人机界面与PLC之间的通信控制
mcgs与三菱plc网口通讯

mcgs与三菱plc网口通讯随着科技的不断发展,自动化控制在各个领域得到广泛应用。
在工业生产过程中,PLC作为控制设备的核心,扮演着重要的角色。
而在PLC的控制系统中,要实现与上位机之间的通讯,就需要使用合适的软件和协议。
在本文中,将介绍一种常用的通讯方式——MCGS与三菱PLC的网口通讯,并对其进行详细探讨。
一、MCGS与三菱PLC网口的基本原理MCGS作为一种常见的人机界面软件,在现代自动化系统中得到了广泛应用。
而与之相连的三菱PLC,则是一个高性能的控制设备。
要实现MCGS与三菱PLC之间的通讯,首先需要确保两者具备网口通信的功能。
网口通讯是通过以太网协议实现的,它允许不同设备之间基于IP地址相互通信。
在MCGS与三菱PLC网口通讯中,需要使用Modbus协议。
Modbus是一种开放的通信协议,广泛应用于工业领域。
通过Modbus协议,MCGS可以实现与三菱PLC之间的数据交互。
二、MCGS与三菱PLC网口通讯的步骤在进行MCGS与三菱PLC网口通讯之前,需要先进行一系列的配置和设置。
以下是通常的通讯步骤:1. 配置三菱PLC的通讯参数:包括IP地址、端口号等。
确保三菱PLC的网口功能正常,并且与MCGS处于同一局域网中。
2. 在MCGS软件中创建PLC连接:打开MCGS软件,创建一个新的项目,并选择与三菱PLC进行通讯。
根据实际情况,填写三菱PLC的IP地址和端口号等信息。
3. 设置MCGS的通讯参数:在MCGS软件中,需要设置Modbus协议的通讯参数,包括通讯方式、波特率等。
与三菱PLC 进行配套设置,确保两者的通讯参数一致。
4. 编写MCGS与三菱PLC的通讯程序:在MCGS软件中,根据需求编写PLC与人机界面之间的数据交互程序。
可以通过拖拽和编程的方式实现,确保数据的准确传输。
5. 进行通讯测试和调试:完成上述配置和设置后,进行通讯测试和调试。
确保MCGS与三菱PLC之间能够正常通讯,并实时地进行数据交互。
MCGS与PLC的通信方法

MCGS与PLC的通信方法MCGS(Machine Control & Graphic System)是一种人机界面和监控系统,而PLC(Programmable Logic Controller)则是一种可编程逻辑控制器。
MCGS和PLC可以通过多种通信方法实现数据的交互和控制指令的传输。
下面将详细介绍MCGS与PLC的通信方法。
1.RS232串口通信:RS232串口通信是一种常见的MCGS与PLC通信方式。
MCGS和PLC分别通过串口线连接,使用串口通信协议进行数据的传输。
RS232串口通信速率较低,但简单、稳定且易于实现。
2.RS485串口通信:RS485串口通信是一种多点通信方式,适用于多个PLC与一个MCGS之间的通信。
MCGS作为主站,PLC作为从站。
RS485串口通信速率较高,可实现快速数据传输。
3.网口通信:网口通信是一种基于以太网的通信方式,实现了MCGS与PLC之间的远程通信。
通过网口通信,MCGS可以连接到PLC所在的局域网或广域网,并实现数据的实时传输和控制指令的发送。
4.MODBUS通信:MODBUS是一种通用的串行通信协议,常用于MCGS与PLC之间的通信。
MODBUS可以通过RS485串口通信或网口通信实现,支持多种数据类型,包括寄存器读写、线圈状态读写等。
5. OPC通信:OPC(OLE for Process Control)是一种开放的标准,用于实现不同设备和软件之间的通信。
MCGS和PLC可以通过OPC通信实现数据的共享和交互,实现高效的生产监控与控制。
6.移动通信:随着移动互联网的普及,MCGS与PLC之间也可以通过移动通信方式实现远程监控和控制。
通过移动数据通信网络(如4G、5G等),MCGS可以连接到PLC所在的远程设备,并实时获取数据和发送控制指令。
需要注意的是,不同的通信方式适用于不同的应用场景,具体的选择应根据实际需求和系统要求进行。
此外,通信时需确保通信设备的参数设置正确,如波特率、数据位、校验位等。
PLC与人机界面HMI的配合使用

PLC与人机界面HMI的配合使用随着自动化技术的发展,PLC(可编程逻辑控制器)和人机界面HMI(Human Machine Interface)已成为现代工业领域中不可或缺的技术。
PLC负责逻辑控制,而HMI则负责与操作员进行交互和监控。
本文将探讨PLC与HMI的配合使用,并探讨其在工业自动化中的应用。
一、PLC与HMI的基本介绍PLC是一种专门设计用于控制工业过程的电子设备。
它能够根据程序的需求,执行各种逻辑操作,如计数、定时、判断等。
PLC的输入和输出接口能够与各种传感器和执行器相连接,实现对工业设备的控制。
HMI是一种用于人机交互的设备,可以通过触摸屏或键盘等方式,使操作员与PLC进行交互。
HMI通常包含一个可视化界面,可以显示各种参数、状态和报警信息等。
操作员可以通过HMI对PLC进行编程、监控和控制。
二、PLC与HMI的配合优势1. 高效可靠:PLC和HMI之间通过串口或以太网等方式进行通信,实时传输数据,确保系统的稳定性和可靠性。
操作员可以直接在HMI上进行设备控制和检测,大大提高了工作效率。
2. 灵活性:PLC的程序可以通过HMI进行编程和修改,无需专业编程人员介入。
这使得操作员能够根据实际需求进行快速调整和改变。
同时,HMI的可视化界面能够直观地显示工艺参数和设备状态,方便操作员进行监控和调试。
3. 故障排除:PLC和HMI协同工作,能够更方便地进行故障排查和维修。
当系统出现问题时,操作员可以通过HMI上的报警信息和参数显示快速定位故障原因,并采取相应的措施进行处理。
4. 数据管理:PLC可以与HMI共同完成数据采集和存储,实现工艺过程的数据管理。
通过HMI可以方便地查看历史数据、生成报表和趋势图,为工艺优化和决策提供数据支持。
三、PLC与HMI的应用场景PLC与HMI的配合使用广泛应用于各种工业自动化领域,以下是一些常见的应用场景:1. 生产线控制:PLC负责监控和控制生产线上的各个设备,而HMI 则提供操作界面,方便操作员进行调试和控制。
PLC与人机界面(HMI)的集成与优化

PLC与人机界面(HMI)的集成与优化随着工业自动化的迅速发展,PLC(可编程逻辑控制器)与人机界面(HMI)的集成变得越来越重要。
本文将探讨PLC与HMI的集成优势以及如何进行优化,以便提高生产效率和操作便捷性。
一、PLC与HMI的基本概念PLC是一种专门用于工业自动化控制的电子设备,它通过编程控制输入输出(IO)设备,实现对机械、电气、液压等工业过程的自动控制。
HMI则是人机界面,通常由屏幕和操作按钮组成,使操作员可以与PLC进行交互,并监视和控制工业系统。
二、PLC与HMI的集成优势1. 实时监控和控制:通过PLC与HMI的集成,操作员可以实时监测生产过程中的各项参数,并通过触摸屏幕进行控制调整,实现精确控制和灵活调节。
2. 信息显示和报警提示:HMI可以直观地显示设备状态、生产统计数据和报警信息,帮助操作员快速了解生产情况,并及时采取措施处理异常情况,避免生产中断和设备损坏。
3. 数据采集和记录:通过PLC与HMI的集成,可以实现对生产数据的采集和记录,为管理人员提供准确的生产数据和报表,帮助他们进行决策分析和生产优化。
4. 灵活性和可扩展性:PLC与HMI的集成使得系统更加灵活和可扩展,可以根据生产需求进行定制,添加新的功能模块和界面,以适应不断变化的工艺和市场需求。
三、PLC与HMI集成的优化策略1. 界面设计优化:HMI界面应设计简洁直观、操作友好,避免过多繁杂的图表和文字,确保操作员能够快速理解和使用。
同时,界面颜色和布局应合理搭配,提高可视化效果和信息传递效果。
2. 数据传输优化:PLC与HMI之间的数据传输应考虑实时性和稳定性,使用高速传输方式和可靠的通信协议,减少延迟和数据丢失,确保监控和控制的准确性。
3. 报警管理优化:HMI的报警系统应能够准确识别和分类设备的异常情况,并及时发出警报,方便操作员快速定位和解决问题。
报警信息的处理和记录也应方便管理,并可追溯和分析。
4. 远程监控和控制优化:通过网络技术和远程访问,实现对PLC和HMI系统的远程监控和控制,提高管理人员的工作效率和生产的灵活性。
触摸屏与plc通信原理

触摸屏与plc通信原理触摸屏与PLC通信原理引言:在现代自动化控制系统中,触摸屏与PLC(可编程逻辑控制器)的通信技术被广泛应用。
触摸屏作为人机界面的重要组成部分,通过与PLC进行通信,实现对自动化设备的监控和控制。
本文将详细介绍触摸屏与PLC通信的原理和实现方式。
一、触摸屏与PLC通信的原理触摸屏与PLC通信的原理可以简单概括为以下几个步骤:1. 确定通信协议:触摸屏与PLC之间的通信需要使用一种协议来进行数据交换。
常见的通信协议有Modbus、Profibus、CANopen等。
在选择通信协议时,需要根据具体应用场景、设备要求和可行性进行权衡和选择。
2. 连接硬件接口:触摸屏和PLC之间需要通过硬件接口进行连接。
常见的连接方式有串口通信、以太网通信等。
通过连接硬件接口,实现触摸屏与PLC之间的数据传输和通信。
3. 配置通信参数:在实现触摸屏与PLC通信之前,需要对触摸屏和PLC进行一些参数配置。
通常需要配置通信协议、通信地址、通信速率等参数,以确保触摸屏和PLC之间能够正常通信。
4. 数据交换与处理:触摸屏与PLC通信的核心是数据交换和处理。
触摸屏将用户的操作指令通过通信协议发送给PLC,PLC接收到指令后进行相应的处理,并将处理结果返回给触摸屏。
触摸屏再根据PLC返回的数据进行界面的更新和显示。
二、触摸屏与PLC通信的实现方式触摸屏与PLC通信的实现方式主要有以下几种:1. 串口通信方式:串口通信是一种常见的触摸屏与PLC通信方式。
触摸屏通过串口与PLC进行连接,通过串口协议进行数据交换。
串口通信方式简单、可靠,适用于小规模系统和近距离通信。
2. 以太网通信方式:以太网通信是一种高速、远距离通信方式。
触摸屏和PLC通过以太网模块进行连接,通过以太网协议进行数据交换。
以太网通信方式适用于大规模系统和分布式控制系统。
3. 无线通信方式:随着无线通信技术的发展,触摸屏与PLC之间也可以通过无线方式进行通信。
触摸屏与plc网口通讯怎么设置

触摸屏与plc网口通讯怎么设置触摸屏与PLC网口通讯是现代工业自动化领域中的重要技术,它可以实现人机界面的操作控制和数据传输,提高生产效率和工作精准度。
本文将探讨触摸屏与PLC网口通讯的设置方法与步骤。
一、触摸屏与PLC网口通讯的基本原理在了解设置方法之前,我们首先需要了解触摸屏与PLC网口通讯的基本原理。
触摸屏作为人机界面的一种设备,通过其触摸屏操作界面与用户进行交互,将用户的指令发送给PLC,同时,也能将PLC返回的数据显示在触摸屏上。
而PLC网口通讯则是指PLC通过网络接口与其他设备进行数据传输和通讯的过程。
二、设置触摸屏与PLC网口通讯步骤1. 确认PLC型号和通讯协议首先,在进行触摸屏与PLC网口通讯设置之前,我们需要明确PLC的型号和通讯协议。
不同型号的PLC可能使用不同的通讯协议,例如Modbus、OPC等。
只有了解清楚PLC的型号和通讯协议,才能正确地进行设置。
2. 连接触摸屏和PLC将触摸屏和PLC通过网线连接起来。
通常情况下,触摸屏和PLC都会有相应的网口接口,通过网线将两者连接起来,确保信号的顺利传输。
3. 进入触摸屏设置界面使用触摸屏的操作界面,进入其设置界面。
不同型号的触摸屏设置界面可能有所不同,但通常会提供“通讯设置”或“设备管理”等选项。
4. 添加PLC设备在触摸屏的设置界面中,找到并选择“添加设备”或类似选项。
接着,根据实际情况选择相应的PLC型号和通讯协议。
某些触摸屏还需要填写PLC的IP地址和端口号等相关信息。
5. 配置通讯参数一旦成功添加了PLC设备,接下来需要配置通讯参数。
通讯参数包括PLC的站号、数据格式、通讯速率等信息。
这些参数会影响到触摸屏与PLC之间的数据传输和通讯效果,因此需要仔细核对和确认。
6. 设置触摸屏显示界面触摸屏的设置界面通常还会提供设置显示界面的选项。
在这一步骤中,您可以自定义界面布局、按钮位置和显示内容等。
7. 测试通讯连接完成以上步骤后,我们需要进行通讯连接的测试。
PLC与人机界面(HMI)的集成与应用

PLC与人机界面(HMI)的集成与应用PLC(可编程逻辑控制器)和人机界面(HMI)是现代自动化系统中常见的两个关键组成部分,它们之间的集成与应用对于实现高效的工业控制至关重要。
本文将从几个方面探讨PLC与HMI的集成与应用,并介绍其在工业控制领域的重要性。
一、PLC与HMI简介PLC是一种专门用于控制工业过程和机器的计算机设备。
它通过预先编程的指令,根据输入信号采取相应的控制动作,控制输出信号的状态。
PLC具有可靠性高、可编程性强、扩展性好等特点,被广泛应用于制造业、自动化工程等领域。
HMI是指人与机器之间进行交互的界面,通常由触摸屏和相应的软件组成。
人机界面的主要功能是显示和操作PLC系统的各种信息,包括实时数据、报警信息、设备状态等。
通过直观、友好的界面,操作人员可以方便地控制和监测工业系统的运行状态。
二、PLC与HMI的集成方式1. 直接连接方式最简单的集成方式是将PLC和HMI直接连接在一起。
PLC通过一个特定的通信模块与HMI进行通信,实现数据的传输和控制的交互。
这种方式适用于小型控制系统,但对于大型系统来说,直接连接方式可能导致数据传输速度慢、容错性差等问题。
2. 以太网连接方式采用以太网连接方式可以克服直接连接方式的局限性。
通过以太网通信,PLC和HMI可以实现高速稳定的数据传输。
此外,以太网连接方式还支持远程监控和管理,方便维护人员对系统进行远程操作。
3. 使用总线通信方式使用总线通信方式是集成PLC和HMI的一种常见方式,常见的总线通信协议包括Profibus、Modbus、CAN等。
通过总线通信,PLC和HMI可以实现多路通信,提高系统的扩展性和灵活性。
三、PLC与HMI的应用1. 自动化生产线控制在自动化生产线上,PLC和HMI的集成应用十分广泛。
通过PLC控制器对生产线各个步骤进行编程,再通过HMI界面,操作人员可以实时监测生产状态、设备运行参数,并可以进行相关参数的调整和控制,从而提高生产效率和产品质量。
欧姆龙触摸屏与plc网口通讯

欧姆龙触摸屏与plc网口通讯欧姆龙触摸屏和PLC(Programmable Logic Controller)是工业自动化领域中常见的设备。
触摸屏作为人机界面,用于操作和监控系统;而PLC作为控制器,负责逻辑控制和信号处理。
为了实现两者之间的通讯,欧姆龙触摸屏提供了多种通信方式,其中,网口通讯是广泛应用的一种。
一、网口通讯的基本原理网口通讯是通过以太网口进行数据传输的一种方式。
欧姆龙触摸屏和PLC之间的通讯可以通过网线连接,利用以太网的高速传输能力实现数据的传递。
触摸屏通过自带的网口接口连接到PLC的网口接口上,建立起触摸屏和PLC之间的数据通路。
二、通讯协议的选择在欧姆龙触摸屏与PLC网口通讯中,通讯协议的选择非常重要。
常见的通讯协议有Modbus、Ethernet/IP、PROFINET等。
选择合适的协议可以有效地提高通讯的稳定性和可靠性。
根据实际需求和设备支持的协议,确定合适的通讯协议是通讯成功的关键。
三、配置触摸屏和PLC的通讯参数配置触摸屏和PLC的通讯参数是实现网口通讯的第一步。
在欧姆龙触摸屏的设置界面中,通过选择通讯协议和输入PLC的IP地址、端口号等参数,建立触摸屏和PLC之间的通讯链路。
同时,在PLC的编程软件中也需要设置相应的网络参数,确保触摸屏和PLC之间的通讯连接顺利进行。
四、数据的读写操作网口通讯的目的是实现对PLC的数据读写操作。
通过触摸屏,操作者可以方便地监视和控制PLC的状态。
触摸屏上显示的数据是通过与PLC之间的通讯获取的,而触摸屏上的操作指令也是通过通讯发送给PLC实现控制。
通过网口通讯,实现了PLC数据和触摸屏之间的无缝连接,提高了工业自动化控制系统的操作灵活性和可靠性。
五、通讯异常的处理在实际应用中,网口通讯可能会出现异常,比如连接中断、通讯错误等。
当触摸屏与PLC之间出现通讯异常时,需要进行相应的处理,确保通讯正常运行。
通常可以通过检查网络连接、配置参数、排除通讯干扰等方法来解决通讯异常的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人机界面与PLC之间的通信控制S7-200通信最经济的方式就是采用PPI协议和自由口通信协议。
对于S7-200之间进行通信,PPI协议又更适合——它比自由口通信的编程更简单!下面就对这个PPI通信进行说明——以2台S7-200通信为例,做一个实例。
设备配置:1台S7-200 CPU 226CN的PLC、1台S7-200 CPU 224XP的PLC硬件连接:原则上需要配备1条紫色的Profibus电缆、2个黑色的Profibus-DP接头。
如果需要在PLC通信时对所有在线的PLC进行监控/编程操作而不占用另外的通信口(也就是说,假如所有PLC用端口PROT1进行PPI 通信,而现在要对所有PLC依次编程/监控,但又不想占用这些PLC的端口PROT0——端口PROT0可能已作它用),那么必须在其中1台PLC采用带编程口的Profibus-DP接头。
所以说,带编程口的Profibus-DP接头在整个网络中只需要一个就可以了。
这样,也就可以在某一台PLC处对在网的其它PLC进行编程/监控。
引脚分配:........S7--200 CPU上的通讯端口是符合欧洲标准EN 50170中PROFIBUS标准的RS--485兼容9针D型连接器。
下表列出了为通讯端口提供物理连接的连接器,并描述了通讯端口的针脚分配。
下面是S7-200的通信接口——D型9孔母头的引脚定义。
网络电缆的偏压电阻和终端电阻为了能够把多个设备很容易地连接到网络中,西门子公司提供两种网络连接器:一种标准网络连接器(引脚分配如表7-7所示)和一种带编程接口的连接器,后者允许您在不影响现有网络连接的情况下,再连接一个编程站或者一个HMI 设备到网络中。
带编程接口的连接器将S7--200的所有信号(包括电源引脚)传到编程接口。
这种连接器对于那些从S7--200取电源的设备(例如TD200)尤为有用。
两种连接器都有两组螺钉连接端子,可以用来连接输入连接电缆和输出连接电缆。
两种连接器也都有网络偏置和终端匹配的选择开关。
典型的网络连接器偏置和终端如图所示:........处于中间节点的从站在不工作时可以断电。
PROFIBUS电缆的接法........PROFIBUS电缆,紫色,只有两根线在里面,一根红的一根绿的,然后外面有屏蔽层,接线的时候,要把屏蔽层接好,不能和里面的电线接触到,要分清楚进去的和出去的线分别是哪个,假如是一串的,就是一根总线下去,中间不断地接入分站,这个是很常用的方法,在总线的两头的两个接头,线都要接在进去的那个孔里,不能是出的那个孔,然后这两个两头的接头,要把它们的开关置为ON状态,这时候就只有进去的那个接线是通的,而出去的那个接线是断的,其余中间的接头,都置为OFF,它们的进出两个接线都是通的(我觉得德国人真的是和我们的思维不同,我觉得应该是OFF表示关闭吧,他偏设置ON为关闭,搞不懂)。
这就是线的接法,接好了线以后呢,还要用万用表量一量,看这个线是不是通的。
假如你这根线上只有一个接头,你量它的收发两个针上面的电阻值,假如是220欧姆,那么就是对的,假如你这根线已经做好了,连了一串的接口,你就要从一端开始逐个检查了。
第一个单独接线的接口,是ON状态,然后你把邻近的第一个接口的开关也置为ON,那么这个接口以后的部分就断了(出口的线已经被关掉了啊~)现在测最边上,就是单线接的那个接口,之后的东西一直都是测这个接口,测它的收发两个针,和刚才一样,假如电阻是110欧姆(被并联了),那么这段线路就是通的,然后把中间刚才那个改动为ON的接口改回到OFF,然后是下一个接口改为ON,。
就这么测下去,哪个的电阻不是110欧姆了,就是那一段的线路出问题了。
........PROFIBUS网络电缆(西门子产品号:6XV1 830-0EH10),波特率为100Kbps以下时也可使用普通双绞线(截面积不小0.22平方毫米)。
原则上绿色接RS485信号负(对应Profibus接头的A1)、红色接RS485信号正(对应Profibus接头的B1)。
当然,统一反着接也可以——绿色接RS485信号正(对应Profibus接头的B1)、红色接RS485信号负(对应Profibus接头的A1)。
不要交叉就行。
Profibus-DP现场总线电缆电缆:用于Siemens公司支持的Profibus-DP总线系统。
●能够对应12Mbps的高速传送,充分发挥PROFIBUS-DP的功能。
●铝箔PET带和高密度编织的双层屏蔽使抗干扰性能出色,通信的传送质量稳定。
●护套使用了柔软性和耐油、耐热性能良好的无铅聚氯乙烯混合物。
●护套的颜色以紫色(RAL001)为标准色。
........德国LAPP UNITRONICO BUS L2/FIP:实心裸铜丝导体,2芯绞合成对,芯线颜色为红+绿。
铝箔屏蔽后加裸铜丝编织,PVC外护套,阻燃,符合VDE 0472第804部份,B类试验(IEC 332.1),紫色(RAL4001)。
........传输速率决定允许的总线电缆最大长度如下:PROFIBUS-DP 1.5MBit/s=最长200m(SIMATIC网) 12.0MBit/s=最长100m工厂通讯处理层1.0MBit/s=最长200m2.5MBit/s=最长200m........上述参数适用于PROFIBUS-DP及PROFIBUS—FMS总线电缆。
........国产普通屏蔽电缆也可以替代PROFIBUS电缆,没有问题,实践证明是可以用的。
这样说吧,使用是没有问题的,但是是要有些请提条件的,比如西门子给出的多大速率下对应多大的通讯距离,西门子DP电缆没有问题,但是国产屏蔽电缆就有可能不能用到这么长的通讯距离。
要选用质量好的国产屏蔽电缆。
........为了保证信号的稳定要在DP网络的两端接电阻,3和8脚接220电阻,3和VP引脚接390电阻,8脚和DGND脚接390电阻。
如果有RS485连接器,就不用自己加终端电阻,RS485连接器中已经自带终端电阻了。
.......国产屏蔽电缆抗干扰的能力应该要若一些,如果是电磁环境很差的地方,例如有交交变频系统等,建议使用profibus-dp电缆。
比较重要的系统中,对通讯安全非常严格的话,建议还是使用西门子的profibus-dp电缆。
........上面是官方提到的硬件连接方式,在实际中,我们可能因为使用情况不同(临时使用、实验使用、同一个电控柜内使用等),手边没有现成的Profibus 电缆和Profibus-DP接头。
那么,在这种情况下就需要自己制作了。
下面就简单说一下制作方法:1、不带编程口的通信线制作:........有多少个PLC就买多少个D型9针公头,然后买需要长度的Profibus 电缆(实在没有,买屏蔽双绞线也可以,不过抗干扰性没那么好哟;近距离的话,随便用什么线连接都可以,哪怕是2根单股导线,也没问题)。
通过电缆,把这些D型9针公头的3脚依次连接在一起,把这些D型9针公头的8脚也依次连接在一起。
接线的时候注意点,不要接错了——笔者就因为疏忽大意接错线,导致查了几个小时的故障才发现接线错了(首先怀疑线错了,用万用表打,没发现问题,晕哟,可能是遇见鬼了;最后把线全拆了,重新焊接即恢复正常)。
........如果通信存在问题,那么建议把这些D型9针公头的5脚也接在一起,强制低电位相等。
如果有屏蔽线的话,就接上屏蔽线。
屏蔽层接到每台设备的外壳并最后接大地。
........至于终端电阻和偏置电阻,距离短的话,就可以不接了。
不过,虽然不接,也得了解其原理——终端电阻和偏置电阻如17楼图示。
因为PROFIBUS 的连接电缆通常采用TYPE A标准,其中的电缆阻抗值最大为165欧,390/220/390的等效电阻是170,是为了实现阻抗匹配。
当没有通讯进行时,终端电阻可以保证信号线间的电压差。
通常加载在终端的电压为5V,390/220/390使得两信号线点的电压值分别为1.95和3.05V,是理想的静态电压(差分)。
........官方的PROFIBUS接头有进线和出线2个口,采用官方的PROFIBUS 接头接线时需要注意:“首站”和“末站”都接进线。
........其实“首站”和“末站”接出也能通信的,但是为了保证通讯的稳定,“首站”和“末站”都要把终端电阻置为ON,这时如果还把“首站”和“末站”接出线,那么“首站”和“末站”都被终端掉了。
所以西门子规定:“首站”和“末站”都接进线。
2、带编程口的通信线制作:........先制作不带编程口的通信线,然后再找一个D型9孔母头,与其中一台PLC的D型9针公头一对一连接:1-1,2-2,3-3,4-4,5-5,6-6,7-7,8-8,9-9。
PLC编程电缆(多主站电缆)连接那个D型9孔母头。
这样,电脑就可以监控那台PLC了。
同时,因为同时也连接到了网内所有PLC,所以也可以监控网内所有PLC。
........注意:无论是否采用西门子原装的总线电缆和接头,如果是不带编程口,那么就只能监控到1台PLC而监控不到在网的其它PLC————例如,1台PLC采用端口PORT1与其他PLC进行通信,而编程电缆连接到了这台PLC 的端口PORT0,那么在电脑上是无法监控到在网的其它PLC的。
因为,电脑的编程电缆的通信线3,8脚和在网的其它PLC都不存在物理连接嘛。
采用了不带编程口的通信线,PLC插在不是联网那个通信口上监控,只能看到1台PLC:采用了带编程口的通信线,PLC插在联网那个通信口上监控,能看到在网的所有PLC:不过,最好只搜索设定的波特率就可以了,不要搜索所有波特率,否则可能出现问题:要监控在网的哪台PLC,需要打开相应的PLC程序,然后搜索出所有的PLC,再把光标置于相应的PLC上,点击“确定”。
然后可以下载和监控那台PLC:如果电脑上当前PLC程序和“通信”的当前地址的PLC的程序不同,是无法监控该PLC的。
如果电脑上当前PLC程序“系统块”中的地址和“通信”的当前地址不同,那么将无法下载:下面就来针对dingqw1234网友的要求做一个实例:1台CPU 226CN 作为主站,1台CPU 224XP作为从站,要把CPU 224XP的输入点数据全部传到CPU 226CN里面。
一、硬件连接:........按照上面所说的方法,用到编程口的通信电缆把CPU 226CN和CPU 224XP的端口PORT1连接起来。
当然,这个连接口可以随意组合,不过,根据不同的情况,可能会影响到程序的编制——如果同一台PLC的2个编程口的地址不同(要连接多个通信设备或不同的用途,就需要把2个通信口设置为不同的地址),那么就可能会影响到程序的编制。
二、PLC地址分配:........编程软件TEP 7 MicroWIN分配的地址固定是0;程序中PLC的默认地址为2,这个我们要修改;因为该系统中没有其它设备,例如人机界面/触摸屏,这里就把CPU 226CN的PROT0口的地址设为1,把CPU 226CN的PROT1口的地址设为2,把CPU 224XP的PROT0口的地址设为3,把CPU 224XP的PROT1口的地址设为4。