八年级上册数学答案(2019)
八年级数学上册第二章练习题(附答案)

2019 年八年级数学上册第二章练习题 (附答案) 初中阶段对于学生们来说也是十分重要的一个时期,对每个学生来说尤为重要,下文为大家准备了八年级数学上册第二章练习题,供大家参考。
一、选择题(每小题 3 分,共30 分)1. (2019?天津中考)估计的值在( )A.1 和 2 之间B.2 和 3 之间C.3 和 4 之间D.4 和 5 之间2. (2019?安徽中考)与1+ 最接近的整数是( )A.4B.3C.2D.13. (2019?南京中考)估计介于( )A.0.4 与0.5 之间B.0.5 与0.6 之间C.0.6 与0.7 之间D.0.7与0.8 之间4. ( 2019?湖北宜昌中考)下列式子没有意义的是( )A. B. C. D.5. (2019?重庆中考)化简的结果是( )A. B. C. D.6. 若a,b 为实数,且满足|a-2|+ =0,则b-a 的值为( )A.2B.0C.-2D. 以上都不对7. 若a,b 均为正整数,且a>,b> ,则a+b 的最小值是( )A.3B.4C.5D.68. 已知=-1,=1,=0,则abc的值为()A.0B.-1C.-D.9. (2019?福州中考)若(m?1)2? =0,则m+n的值是()A.-1B.0C.1D.210. 有一个数值转换器,原理如图所示:当输入的x=64 时,输出的y 等于()A.2B.8C.3D.2二、填空题(每小题 3 分,共24 分)11. _________________________________ (2019?南京中考)4 的平方根是___________________ ;4 的算术平方根是__________ .12. ____________________________________ (2019?河北中考)若|a|= ,则a= ______________________ .13. 已知:若≈ 1.910,≈ 6.042,则≈,± ≈.14. 绝对值小于π的整数有.15. 已知|a-5|+ =0,那么a-b= .16. 已知a,b为两个连续的整数,且a>>b,则a+b= .17. ___________________________________ (2019?福州中考)计算:( ?1)( ?1)= _____________ .18. (2019?贵州遵义中考) + = .三、解答题(共46 分)19. (6 分)已知,求的值.20. (6 分)若5+ 的小数部分是a,5- 的小数部分是b,求ab+5b 的值.21. (6 分)先阅读下面的解题过程,然后再解答:形如的化简,只要我们找到两个数a,b,使,,即,,那么便有:例如:化简:.解:首先把化为,这里,,因为,,即,,所以.根据上述方法化简:.22. (6 分)比较大小,并说明理由:(1) 与6;(2) 与.23. (6 分)大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不能全部写出来,于是小平用-1 来表示的小数部分,你同意小平的表示方法吗? 事实上小平的表示方法是有道理的,因为的整数部分是1,用这个数减去其整数部分,差就是小数部分. 请解答:已知:5+ 的小数部分是,5- 的整数部分是b,求+b 的值.24. (8 分)计算:(1) - ;(2) - .25. (8 分)阅读下面计算过程:试求:(1) 的值;(2) ( 为正整数)的值;(3) 的值.第二章实数检测题参考答案一、选择题1.C 解析:11 介于9 和16 之间,即9,b>,∴ a 的最小值是3,b 的最小值是2,则a+b 的最小值是 5. 故选 C.8. C解析:∵ =-1,=1,=0,∴ a=-1,b=1,c= ,∴ abc=- .故选 C.9. A解析:根据偶次方、算术平方根的非负性,由(m?1)2? =0, 得m-1=0 ,n+2=0 ,解得m=1,n=-2 ,∴ m+n=1+(-2)=-1.10. D 解析:由图得64 的算术平方根是8,8的算术平方根是 2 . 故选 D.二、填空题4 的算术平方根是 2. 11. 2 解析:∵ ∴ 4 的平方根是,12. 解析:因为,所以,所以13.604.2 0±.019 1 解析:≈ 604.2;± =±≈± 0.019 1.14. ±3,±2,±1,0 解析:π≈ 3.,14大于-π的负整数有:-3 ,-2 ,-1,小于π的正整数有:3,2,,0 的绝对值也小于π.我国古代的读书人,从上学之日起,就日诵不辍,一般在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。
2019年秋人教版数学八年级上册单元测验:第12章 全等三角形含答案

全等三角形一、填空题(每小题3分,共24分)1. 如图,AD⊥BC于D,还需时,△ABD≌△ACD.(注:添一个条件即可)第1题第2题2. 如图,AD=AE,∠1=∠2,BD=CE,则有△ABD≌△ACE,理由是;△ABE≌,理由是.3. 如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB,则图中有对全等三角形.第3题第4题4. 如图,∠ABC的平分线与△ABC的外角∠ACD的平分线相交于点M,那么点M到△ABC三边所在直线的垂线段的长度相等的理由是.5. 如图,在平面直角坐标系中,点A的坐标为(3,4),且AO=BO,∠AOB=90°,则点B的坐标为.第5题第6题6. 如图,已知P(3,3),点B,A分别在x轴正半轴和y轴正半轴上,∠APB=90°,则OA+OB=.7. 如图所示,△ABE和△ADC是△ABC分别沿着AB,AC所在直线翻折180°形成的,若∠1∶∠2∶∠3=28∶5∶3,则∠α的度数为.第7题第8题8. 如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE.下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有.(填写正确的序号)二、选择题(每小题3分,共30分)9. 已知△ABC与△DEF全等,若AB=4,BC=5,AC=6,则DF等于()A. 4B. 5C. 6D. 以上三种情况都有可能10. 具有下列条件的两个等腰三角形,不能判断它们全等的是()A. 顶角和一腰对应相等B. 底边和一腰对应相等C. 两腰对应相等D. 一个底角和底边对应相等11. 在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,∠A=∠B′,AB=A′B′,则下列结论正确的是()A. AC=A′C′B. BC=B′C′C. AC=B′C′D. ∠A=∠A′12. 如图所示,已知AC平分∠P AQ,点B,B′分别在边AP,AQ上,如果添加一个条件,即可推出AB=AB′,那么该条件不可以是()A. BB′⊥ACB. BC=B′CC. ∠ACB=∠ACB′D. ∠ABC=∠AB′C第12题第13题13. 有一块如图所示的玻璃,由于不小心打碎了右上角(阴影部分),玻璃店师傅说可以根据未碎部分重新再划一块与原来玻璃形状大小完全相同的玻璃,则他使用的原理为()A. SASB. SSSC. ASAD. AAS14. 如图,射线OC是∠AOB的平分线,P是射线OA上一点,DP⊥OA,DP=5,若点Q是射线OB上一个动点,则线段DQ长度的范围是()A. DQ>5B. DQ<5C. DQ≥5D. DQ≤5第14题第15题15. 如图所示,ED⊥BD于D,AC⊥BC于C,B是DC上一点AC=BD,BA=EB,则下列结论:①△ABC≌△BED;②AB⊥BE;③∠ABC=∠DBE;④AC+DE=DC.其中正确的是()A. ①②③B. ②③④C. ①②④D. ①②③④16. 如果两个三角形的两条边和其中一边上的高分别对应相等,那么这两个三角形的第三边所对的角的关系是()A. 相等B. 不相等C. 互余D. 互补或相等17. 如图,△ABD≌△ACE,点B和点C是对应顶点,AB=8,BD=7,AD=6,则BE的长是()A. 1B. 2C. 4D. 6第17题第18题18. 如图所示,AB⊥BC且AB=BC,CD⊥DE且CD=DE,请按照图中所标注的数据,计算图中实线所围成的图形面()A. 64B. 50C. 48D. 32三、解答题(共66分)19. (8分)如图,在△ABC中,∠C=90°,点D是AB边上的一点,DM⊥AB,且DM=AC,过点M作ME∥BC 交AB于点E.求证:△ABC≌△MED.20. (8分)如图,AB=DC,AD=BC,DE=BF.求证:BE=DF.21. (9分)如图,在长方形ABCD中,E是BC边上的点,AE=BC,DF⊥AE,垂足为F,连接DE.(1)求证:AB=DF;(2)求证:DE平分∠AEC.22. (9分)如图所示,CE ⊥AB 于点E ,BD ⊥AC 于点D ,BD ,CE 交于点O ,且AO 平分∠BAC . (1)图中有多少对全等三角形?请一一列举出来(不必说明理由);(2)小明说:欲证BE =CD ,可先证明△AOE ≌△AOD 得到AE =AD ,再证明△ADB ≌△AEC 得到AB =AC ,然后利用等式的性质得到BE =CD ,请问他的说法正确吗?如果正确,请按照他的说法写出推导过程,如果不正确,请说明理由;(3)要得到BE =CD ,你还有其他思路吗?若有,写出你的思想.23. (10分)如图,在Rt △ABC 中,∠A =90°,AB =AC ,∠ABC 的平分线BE 交AC 于D ,从C 向BD 的延长线作垂线,垂足为E .求证:BD =2CE .24. (10分)如图,AC 平分∠BAD ,CE ⊥AB 于E ,AE =12(AD +AB ).求∠ADC +∠ABC 的值.25. (12分)两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B,C,E 在同一条直线上,连接DC.(1)请找出图②中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)求证:DC⊥BE.参考答案1. BD =CD 或AB =AC 或∠B =∠C2. SAS(或边角边) △ACD SAS(或边角边)3. 34. 角平分线上的点到角的两边距离相等5. (-4,3)6. 67. 80°8. ①②③④9-18:DCCBC CCDBD19. 证明:∵ME ∥CB ,∴∠B =∠MED ,又∵MD ⊥AB ,∴∠MDE =∠C =90°,又∵DM =AC ,∴△ABC ≌△MED . 20. 证明:连接DB ,在△ABD 和△CDB 中,DB =BD ,AB =CD ,∴△ABD ≌△CDB (SSS),∴∠A =∠C .∵AD =CB ,DE =BF ,∴AD +DE =CB +BF ,即AE =CF .在△ABE 和△CDF 中,AB =CD ,∠A =∠C ,∴△ABE ≌△CDF (SAS).∴BE =DF .21. 证明:(1)∵四边形ABCD 是长方形,∴AD =BC ,∠B =∠C =∠BAD =90°.∴AD ∥BC ,∴∠AEB =∠DAF .又AE =BC ,∴AE =AD .在Rt △ABE 和Rt △DF A 中,AE =AD ,∠AEB =∠DAF ,∴Rt △ABE ≌Rt △DF A (AAS).∴AB =DF .(2)∴四边形ABCD 是长方形,∴AB =CD .∵AB =DF ,∴DF =DC .在Rt △DFE 和Rt △DCE 中,DE =DE ,DF =DC ,∴Rt △DFE ≌Rt △DCE (HL).∴∠DEF =∠DEC ,即DE 平分∠AEC .22. 解:(1)有4对,分别是△AOE ≌△AOD ,△BOE ≌△COD ,△AOB ≌△AOC ,△ABD ≌△ACE . (2)小明的说法正确,推导过程略.(3)可先证△AOE ≌△AOD 得到OE =OD ,再证△BOE ≌△COD 得到BE =CD .K23. 证明:如图所示,延长CE 交BA 的延长线于F .在△BEF 和△BEC 中,∠FEB =∠CEB.BE =BE ,∴△BEF ≌△BEC (ASA),∴EC =EF .∵∠ABD +∠ADB =90°,∠ACF +∠EDC =90°,∠ADB =∠EDC ,∴∠ABD =∠ACF .在△ABD 和△ACF 中,AB =AC.∠BAC =∠CAF =90°,∴△ABD ≌△ACF (ASA),∴BD =FC .又∵EC =FE ,∴BD =2CE .24. 解:如图所示,延长AD ,过点C 作CG ⊥AD 交AD 的延长线于点G .∵AC 平分∠BAD ,CG ⊥AD ,CE ⊥AB ,∴CG =CE .∵AC =AC ,∴Rt △AGC ≌Rt △AEC (HL),∴AG =AE .∵AE =21(AD +AB ),∴2AE =AD +AB ,∴(AD +DG )+AE =AD +(AE +EB ),∴DG =BE .在△CDG 和△CBE 中,DG =BE ,∠CGD =∠CEB =90°,∴△CDG ≌△CBE (SAS),∴∠CDG =∠ABC .又∵∠CDG +∠ADC =180°,∴∠ADC +∠ABC =180°.25. (1)解:图②中△ABE ≌△ACD .证明:∵△ABC 与△AED 均为等腰直角三角形,∴AB =AC ,AE =AD ,∠BAC =∠EAD =90°.∴∠BAC +∠CAE =∠EAD +∠CAE .即∠BAE =∠CAD .∴△ABE ≌△ACD .(2)证明:由(1)△ABE ≌△ACD 知,∠ACD =∠ABE =45°.又∠ACB =45°,∴∠BCD =∠ACB +∠ACD =90°.∴DC ⊥BE .。
北京市朝阳区2018-2019学年八年级(上)期末数学试卷及答案

2018-2019学年北京市朝阳区初二(上)期末数学及答案一.选择题(共8小题,满分24分)1. 画△ABC的边AB上的高,下列画法中,正确的是()【答案】D【解析】试题分析:三角形的高即从三角形的顶点向对边引垂线,顶点和垂足间的线段.根据概念可知.解:过点C作边AB的垂线段,即画AB边上的高CD,所以画法正确的是D.故选:D.考点:三角形的角平分线、中线和高.2.下列各式属于最简二次根式的是()A. B. C. D.【答案】B【解析】试题解析:A、含有能开方的因式,不是最简二次根式,故本选项错误;B、符合最简二次根式的定义,故本选项正确;C、含有能开方的因式,不是最简二次根式,故本选项错误;D、被开方数含分母,故本选项错误;故选B.3.若分式的值为0,则x的值是()A. 2或﹣2B. 2C. ﹣2D. 0【答案】A【解析】【分析】直接利用分式的值为零则分子为零进而得出答案.【详解】∵分式的值为0,∴x2﹣4=0,解得:x=2或﹣2.故选:A.【点睛】此题主要考查了分式的值为零的条件,正确把握定义是解题关键.4.下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A. 1B. 2C. 3D. 4【答案】B【解析】分析:根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘进行计算即可.详解:①a2•a3=a5,故原题计算错误;②(a3)2=a6,故原题计算正确;③a5÷a5=1,故原题计算错误;④(ab)3=a3b3,故原题计算正确;正确的共2个,故选B.点睛:此题主要考查了同底数幂的除法、乘法、幂的乘方、积的乘方,关键是熟练掌握各计算法则.5.以下图形中,不是轴对称图形的是()A. B. C. D.【答案】D【解析】试题分析:A、沿一条直线对折后可以重合,是轴对称图形,故本选项错误;B、沿一条直线对折后可以重合,是轴对称图形,故本选项错误;C、沿一条直线对折后可以重合,是轴对称图形,故本选项错误;D、沿任何一条直线对折后都不能重合,不是轴对称图形,故本选项正确.故选:D.点睛:本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6.已知∠A=60°24′,∠B=60.24°,∠C=60°14′24″,则( )A. ∠A>∠B>∠CB. ∠A>∠B=∠CC. ∠B>∠C>∠AD. ∠B=∠C>∠A【答案】B【解析】【分析】将∠A、∠B、∠C统一单位后比较即可.【详解】∵∠A=60°24′=60.4°,∠B=60.24°,∠C=60°14′24″=60.24°,∴∠A>∠B=∠C.故选B.【点睛】本题考查了度、分、秒的转化计算,比较简单,注意以60为进制即可.7.下列各式变形中,是因式分解的是()A. a2﹣2ab+b2﹣1=(a﹣b)2﹣1B. x4﹣1=(x2+1)(x+1)(x﹣1)C. (x+2)(x﹣2)=x2﹣4D. 2x2+2x=2x2(1+)【答案】B【解析】【分析】利用因式分解的定义判断即可.【详解】A选项:它的结果不是乘积的形式,不是因式分解,故是错误的;B选项:x4﹣1=(x2+1)(x+1)(x﹣1)结果是乘积形式,是因式分解,故是正确的;C选项:(x+2)(x﹣2)=x2﹣4中结果不是乘积的形式,不是因式分解,故是错误的;D选项:2x2+2x=2x2(1+)结果不是整式乘积的形式,不是因式分解,故是错误的;故选:B.【点睛】考查了因式分解的定义,理解因式分解的定义(把一个多项式在一个范围化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式)是解题的关键。
2019秋浙教版八年级上册数学同步测试题:1.5三角形全等的判定【含答案】

1.5三角形全等的判定第1课时“边边边”知识点1.三角形全等的判定(SSS)1.如图1所示,如果AB=A′B′,BC=B′C′,AC=A′C′,则下列结论正确的是(A)图1A.△ABC≌△A′B′C′B.△ABC≌△C′A′B′C.△ABC≌△B′C′A′D.这两个三角形不全等2.下列三角形中,与图2中△ABC全等的是__③__.3.如图3所示,AD=BC,AC=BD,用三角形全等的判定“SSS”可证明__△ADC__≌__△BCD__或__△ABD__≌__△BAC__.图3知识点2.三角形的稳定性4.[2018春·泉港区期末]如图4,人字梯中间一般会设计一“拉杆”,这样做的道理是(C)图4A.两点之间,线段最短B.垂线段最短C.三角形具有稳定性D.两直线平行,内错角相等知识点3.三角形全等的判定与性质的综合5.在△ABC和△A1B1C1中,AB=A1B1,BC=B1C1,AC=A1C1,且∠A=110°,∠B=40°,则∠C1=(C)A.110°B.40°C.30°D.20°6.如图5所示,在△ABC和△DBC中,已知AB=DB,AC=DC,则下列结论中错误的是(D)图5A.△ABC≌△DBCB.∠A=∠DC.BC是∠ACD的平分线D.∠A=∠BCD7.如图6,在四边形ABCD中,AB=CD,AD=CB,连结AC,求证:∠ACD =∠CAB.图6证明:在△ADC 与△CBA 中,⎩⎨⎧CD =AB ,AD =CB ,AC =CA ,∴△ADC ≌△CBA (SSS ),∴∠ACD =∠CAB .8.雨伞的截面如图7所示,伞骨AB =AC ,支撑杆OE =OF ,AE =13AB ,AF =13AC ,当O 沿AD 滑动时,雨伞开闭,问雨伞开闭的过程中,∠BAD 与∠CAD 有何关系?请说明理由.图7解:∠BAD =∠CAD .理由:∵AB =AC ,AE =13AB ,AF =13AC ,∴AE =AF .在△AOE 和AOF 中,⎩⎨⎧AO =AO ,AE =AF ,OE =OF ,∴△AOE ≌△AOF (SSS ),∴∠EAO =∠F AO ,即∠BAD =∠CAD . 知识点4.尺规作角平分线9.[2018春·历城区期末]如图8,作∠AOB 的角平分线的作图过程如下,作法:图8(1)在OA和OB上,分别截取OD,OE,使OD=OE;(2)分别以D,E为圆心,大于DE的长为半径作弧,在∠AOB内,两弧交于点C;(3)作射线OC,OC就是∠AOB的平分线.用三角形全等判定法则解释其作图原理,最为恰当的是__SSS__.【易错点】证明两个三角形全等时,对于有公共部分的角或线段,错把不是对应的边或角当成三角形的对应边或对应角.10.如图9,AB=AC,AD=AE,BE=CD,∠2=110°,∠BAE=60°,下列结论错误的是(C)图9A.△ABE≌△ACDB.△ABD≌△ACEC.∠ACE=30°D.∠1=70°第2课时“边角边”与线段的垂直平分线的性质知识点1.三角形全等的判定(SAS)1.如图1中全等的三角形是(D)①②③④图1A.①和②B.②和③C.②和④D.①和③2.如图2所示,在△ABD和△ACE中,AB=AC,AD=AE,要证△ABD≌△ACE,需补充的条件是(C)A.∠B=∠C B.∠D=∠EC.∠DAE=∠BAC D.∠CAD=∠DAC图2 图33.如图3,在四边形ABCD中,AB=AD,CB=CD,若连结AC,BD相交于点O,则图中全等三角形共有(C)A.1对B.2对C.3对D.4对4.已知:如图4,OA=OB,OC平分∠AOB,求证:△AOC≌△BOC.图4证明:∵OC 平分∠AOB , ∴∠AOC =∠BOC . 在△AOC 和△BOC 中,⎩⎨⎧OA =OB ,∠AOC =∠BOC ,OC =OC ,∴△AOC ≌△BOC (SAS ).知识点2.利用“SAS ”判定三角形全等证明线段或角相等5.如图5,在△ABC 和△ABD 中,AC 与BD 相交于点E ,AD =BC ,∠DAB =∠CBA ,求证:AC =BD .图5证明:在△ADB 和△BCA 中,⎩⎨⎧AD =BC ,∠DAB =∠CBA ,AB =BA ,∴△ADB ≌△BCA (SAS ),∴AC =BD .6.如图6,在△ABC 中,已知AB =AC ,AD 平分∠BAC ,点M ,N 分别在AB ,AC 边上,AM =2MB ,AN =2NC .求证:DM =DN .图6证明:∵AM =2MB ,∴AM =23AB ,同理,AN =23AC , 又∵AB =AC ,∴AM =AN . ∵AD 平分∠BAC , ∴∠MAD =∠NAD .在△AMD 和△AND 中,⎩⎨⎧AM =AN ,∠MAD =∠NAD ,AD =AD ,∴△AMD ≌△AND ,∴DM =DN .知识点3.利用“SAS ”判定三角形全等来解决实际问题7.如图7所示,有一块三角形镜子,小明不小心将它打破成Ⅰ,Ⅱ两块,现需配成同样大小的一块.为了方便起见,需带上__Ⅰ__块,其理由是__两边及其夹角分别相等的两个三角形全等__.图7知识点4.线段的垂直平分线的性质8.[2017秋·浉河区期末]如图8,DE 是△ABC 中AC 边的垂直平分线,若BC =8,AB =10,则△EBC 的周长是( C ) A .13B .16C .18D .20【解析】 ∵DE 是△ABC 中AC 边的垂直平分线,∴EA =EC ,∴△EBC 的周长=BC +BE +EC =BC +BE +EA =BC +BA =18.图8 图99.如图9,在△ABC中,AB=AC=20 cm,DE垂直平分AB,垂足为E,交AC 于D,若△DBC的周长为35 cm,则BC的长为(C)A.5 cm B.10 cmC.15 cm D.17.5 cm【解析】∵△DBC的周长=BC+BD+CD=35 cm,又∵DE垂直平分AB,∴AD=BD,∴BC+AD+CD=35 cm,∵AC=AD+DC=20 cm,∴BC=35-20=15 cm.【易错点】“SSA”不能判定两个三角形全等.10.下列条件能够判断△ABC与△A′B′C全等的是(D)A.∠A=∠A′B.AB=A′B′,∠B=∠B′,AC=A′C′C.AB=A′B′,AC=A′C′D.AB=A′B′,∠A=∠A′,AC=A′C′【解析】A.已知条件为一组对应角相等,不符合全等三角形的判定定理,无法证明两个三角形全等,故此选项错误;B.已知条件为边边角,不符合全等三角形的判定定理,无法证明两个三角形全等,故此选项错误;C.已知条件为两条边对应相等,不符合全等三角形的判定定理,无法证明两个三角形全等,故此选项错误;D.由边角边定理可证两个三角形全等,故此选项正确.第3课时“角边角”知识点三角形全等的判定(ASA)1.如图1,已知△ABC三条边、三个角,则甲、乙两个三角形中和△ABC全等的图形是(B)图1A.甲B.乙C.甲和乙都是D.都不是2.如图2所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是__ASA__.图23.如图3,∠1=∠2,∠3=∠4,求证:AC=AD.图3证明:∵∠3=∠4,∴∠ABC=∠ABD.在△ABC和△ABD中,⎩⎨⎧∠1=∠2,AB =AB ,∠ABC =∠ABD ,∴△ABC ≌△ABD (ASA ),∴AC =AD .4.[2018秋·延庆区期中]如图4,AB =AC ,点D ,E 分别在AB ,AC 上,CD ,BE 交于点F ,且∠B =∠C .求证:△ABE ≌△ACD .图4证明:在△ABE 与△ACD 中,⎩⎨⎧∠A =∠A ,AB =AC ,∠B =∠C ,∴△ABE ≌△ACD (ASA ).5.[2018秋·金坛区期中]如图5,在△ABC 和△ADE 中,AB =AD ,∠B =∠D ,∠1=∠2.求证:△ABC ≌△ADE .图5证明:∵∠1=∠2,∴∠DAC +∠1=∠2+∠DAC , ∴∠BAC =∠DAE ,在△ABC 和△ADE 中,⎩⎨⎧∠B =∠D ,AB =AD ,∠BAC =∠DAE ,∴△ABC ≌△ADE (ASA ).【易错点】错用判定三角形全等的判定方法.6.已知:如图6,∠AOD =∠BOC ,∠A =∠C ,O 是AC 的中点.求证:△AOB ≌△COD .图6证明:∵∠AOD =∠BOC ,∴∠AOD +∠DOB =∠BOC +∠BOD , 即∠AOB =∠COD ,∵O 是AC 的中点,∴AO =CO ,在△AOB 与△COD 中,⎩⎨⎧∠A =∠C ,AO =CO ,∠AOB =∠COD ,∴△AOB ≌△COD .第4课时 “角角边”与角平分线的性质知识点1.三角形全等的判定(AAS )1.如图1,AB =AE ,∠1=∠2,∠C =∠D .求证:△ABC ≌△AED .图1证明:∵∠1=∠2,∴∠1+∠EAC =∠2+∠EAC ,即∠BAC =∠EAD . 又∵∠C =∠D ,AB =AE ,∴△ABC ≌△AED (AAS ).2.如图2,已知:在△AFD 和△CEB 中,点A ,E ,F ,C 在同一直线上,AE =CF ,∠B =∠D ,AD ∥BC .求证:AD =BC .图2证明:∵AE =CF ,∴AF =CE . ∵AD ∥BC ,∴∠A =∠C . 在△AFD 和△CEB 中,⎩⎨⎧∠A =∠C ,∠B =∠D ,AF =CE ,∴△AFD ≌△CEB (AAS ),∴AD =BC . 知识点2.三角形全等判定方法的选用3.如图3,已知∠ABC =∠BAD ,添加下列条件还不能判定△ABC ≌△BAD 的是( A )A .AC =BDB .∠CAB =∠DBAC .∠C =∠DD .BC =AD图3图44.如图4所示,在△ABC 中,∠B =∠C ,D 为BC 边的中点,过点D 分别向AB ,AC 作垂线段,则能够说明△BDE ≌△CDF 的理由是( D ) A .SSSB .SASC .ASAD .AAS知识点3.角平分线的性质5.如图5,OC 是∠AOB 的平分线,P 是OC 上一点,PD ⊥OA 于点D ,PD =6,则点P 到边OB 的距离为( A )图5A .6B .5C .4D .36.[2019·辽阳模拟]如图6,BD 平分∠ABC ,DE ⊥BC 于点E ,AB =7,DE =4,则S △ABD =( C ) A .28 B .21 C .14D .7图6第6题答图【解析】 如答图,作DH ⊥BA 于H .∵BD 平分∠ABC ,DE ⊥BC ,DH ⊥AB , ∴DH =DE =4,∴S △ABD =12×7×4=14,故选C.7.如图7,已知BD 为∠ABC 的平分线,AB =BC ,点P 在BD 上,PM ⊥AD 于M ,PN ⊥CD 于N ,求证:PM =PN .图7证明:∵BD 为∠ABC 的平分线, ∴∠ABD =∠CBD , 在△ABD 和△CBD 中,⎩⎨⎧AB =CB ,∠ABD =∠CBD ,BD =BD ,∴△ABD ≌△CBD (SAS ),∴∠ADB =∠CDB , ∵点P 在BD 上,且PM ⊥AD ,PN ⊥CD ,∴PM =PN .【易错点】对于全等三角形开放性问题,常常不能正确选用判定方法. 8. 如图8,在△ABC 和△DEF 中,∠B =∠DEF ,AB =DE ,添加下列一个条件后,仍然不能证明△ABC ≌△DEF ,这个条件是( D )图8A .∠A =∠DB .BC =EF C .∠ACB =∠FD .AC =DF【解析】 ∵∠B =∠DEF ,AB =DE ,∴添加∠A =∠D ,利用ASA 可得△ABC ≌△DEF ;∴添加BC=EF,利用SAS可得△ABC≌△DEF;∴添加∠ACB=∠F,利用AAS可得△ABC≌△DEF;添加AC=DF不能证明△ABC≌△DEF,故选D.。
2019年秋人教新版八年级数学上册同步练习卷12.2三角形全等的判定含答案

12.2三角形全等的判定一.选择题(共11小题)1.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带()去.A.第1块B.第2块C.第3块D.第4块2.如图所示,H是△ABC的高AD,BE的交点,且DH=DC,则下列结论:①BD=AD;②BC=AC;③BH=AC;④CE=CD中正确的有()A.1个B.2个C.3个D.4个3.如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若AB=4,CF=3,则BD的长是()A.0.5 B.1 C.1.5 D.24.如下图所示,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D.DE=6cm,AD=9cm,则BE的长是()A.6cm B.1.5cm C.3cm D.4.5cm5.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,若AD=3,BE=1,则DE=()A.1 B.2 C.3 D.46.工人师傅常用角尺平分一个任意角.作法如下:如图所示,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合,过角尺顶点C的射线OC即是∠AOB的平分线.这种作法的道理是()A.HL B.SSS C.SAS D.ASA7.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA8.下列说法正确的是()A.周长相等的两个三角形全等B.面积相等的两个三角形全等C.三个角对应相等的两个三角形全等D.三条边对应相等的两个三角形全等9.在下列各组条件中,不能说明△ABC≌△DEF的是()A.AB=DE,∠B=∠E,∠C=∠F B.AC=DF,BC=EF,∠A=∠DC.AB=DE,∠A=∠D,∠B=∠E D.AB=DE,BC=EF,AC=DF10.如图所示,在下列条件中,不能判断△ABD≌△BAC的条件是()A.∠D=∠C,∠BAD=∠ABC B.∠BAD=∠ABC,∠ABD=∠BACC.BD=AC,∠BAD=∠ABC D.AD=BC,BD=AC11.如图,AB,CD表示两根长度相等的铁条,若O是AB,CD的中点,经测量AC=15cm,则容器的内径长为()A.12cm B.13cm C.14cm D.15cm二.填空题(共5小题)12.在△ABC中,已知∠CAB=60°,D、E分别是边AB、AC上的点,且∠AED=60°,ED+DB=CE,∠CDB=2∠CDE,则∠DCB等于.13.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=.14.如图,点D在BC上,DE⊥AB于点E,DF⊥BC交AC于点F,BD=CF,BE=CD.若∠AFD=145°,则∠EDF=.15.如图,CA⊥AB,垂足为点A,AB=24,AC=12,射线BM⊥AB,垂足为点B,一动点E从A点出发以3厘米/秒沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E经过秒时,△DEB与△BCA全等.16.如图,点B在AE上,∠CBE=∠DBE,要使△ABC≌△ABD,还需添加一个条件是(填上适当的一个条件即可)三.解答题(共9小题)17.已知:如图,BC∥EF,点C,点F在AD上,AF=DC,BC=EF.求证:△ABC≌△DEF.18.已知:如图,E是BC上一点,AB=EC,AB∥CD,BC=CD.求证:AC=ED.19.已知:如图,AB=AC,点D是BC的中点,AB平分∠DAE,AE⊥BE,垂足为E.求证:AD=AE.20.如图,在△ADF与△CBE中,点A、E、F、C在同一直线上,已知AD∥BC,AD=CB,∠B=∠D.求证:AF=CE.21.如图,△ACB和△DCE均为等腰三角形,点A、D、E在同一直线上,连接BE,若∠CAB=∠CBA=∠CDE=∠CED =50°.(1)求证:AD=BE.(2)求∠AEB的度数.22.已知:如图AC,BD相交于点O,∠A=∠D,AB=CD,求证:△AOB≌△DOC.23.如图,D、C、F、B四点在一条直线上,AB=DE,AC⊥BD,EF⊥BD,垂足分别为点C、点F,CD=BF.求证:(1)△ABC≌△EDF;(2)AB∥DE.24.如图,已知BD⊥AC,CF⊥AB.(1)若BE=AC,求证:△BFE≌△CFA.(2)取BC中点为G,连结FG,DG,求证:FG=DG.25.如图,已知EC=AC,∠BCE=∠DCA,∠A=∠E;求证:BC=DC.参考答案一.选择题(共11小题)1.解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故选:B.2.解:①∵BE⊥AC,AD⊥BC∴∠AEH=∠ADB=90°∵∠HBD+∠BHD=90°,∠EAH+∠AHE=90°,∠BHD=∠AHE∴∠HBD=∠EAH∵DH=DC∴△BDH≌△ADC(AAS)∴BD=AD,BH=AC②:∵BC=AC∴∠BAC=∠ABC∵由①知,在Rt△ABD中,BD=AD∴∠ABC=45°∴∠BAC=45°∴∠ACB=90°∵∠ACB+∠DAC=90°,∠ACB<90°∴结论②为错误结论.③:由①证明知,△BDH≌△ADC∴BH=AC④:∵CE=CD∵∠ACB=∠ACB;∠ADC=∠BEC=90°∴△BEC≌△ADC由于缺乏条件,无法证得△BEC≌△ADC∴结论④为错误结论综上所述,结论①,③为正确结论,结论②,④为错误结论,根据题意故选B.故选:B.3.解:∵CF∥AB,∴∠A=∠FCE,∠ADE=∠F,在△ADE和△FCE中,∴△ADE≌△CFE(AAS),∴AD=CF=3,∵AB=4,∴DB=AB﹣AD=4﹣3=1.故选:B.4.解:∵∠ACB=90°,BE⊥CE,∴∠BCE+∠ACD=90°,∠BCE+∠CBE=90°;∴∠ACD=∠CBE,又AC=BC,∴△ACD≌△CBE;∴EC=AD,BE=DC;∵DE=6cm,AD=9cm,则BE的长是3cm.故选:C.5.解:AD⊥CE,BE⊥CE,∴∠ADC=∠BEC=90°.∵∠BCE+∠CBE=90°,∠BCE+∠CAD=90°,∠DCA=∠CBE,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴CE=AD=3,CD=BE=1,DE=CE﹣CD=3﹣1=2,故选:B.6.解:由图可知,CM=CN,又OM=ON,OC为公共边,∴△COM≌△CON,∴∠AOC=∠BOC,即OC即是∠AOB的平分线.故选:B.7.解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选:D.8.解:A、全等三角形的周长相等,但周长相等的两个三角形不一定全等,故本选项错误;B、全等三角形的面积相等,但面积相等的两个三角形不一定全等,故本选项错误;C、判定全等三角形的过程中,必须有边的参与,故本选项错误;D、正确,符合判定方法SSS.故选:D.9.解:A、AB=DE,∠B=∠E,∠C=∠F,可以利用AAS定理证明△ABC≌△DEF,故此选项不合题意;B、AC=DF,BC=EF,∠A=∠D不能证明△ABC≌△DEF,故此选项符合题意;C、AB=DE,∠A=∠D,∠B=∠E,可以利用ASA定理证明△ABC≌△DEF,故此选项不合题意;D、AB=DE,BC=EF,AC=DF可以利用SSS定理证明△ABC≌△DEF,故此选项不合题意;故选:B.10.解:A、符合AAS,能判断△ABD≌△BAC;B、符合ASA,能判断△ABD≌△BAC;C、符合SSA,不能判断△ABD≌△BAC;D、符合SSS,能判断△ABD≌△BAC.故选:C.11.解:∵O是AB,CD的中点,AB=CD,∴OA=OB=OD=OC,在△AOC和△BOD中,,∴△AOC≌△BOD,∴AC=BD=15cm,故选:D.二.填空题(共5小题)12.解:延长AB到F使BF=AD,连接CF,如图,∵∠CAD=60°,∠AED=60°,∴△ADE为等边三角形,∴AD=DE=AE,∠ADE=60°,∴∠BDE=180°﹣∠ADE=120°,∵∠CDB=2∠CDE,∴3∠CDE=120°,解得∠CDE=40°,∴∠CDB=2∠CDE=80°,∵BF=AD,∴BF=DE,∵DE+BD=CE,∴BF+BD=CE,即DF=CE,∵AF=AD+DF,AC=AE+CE,∴AF=AC,而∠BAC=60°,∴△AFC为等边三角形,∴CF=AC,∠F=60°,在△ACD和△FCB中,∴△ACD≌△FCB(SAS),∴CB=CD,∴∠CBD=∠CDB=80°,∴∠DCB=180﹣(∠CBD+∠CDB)=20°.13.解:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠1=∠EAC,在△BAD和△CAE中,∴△BAD≌△CAE(SAS),∴∠2=∠ABD=30°,∵∠1=25°,∴∠3=∠1+∠ABD=25°+30°=55°,故答案为:55°.14.解:如图,∵∠DFC+∠AFD=180°,∠AFD=145°,∴∠CFD=35°.又∵DE⊥AB,DF⊥BC,∴∠BED=∠CDF=90°,在Rt△BDE与△Rt△CFD中,,∴Rt△BDE≌△Rt△CFD(HL),∴∠BDE=∠CFD=35°,∴∠EDF+∠BDE=∠EDF+∠CFD=90°,∴∠EDF=55°.故答案是:55°.15.解:设点E经过t秒时,△DEB≌△BCA;此时AE=3t分情况讨论:(1)当点E在点B的左侧时,BE=24﹣3t=12,∴t=4;(2)当点E在点B的右侧时,①BE=AC时,3t=24+12,∴t=12;②BE=AB时,3t=24+24,∴t=16.(3)当点E与A重合时,AE=0,t=0;综上所述,故答案为:0,4,12,16.16.解:BC=BD,理由是:∵∠CBE=∠DBE,∠CBE+∠ABC=180°,∠DBE+∠ABD=180°,∴∠ABC=∠ABD,在△ABC和△ABD中∴△ABC≌△ABD,故答案为:BC=BD.三.解答题(共9小题)17.证明:∵AF=DC,∴AF+FC=DC+FC,即AC=DF,∵BC∥EF,∴∠ACB=∠DFE,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).18.证明:∵AB∥CD,∴∠B=∠DCE.在△ABC和△ECD中,∴△ABC≌△ECD(SAS).∴AC=ED.19.证明:∵AB=AC,点D是BC的中点,∴∠ADB=90°,∵AE⊥EB,∴∠E=∠ADB=90°,∵AB平分∠DAE,∴∠1=∠2;在△ADB和△AEB中,,∴△ADB≌△AEB(AAS),∴AD=AE.20.证明:∵AD∥BC∴∠A=∠C在△ADF和△CBE中∴△ADF≌△CBE(ASA)∴AF=CE.21.(1)证明:如图1中,∵∠CAB=∠CBA=∠CDE=∠CED=50°,∴CA=CB,CD=CE,∠ACB=∠DCE=80°,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE.(2)解:设AE与BC交于点O.∵△ACD≌△BCE,∴∠CAD=∠CBE,∵∠COA=∠BOE,∴∠ACO=∠BEO=80°,∴∠AEB=80°.22.证明:在△AOB和△DOC中,,所以,△AOB≌△DOC(AAS).23.证明:(1)∵AC⊥BD,EF⊥BD,∴△ABC和△EDF为直角三角形,∵CD=BF,∴CF+BF=CF+CD,即BC=DF,在Rt△ABC和Rt△EDF中,∴Rt△ABC≌Rt△EDF(HL);(2)由(1)可知△ABC≌△EDF,∴∠B=∠D,∴AB∥DE.24.证明:(1)∵BD⊥AC,CF⊥AB,∴∠BFE=∠CFA=90°,∵∠BEF=∠CED,∴∠FBE=∠FCA,在△BFE和△CFA中,∴△BFE≌△CFA(AAS);(2)∵BD⊥AC,CF⊥AB,∴△BFC和△BDC都是直角三角形,∵点G是BC边的中点,∴BC=2FG,BC=2DG,∴FG=DG.25.证明:∵∠BCE=∠DCA,∴∠BCE+∠ACE=∠DCA+∠ACE,即∠ACB=∠ECD,在△ABC和△EDC中,,∴△ABC≌△EDC(ASA),∴BC=DC.。
2019人教版八年级数学上册第十三章133《等腰三角形》讲义第11讲(有答案)语文

第11讲等腰三角形1、等腰三角形性质:性质1:等腰三角形的两个底角相等(简写成“等边对等角”)性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。
(三线合一)2、等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).1、定义:三条边都相等的三角形,叫等边三角形。
它是特殊的等腰三角形。
2、性质和判定:(1)等边三角形的三个内角都相等,并且每一个角都等于60º。
(2)三个角都相等的三角形是等边三角形。
(3)有一个角是60º的等腰三角形是等边三角形。
(4)在直角三角形中,如果一个锐角等于30º,那么它所对的直角边等于斜边的一半。
(1)三角形三个内角的平分线交于一点,并且这一点到三边的距离等。
(2)三角形三个边的中垂线交于一点,并且这一点到三个顶点的距离相等。
(3)常用辅助线:①三线合一;②过中点做平行线考点1、等腰三角形性质例1、一个等腰三角形的一个内角是40°,则它的顶角是()A.40°B.50°C.60°D.40°,100°例2、在钝角三角形ABC中,AB=AC,点D是BC上一点,AD把△ABC分成两个等腰三角形,则∠BAC的度数为().A.150° B.124°C.120° D.108°例3、如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF =DE,则∠E=______度.(例2)(例3)例4、已知△ABC中,AB=AC,中线BD将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为。
例5、在△ABC中,AB=AC,CD=CB,若∠ACD=42°,则∠BAC=______°.例6、已知一个等腰三角形的周长为18cm。
(1)如果腰长是底边的2倍,那么各边的长是多少?(2)如果一腰上的中线将该等腰三角形的周长分为1:2两部分,那么各边的长为多少?例7、如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA.(1)求证:DE平分∠BDC;(2)若点M在DE上,且DC=DM,求证:ME=BD.1、对“等角对等边”这句话的理解,正确的是()A.只要两个角相等,那么它们所对的边也相等B.在两个三角形中,如果有两个角相等,那么它们所对的边也相等C.在一个三角形中,如果有两个角相等,那么它们所对的边也相等D.以上说法都是错误的2、等腰三角形的两内角度数之比是1∶2,则顶角的度数是()A.90°B.45° C.36° D.90°或36°3、△ABC中AB=AC,∠A=36°,BD平分∠ABC交AC于D,则图中的等腰三角形有()A.1个 B.2个 C.3个 D.4个4、如图,在△ABC中,∠B=∠C,D在BC上,∠ADE=∠AED,且∠BAD=60°,则∠EDC= 度.5、如图所示,AD是△ABC的中线,∠ADC=60°,把△ADC沿直线AD折过来,点C落在C′处,如果BC′=5,则BC=______.6、如图,在△ABC中,AB=AC,∠BAC与∠ACB的平分线相交于点D,若∠ADC=130°,则∠BAC=_____度.(4)(5)(6)7、如图,△ABC中,AB=AC,D、E分别是BC、AC上的点,∠BAD与∠CDE满足什么条件时AD=AE?写出你的推理过程.8、如图,在△ABC中,AB=AC,CD为AB边上的高,求证:∠BCD=1∠A.29、如图.在△ABC中,AB=AC,F为AC上一点,FD⊥BC于D,DE⊥AB于E,∠AFD=145°,求∠A和∠EDF的值.考点2、等腰三角形的判定例1、下列能断定△ABC为等腰三角形的是()A.∠A=30°,∠B=60°B.∠A=50°,∠B=80°C.AB=AC=2,BC=4D.AB=3,BC=7,周长为10例2、如图,是四张形状不同的纸片,用剪刀沿一条直线将它们分别剪开(只允许剪一次),不能够得到两个等腰三角形纸片的是()例3、如图,已知△ABC中,AC+BC=24,AO、BO分别是角平分线,且MN∥BA,分别交AC于N、BC于M,则△CMN的周长为______.例4、如图,P是∠AOB的角平分线上一点,PD⊥OB,垂足为D,PC∥OB交OA于点C,(例3)(例4)例5、如图,△ABC中,D、E分别是AC、AB上的点,BD与CE交于点O.给出下列三个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD.(1)上述三个条件中,哪两个条件______可判定△ABC是等腰三角形(用序号写出所有情形);(2)选择第(1)小题中的一种情形,证明△ABC是等腰三角形.例6、如图AB=AC,∠A=36°,AB的垂直平分线MN交AC于点D,交AB于E.①求∠DBC的度数.②猜想△BDC的形状并证明.例7、如图,在等腰Rt△ABC中,∠ACB=90°,D为BC的中点,DE⊥AB,垂足为E,过点B作BF∥AC交DE的延长线于点F,连接CF。
2019年八年级数学上期中试题(带答案)

2019年八年级数学上期中试题(带答案)一、选择题1.若一个凸多边形的内角和为720°,则这个多边形的边数为() A.4B.5C.6D.7 2.下列关于x的方程中,是分式方程的是( ).A.132x=B.12x=C.2354x x++=D.3x-2y=13.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°4.如图2,AB=AC,BE⊥AC于E,CF⊥AB于F,BE,CF交于D,则以下结论:①△ABE≌△ACF;②△BDF≌△CDE;③点D在∠BAC的平分线上.正确的是()A.①B.②C.①②D.①②③5.一个三角形的两边长分别为3和4,且第三边长为整数,这样的三角形的周长最大值是( )A.11 B.12 C.13 D.146.如图,AB∥CD,DE⊥BE,BF、DF分别为∠ABE、∠CDE的角平分线,则∠BFD=()A.110°B.120°C.125°D.135°7.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A .角平分线上的点到这个角两边的距离相等B .角的内部到角的两边的距离相等的点在角的平分线上C .三角形三条角平分线的交点到三条边的距离相等D .以上均不正确8.小淇用大小不同的 9 个长方形拼成一个大的长方形 ABCD ,则图中阴影部分的面积是( )A .(a + 1)(b + 3)B .(a + 3)(b + 1)C .(a + 1)(b + 4)D .(a + 4)(b + 1) 9.某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果共有了18天完成全部任务.设原计划每天加工x 套运动服,根据题意可列方程为A .()16040018x 120%x++= B .()16040016018x 120%x -++= C .16040016018x 20%x -+= D .()40040016018x 120%x -++= 10.如图,把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A′处,点B 落在点B′处,若∠2=40°,则图中∠1的度数为( )A .115°B .120°C .130°D .140°11.计算:(a -b)(a +b)(a 2+b 2)(a 4-b 4)的结果是( )A .a 8+2a 4b 4+b 8B .a 8-2a 4b 4+b 8C .a 8+b 8D .a 8-b 8 12.若实数x,y,z 满足()()()240x z x y y z ----=,则下列式子一定成立的是( )A .x+y+z=0B .x+y-2z=0C .y+z-2x=0D .z+x-2y=0二、填空题13.如图是两块完全一样的含30°角的直角三角尺,分别记做△ABC 与△A′B′C′,现将两块三角尺重叠在一起,设较长直角边的中点为M ,绕中点M 转动上面的三角尺ABC ,使其直角顶点C 恰好落在三角尺A′B′C′的斜边A′B′上.当∠A =30°,AC =10时,两直角顶点C ,C′间的距离是_____.14.若(42)(3)x m x -+的乘积中不含x 的一次项,则常数m =_________.15.已知11 5x y +=,则232 2x xy y x xy y-+=++_____. 16.当m=________时,方程233x m x x =---会产生增根. 17.如图所示,已知△ABC 的周长是20,OB 、OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD=3,则△ABC 的面积是 .18.已知1m n -=,则222m n n --的值为______.19.如图,在△ABC 中,∠A=50°,∠ABC=70°,BD 平分∠ABC ,则∠BDC 的度数是_____.20.已知3221-可以被10到20之间某两个整数整除,则这两个数是___________.三、解答题21.解方程:22111x x x -=--.22.先化简.再求值已知20a a -=,求222141•2211a a a a a a --÷+-+-的值. 23.我们把两组邻边相等的四边形叫做“筝形”.如图,四边形ABCD 是一个筝形,其中AB=CB,AD=CD ,对角线AC,BD 相交于点O,OE⊥AB,OF⊥CB,垂足分别是E,F ,求证OE=OF ;24.解方程:(1)2102x x -=- (2)2133193x x x +=-- 25.如图,在△ABC 中,边AB 、AC 的垂直平分线分别交BC 于D 、E .(1)若BC =5,求△ADE 的周长.(2)若∠BAD +∠CAE =60°,求∠BAC 的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】设这个多边形的边数为n ,根据多边形的内角和定理得到(n ﹣2)×180°=720°,然后解方程即可.【详解】设这个多边形的边数为n ,由多边形的内角和是720°,根据多边形的内角和定理得(n -2)180°=720°.解得n=6.故选C.【点睛】本题主要考查多边形的内角和定理,熟练掌握多边形的内角和定理是解答本题的关键. 2.B解析:B【解析】【分析】根据分式方程的定义:分母里含有字母的方程叫做分式方程判断.【详解】A. C. D项中的方程分母中不含未知数,故不是分式方程;B. 方程分母中含未知数x,故是分式方程,故选B.【点睛】本题考查的是分式方程,熟练掌握分式方程是解题的关键.3.C解析:C【解析】【分析】根据平行四边形性质和折叠性质得∠BAC=∠ACD=∠B′AC=12∠1,再根据三角形内角和定理可得.【详解】∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ACD=∠BAC,由折叠的性质得:∠BAC=∠B′AC,∴∠BAC=∠ACD=∠B′AC=12∠1=22°∴∠B=180°-∠2-∠BAC=180°-44°-22°=114°;故选C.【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出∠BAC的度数是解决问题的关键.4.D解析:D【解析】【分析】从已知条件进行分析,首先可得△ABE≌△ACF得到角相等,边相等,运用这些结论,进而得到更多的结论,最好运用排除法对各个选项进行验证从而确定最终答案.【详解】∵BE⊥AC于E,CF⊥AB于F∴∠AEB=∠AFC=90°,∵AB=AC,∠A=∠A,∴△ABE≌△ACF(①正确)∴AE=AF,∴BF=CE,∵BE⊥AC于E,CF⊥AB于F,∠BDF=∠CDE,∴△BDF≌△CDE(②正确)∴DF=DE,连接AD∵AE=AF,DE=DF,AD=AD,∴△AED≌△AFD,∴∠FAD=∠EAD,即点D在∠BAC的平分线上(③正确).故答案选D.考点:角平分线的性质;全等三角形的判定及性质.5.C解析:C【解析】【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围,再根据第三边是整数,从而求得周长最大时,对应的第三边的长.【详解】解:设第三边为a,根据三角形的三边关系,得:4-3<a<4+3,即1<a<7,∵a为整数,∴a的最大值为6,则三角形的最大周长为3+4+6=13.故选:C.【点睛】本题考查了三角形的三边关系,根据三边关系得出第三边的取值范围是解决此题的关键.6.D解析:D【解析】【分析】【详解】如图所示,过E作EG∥AB.∵AB∥CD,∴EG∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BED+∠CDE=360°.又∵DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,∴∠FBE+∠FDE=12(∠ABE+∠CDE)=12(360°﹣90°)=135°,∴∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.故选D.【点睛】本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.7.B解析:B【解析】【分析】过两把直尺的交点P作PE⊥AO,PF⊥BO,根据题意可得PE=PF,再根据角的内部到角的两边的距离相等的点在这个角的平分线上可得OP平分∠AOB.【详解】如图,过点P作PE⊥AO,PF⊥BO,∵两把完全相同的长方形直尺的宽度相等,∴PE=PF,∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),故选B.【点睛】本题考查角平分线的判定定理,角的内部,到角两边的距离相等的点在这个角的平分线上;熟练掌握定理是解题关键.8.B解析:B【解析】【分析】通过平移后,根据长方形的面积计算公式即可求解.【详解】平移后,如图,易得图中阴影部分的面积是(a+3)(b+1).故选B.【点睛】本题主要考查了列代数式.平移后再求解能简化解题.9.B解析:B【解析】试题分析:由设原计划每天加工x 套运动服,得采用新技术前用的时间可表示为:160x天,采用新技术后所用的时间可表示为:()400160120%x -+天。
2019-2020学年八年级数学上学期《第12章全等三角形》测试卷及答案解析

故选:D.
【点评】本题考查的是全等形的概念:能够完全重合的两个图形叫做全等形.所谓完全重合是指形状相同,大小相等.熟记定义是解题的关键.同时考查了全等图形的性质:全等图形的周长、面积相等.
3.如图,若△ABC≌△CDA,则下列结论错误的是( )
A.∠2=∠1B.AC=CAC.∠B=∠DD.BC=DC
【分析】直接利用全等三角形的性质得出对应角以及对应边相等进而得出答案.
2019-2020学年八年级数学上学期《第12章全等三角形》测试卷
一.选择题(共12小题)
1.下列各组的两个图形属于全等图形的是( )
A. B.
C. D.
2.下列说法中,正确的是( )
A.全等图形是形状相同的两个图形
B.全等三角形是指面积相同的两个三角形
C.等边三角形都是全等三角形
D.全等图形的周长、面积都相等
(2)试判断AB与AF,EB之间存在的数量关系.并说明理由.
2019-2020学年八年级数学上学期《第12章全等三角形》测试卷参考答案与试题解析
一.选择题(共12小题)
1.下列各组的两个图形属于全等图形的是( )
A. B.
C. D.
【分析】根据全等形是ห้องสมุดไป่ตู้够完全重合的两个图形进行分析判断.
【解答】解:A、两个图形能够完全重合,故本选项正确.
18.如图,已知AB,CD相交于O,△ACO≌△BDO,AE=BF,求证:CE=FD.
19.如图,在△ABC中,AB=AC,CD⊥AB于点D,BE⊥AC于点E.求证:BD=CE.
20.如图,∠A=∠B=90°,E是AB上的一点,且AD=BE,∠1=∠2,求证:Rt△ADE≌Rt△BEC.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级上册数学答案(2019)
第2章特殊三角形
2.AB与CD平行.量得线段BD的长约为2cm,所以两电线
杆间的距离约为120m
【2.1】3.1保担悖4.略5.由m∥n,AB⊥n,CD⊥n,知AB=CD,∠ABE=∠CDF=90°.1.B∵ AE∥CF,∴ ∠AEB=∠CFD.∴ △AEB≌△CFD,2.3个;△A
BC,△ABD,△ACD;∠ADC;∠DAC,∠C;AD,D
C;AC∴ AE=C
F3.15cm,15cm,5cm4.16或176.AB=BC.理由如下:作AM⊥l5.如图,答案不,图中点C1,C2,C3均可2于M,BN⊥l3于N,则△ABM≌△BCN,得AB=BC6.(1)略(2)CF=1保担悖恚罚AP平分∠
BAC.理由如下:由AP是中线,得BP=复习题PC.又AB
=AC,AP=AP,得△ABP≌△ACP(SSS).1.502.(1)∠4(2)∠3(3)∠1∴ ∠BAP=∠CAP
(第5题)3.(1)∠B,两直线平行,同位角相等
【2.2】(2)∠5,内错角相等,两直线平行(3)∠BCD,
CD,同旁内角互补,两直线平行1.(1)70°,70° (2)
100°,40° 2.3,90°,50° 3.略4.(1)90° (2)60°4.∠B=40°,∠C=40°,∠BAD=50°,∠CAD=50° 5.40°或70°5.AB∥CD.理由:如图,由∠1+∠3=180°,得6.BD=CE.理由:由AB=AC,得∠ABC=∠ACB.(第又∵∠3=72°=∠25题)∠BD
C=∠CEB=90°,BC=CB,∴ △BDC≌△CEB(AAS).∴ BD=CE6.由AB∥DF,得∠1=∠D=11
5°.由BC∥DE,得∠1+∠B=180°.(本题也可用面积
法求解)∴ ∠B=65°7.∠A+∠D=180°,∠C+∠D=
180°,∠B=∠D
【2.3】8.不准确,画图略1.70°,等腰2.33.70°或40°9.因为∠EBC=∠1=∠2,所以DE∥BC.所以∠
AED=∠C=70°4.△BCD是等腰三角形.理由如下:由BD,CD分别是∠ABC,∠ACB的平50分线,得∠DBC=
∠DCB.则DB=DC。