 )
dx
a 2 x b2 c2
解法: 1. 当 c1=c2=0 时,
y
dy
f ( a1x b1y )
a1 f(
b1 x )
g( y)
dx
a2 x b2 y
y a2 b2 x
dx
分离变量得: dy dx ,两边同时积分,
y
得: y cex ,因而可设原方程的通解为: y c( x)ex ,则 dy dc( x) ex exc( x) ,
dx dx
将之入原方程,得:
dc( x) ex exc(x) c( x)ex sin x ,即: dc( x)
dx
dx
两边积分得: c(x) sin xe xdx ,而
a2 b2
a1x b1y c1 0
解方程组{ a2x b2y c2 0 ,求交点 ( , ) , 令 x=X+α , y Y ,则原方程化为: dX ( Y )
dY X
这是齐次方程。
例 5. 求解方程 dy 2x y 1 .
dx x 2 y 1
x1
解:{ 2x y 1 0 得交点
x 2y 1 0

y
M N , (x, y) D .
yx
3. 解的形式: u c.
4. 解法: a. 朴素化简法:由 u M ,得 u( x, y) M ( x, y)dx ( y) ,
x
再由 u N ,得 ( y) y4 N (x, y)

常微分方程期末考试试卷(6)

常微分方程期末考试试卷(6)

常微分方程期末考试试卷(6)学院 ______ 班级 _______ 学号 _______ 姓名 _______成绩 _______一. 填空题 (共30分,9小题,10个空格,每格3分)。

1.当_______________时,方程M(x ,y)dx+N(x,y)dy=0称为恰当方程,或称全微分方程。

2、________________称为齐次方程。

3、求dxdy =f (x,y)满足00)(y x =ϕ的解等价于求积分方程____________________的连续解。

4、若函数f(x,y)在区域G 内连续,且关于y 满足利普希兹条件,则方程),(y x f dxdy = 的解 y =),,(00y x x ϕ作为00,,y x x 的函数在它的存在范围内是__________。

5、若)(),...(),(321t x t x t x 为n 阶齐线性方程的n 个解,则它们线性无关的充要条件是__________________________________________。

6、方程组x t A x )(/=的_________________称之为x t A x )(/=的一个基本解组。

7、若)(t φ是常系数线性方程组Ax x =/的基解矩阵,则e xpAt =____________。

8、满足___________________的点(**,y x ),称为方程组的奇点。

9、当方程组的特征根为两个共轭虚根时,则当其实部________时,零解是稳定的,对应的奇点称为___________。

二、计算题(共6小题,每题10分)。

1、求解方程:dx dy =312+++-y x y x 2.解方程: (2x +2y-1)dx +(x+y-2)dy=03、讨论方程23=dx dy 31y 在怎样的区域中满足解的存在唯一性定理的条件,并求通过点(0,0)的一切解4、求解常系数线性方程:t e x x x t cos 32///-=+-5、试求方程组Ax x =/的一个基解矩阵,并计算⎪⎪⎭⎫ ⎝⎛3421,为其中A e At 6、试讨论方程组cy dtdy by ax dt dx =+=, (1)的奇点类型,其中a,b,c 为常数,且a c≠0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《常微分方程》模拟练习题及参考答案一、填空题(每个空格4分,共80分)1、n 阶线性齐次微分方程基本解组中解的个数恰好是 n 个。

2、一阶微分方程2=dyx dx的通解为 2=+y x C (C 为任意常数) ,方程与通过点(2,3)的特解为 21=-y x ,与直线y=2x+3相切的解是 24=+y x ,满足条件303ydx =⎰的解为 22=-y x 。

3、李普希兹条件是保证一阶微分方程初值问题解惟一的 必要 条件。

4、对方程2()dyx y dx=+作变换 =+u x y ,可将其化为变量可分离方程,其通解为 tan()=+-y x C x 。

5、方程21d d y x y -=过点)1,2(π共有 无数 个解。

6、方程''21=-y x的通解为 4212122=-++x x y C x C ,满足初始条件13|2,|5====x x y y 的特解为 421912264=-++x x y x 。

7、方程x x y xy +-=d d 无 奇解。

8、微分方程2260--=d y dyy dx dx 可化为一阶线性微分方程组 6⎧=⎪⎪⎨⎪=+⎪⎩dyz dx dz z y dx 。

9、方程y xy=d d 的奇解是 y=0 。

10、35323+=d y dyx dx dx是 3 阶常微分方程。

11、方程22dyx y dx=+满足解得存在唯一性定理条件的区域是 xoy 平面 。

12、微分方程22450d y dy y dx dx--=通解为 512-=+x xy C e C e ,该方程可化为一阶线性微分方程组 45⎧=⎪⎪⎨⎪=+⎪⎩dy z dxdz z y dx。

13、二阶线性齐次微分方程的两个解12(),()y x y x ϕϕ==成为其基本解组的充要条件是 线性无关 。

14、设1342A ⎡⎤=⎢⎥⎣⎦,则线性微分方程组dXAX dt =有基解矩阵 25253()4φ--⎡⎤=⎢⎥-⎣⎦t t t t e e t e e 。

二、解方程(每个小题8分,共120分) 1、0d d )2(=-+y x x y x 答案:方程化为xyx y 21d d += 令xu y =,则x u x u x y d d d d +=,代入上式,得u xu x +=1d d 分离变量,积分,通解为1-=Cx u ∴ 原方程通解为x Cx y -=22、⎪⎪⎩⎪⎪⎨⎧+=+=y x ty y x tx4d d d d答案:特征方程为 01411=--=-λλλE A 即0322=--λλ。

特征根为 31=λ,12-=λ对应特征向量应满足 ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡--0031413111b a 可确定出 ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡2111b a 同样可算出12-=λ对应的特征向量为⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡2122b a∴ 原方程组的通解为⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--t t t t C C y x 2e e 2e e 2331 。

3、x y xy2e 3d d =+ 答案:齐次方程的通解为x C y 3e -=令非齐次方程的特解为x x C y 3e )(-=C x C x +=5e 51)(代入原方程,确定出原方程的通解为x C y 3e -=+x 2e 514、2-=x y dydx ; 答案:2-=x y dydx是一个变量分离方程 变量分离得22y x dy dx =两边同时积分得22y x c =+(其中c 为任意常数) 5、xy e xydx dy =+ 答案:xy xe xy e dx dy xyxy -=-= 积分:c x e xy +=--221 故通解为:0212=++-c e x xy6、{}0)(22=-+-xdy dx y x x y答案:0)(22=+--dx y x x xdy ydx ?两边同除以22y x +得022=-+-xdx y x xdy ydx ,即021)(2=-dx y x arctg d , 故原方程的解为C x y x arctg =-221 7、2453dxx y dtdy x y dt⎧=-⎪⎪⎨⎪=-+⎪⎩ .答案:方程组的特征方程为203A E λλλ---==--45即(2)(3)(4)(5)0λλ----⨯-=,即25140λλ--= 特征根为17λ=,22λ=-对应特征向量应满足1127405370a b --⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦,可得1145a b ⎡⎤⎡⎤=⎢⎥⎢⎥-⎣⎦⎣⎦ 同样可算出22λ=-时,对应特征向量为2211a b ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦∴ 原方程组的通解为72127245--⎡⎤⎡⎤⎡⎤=+⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦t t t t x e e C C y e e8、sin cos2x x t t ''+=-答案:线性方程0x x ''+=的特征方程210λ+=故特征根i λ=±1()sin f t t = i λ=是特征单根,原方程有特解(cos sin )x t A t B t =+代入原方程A=-12B=02()cos 2f t t =- 2i λ=不是特征根,原方程有特解cos2sin 2x A t B t =+代入原方程13A =B=0所以原方程的解为1211cos sin cos cos223x c t c t t t t =+-+9、0)2()122(=-++-+dy y x dx y x答案:2)(1)(2-+-+-=y x y x dx dy ,令z=x+y ,则dx dy dx dz +=1所以 –z+3ln|z+1|=x+1C , ln 3|1|+z =x+z+1C即y x Ce y x +=++23)1(10、220++=d x dxx dt dt答案:所给方程是二阶常系数齐线性方程。

其特征方程为210λλ++=特征根为112λ=-+,212λ=-∴ 方程的通解为111()()2221212()t t t x c ec ec c e ---=+=+11、312+++-=y x y x dx dy 答案: (x-y+1)dx-(x+2y +3)dy=0xdx-(ydx+xdy)+dx-2y dy-3dy=0即21d 2x -d(xy)+dx-331dy -3dy=0所以C y y x xy x =--+-3312132三、证明题(共160分)1、(12分)证明如果Ax x t =/)是(ϕ满足初始条件ηϕ=)(0t 的解,那么 =)(t ϕ[]η)(0t t A e -。

证明:设)(t ϕ的形式为)(t ϕ=C e At (1)(C 为待定的常向量)则由初始条件得)(0t ϕη==C e At 0又1)(0-At e=0At e - 所以C=1)(0-At e η=0At e -η代入(1)得)(t ϕ=ηη)(0t t A At At e e e --= 即命题得证。

2、(12分)设)(x ϕ在区间),(∞+-∞上连续.试证明方程y x xysin )(d d ϕ=的所有解的存在区间必为),(∞+-∞。

证明 :由已知条件,该方程在整个xoy 平面上满足解的存在唯一及解的延展定理条件。

显然1±=y 是方程的两个常数解。

任取初值),(00y x ,其中),(0∞+-∞∈x ,10<y 。

记过该点的解为)(x y y =, 由上面分析可知,一方面)(x y y =可以向平面无穷远处无限延展;另一方面又上方不能穿过1=y ,下方不能穿过1-=y ,否则与惟一性矛盾; 故该解的存在区间必为),(∞+-∞。

3、(12分)设)(1x y ,)(2x y 是方程0)()(=+'+''y x q y x p y 的解,且满足)(01x y =)(02x y =0,0)(1≠x y ,这里)(),(x q x p 在),(∞+-∞上连续,),(0∞+-∞∈x .试证明:存在常数C 使得)(2x y =C )(1x y .证明:设)(1x y ,)(2x y 是方程的两个解,则它们在),(∞+-∞上有定义,其朗斯基行列式为)()()()()(2121x y x y x y x y x W ''=由已知条件,得0)()(0)()()()()(0201020102010=''=''=x y x y x y x y x y x y x W 故这两个解是线性相关的;由线性相关定义,存在不全为零的常数21αα,, 使得0)()(2211=+x y x y αα,),(∞+-∞∈x 由于0)(1≠x y ,可知02≠α.否则,若02=α,则有0)(11=x y α,而0)(1≠x y ,则01=α, 这与)(1x y ,)(2x y 线性相关矛盾.故)()()(11212x Cy x y x y =-=αα 4、(12分)叙述一阶微分方程的解的存在唯一性定理的内容,并给出唯一性的证明。

定理:设00:||,||R x x a y y b -≤-≤.(1)(,)f x y 在R 上连续,(2)(,)f x y 在R 上关于y 满足利普希茨条件:120,(,),(,)L x y x y R ∃>∀∈,总有1212|(,)(,)|||f x y f x y L y y -≤-.则初值问题00(,)()dyf x y dx y x y ⎧=⎪⎨⎪=⎩存在唯一的解()y x ϕ=,定义于区间0||x x h -≤上,连续且满足初值条件00()x y ϕ=,这里(,)min(,),max |(,)|x y R bh a M f x y M∈==.唯一性:设()x φ是积分方程在区间00[,]x h x h -+上的解,则()()x x φϕ=. 证明:00()(,())xx x y f d φξφξξ=+⎰,001()(,())xn n x x y f d ϕξϕξξ-=+⎰,1,2,......n =首先估计0x x ≥.00|()()||(,())|()xx x x f d M x x ϕφξφξξ-≤≤-⎰,设10|()()|()(1)!nn n ML x x x x n ϕφ+-≤-+成立,则 001210|()()||(,())(,())||()()|()(2)!n xxn n n n x x ML x x f f d d x x n ϕφξϕξξφξξϕξφξξ+++-≤-≤-=-+⎰⎰这就证明了对任意的n ,总成立估计式:110|()()|()(1)!(1)!n n n n n ML ML x x x x h n n ϕφ++-≤-≤++. 因此,{()}n x ϕ一致收敛于()x φ,由极限的唯一性,必有00()(),[,]x x x x h x h φϕ=∈-+.5、(10分)求解方程组⎪⎩⎪⎨⎧--=++=51y x dtdy y x dt dx的奇点,并判断奇点的类型及稳定性。

相关文档
最新文档