高中数学高考三角函数重点题型解析及常见试题、答案

合集下载

高三数学三角函数试题答案及解析

高三数学三角函数试题答案及解析

高三数学三角函数试题答案及解析1.设角的终边在第一象限,函数的定义域为,且,当时,有,则使等式成立的的集合为.【答案】【解析】令得:,令得:,由得:,又角的终边在第一象限,所以因而的集合为.【考点】抽象函数赋值法2.“θ≠”是“cos θ≠”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】因为“cos θ=”是“θ=”的必要不充分条件,所以“θ≠”是“cos θ≠”的必要不充分条件,选B.3.已知函数,则一定在函数图象上的点是()A.B.C.D.【答案】C.【解析】根据的解析式,求出,判断函数的奇偶性,由函数的奇偶性去判断四个选项是否在图象上..为奇函数,在图象上.故选C.【考点】函数的奇偶性.4.函数y=的定义域是.【答案】{x|kπ-<x≤kπ+,k∈Z}【解析】由1-tanx≥0,即tanx≤1,结合正切函数图象可得,kπ-<x≤kπ+,k∈Z,故函数的定义域是{x|kπ-<x≤kπ+,k∈Z}.5.若方程有实根,则实数的取值范围为【答案】【解析】由方程得,,即,因为,所以,若方程有实根,则,解得.【考点】方程的根.6.已知的三个内角所对的边分别为,且,则角的大小为 .【答案】【解析】根据正弦定理:,,即:,,【考点】1、正弦定理;2、两角和与差的三角函数公式.7.已知函数上有两个零点,则的值为()A.B.C.D.【答案】D【解析】,由于,故,由于函数在区间上有两个零点,所以,所以,所以,故选D.【考点】1.三角函数的图象;2.三角函数的对称性8.已知函数d的最大值为2,是集合中的任意两个元素,且的最小值为.(1)求函数的解析式及其对称轴;(2)若,求的值.【答案】(1),;(2).【解析】本题主要考查两角和与差的正弦公式、二倍角的余弦公式、诱导公式、三角函数的最小正周期、单调性等基础知识,考查运算能力.第一问,利用倍角公式化简表达式,先利用周期求出,再求最值,通过解方程求出,确定了解析式后求正弦函数的对称轴;第二问,通过角之间的关系转化角,考查诱导公式和倍角公式.试题解析:(1),由题意知:的周期为,由,知 2分由最大值为2,故,又, 4分∴ 5分令,解得的对称轴为 7分(2)由知,即, 8分∴ 10分12分【考点】1.倍角公式;2.两角和与差的三角函数;3.函数的周期;4.函数的对称轴.9.已知函数时有极大值,且为奇函数,则的一组可能值依次为( )A.B.C.D.【答案】D【解析】,因为当时有极大值,所以=0,解得当k=0时,;因为=为奇函数,所以,当k=0时,,故选D.【考点】1.求函数的导数及其导数的性质;2.三角函数的性质.10.已知函数的最大值为4,最小值为0,最小正周期为,直线是其图像的一条对称轴,则下列各式中符合条件的解析式是()A.B.C.D.【答案】D【解析】由题意可得,则据此可知答案选D.【考点】函数的图像与性质.11.中,角所对的边分别为且.(Ⅰ)求角的大小;(Ⅱ)若向量,向量,,,求的值.【答案】(Ⅰ);(Ⅱ);【解析】(Ⅰ)主要利用三角形中内角和定理、三角恒等变换来求;(Ⅱ)通过余弦定理、解方程组可求;试题解析:(Ⅰ)∵∴,∴,∴或∴(II)∵∴,即①又,∴,即②由①②可得,∴又∴,∴【考点】解三角形中内角和定理以及余弦定理的使用、三角恒等变换等知识点,考查学生的计算能力.12.在中,角的对边分别为向量,,且.(1)求的值;(2)若,,求角的大小及向量在方向上的投影.【答案】(1);(2),向量在方向上的投影.【解析】(1)由向量数量积坐标形式列式,可求得的值,再利用平方关系可求得的值;(2)先利用正弦定理可求得的值,再利用大边对大角可求得角的大小.由投影的定义可求得向量在方向上的投影.试题解析:(1)由,得, 1分, 2分.. 3分.4分(2)由正弦定理,有, 5分.6分,, 7分. 8分由余弦定理,有, 9分或(舍去). 10分故向量在方向上的投影为 11分. 12分【考点】1、向量数量积、投影;2、三角恒等变换;3、解三角形.13.已知函数若方程有三个不同的实根,且从小到大依次成等比数列,则m的值为 .【答案】【解析】设三个根由小到大依次为,结合余弦函数图像可知关于直线对称,关于直线对称,代入计算得【考点】三角函数图像及性质点评:题目中主要结合三角函数图像的轴对称性找到三根之间的联系14.函数的最小正周期为.【答案】【解析】根据题意,由于即为其周期,故答案为【考点】三角函数的性质点评:主要是考查了三角函数的性质的运用,属于基础题。

三角函数典型例题(高考题)及详细解答

三角函数典型例题(高考题)及详细解答

1.已知ΔABC_三个顶点的直角坐标分别为A(3,4)、B(0,0)、C(c ,0). (1)若0AB AC ⋅=,求c 的值; (2)若c=5,求sin ∠A 的值.2 已知函数()sin()(0,0),f x A x A x R ϕϕπ=+><<∈的最大值是1,其图像经过点1(,)32M π。

(1)求()f x 的解析式;(2)已知,(0,)2παβ∈,且312(),(),513f f αβ==求()f αβ-的值 3.已知向量)2,(sin -=θa 与)cos ,1(θ=b 互相垂直,其中)2,0(πθ∈(1)求θsin 和θcos 的值;(2)若ϕϕθcos 53)cos(5=-,<<ϕ02π,求ϕcos 的值 4.设函数()3sin 6f x x πω⎛⎫=+⎪⎝⎭,0ω>,(),x ∈-∞+∞,且以2π为最小正周期. (1)求()0f ;(2)求()f x 的解析式;(3)已知94125f απ⎛⎫+= ⎪⎝⎭,求sin α的值. 5.已知函数1()2sin(),36f x x x π=-∈R .(1)求(0)f 的值;(2)设10,0,,(3)2213f ππαβα⎡⎤∈+=⎢⎥⎣⎦,6(32)5f βπ+=,求sin()αβ+的值. 一.选择填空题1.在ABC 中,若15,,sin 43b B A π=∠==,则a = . 2..在ABC ∆中,角,,A B C 所对的边分,,a b c .若cos sin a A b B =,则2sin cos cos A A B +=(A)-12 (B) 12(C) -1 (D) 1 3.设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于(A )13(B )3 (C )6 (D )94.设函数(A )y=在单调递增,其图像关于直线对称(B )y=在单调递增,其图像关于直线对称(C )y= f (x) 在(0,2π)单调递减,其图像关于直线x = 4π对称(D )y= f (x) 在(0,2π)单调递减,其图像关于直线x = 2π对称5.)已知角θ的顶点为坐标原点,始边为x 轴的正半轴,若()4,p y 是角θ终边上一点,且25sin 5θ=-,则y=_______.6.已知函数()sin(2)f x x ϕ=+,其中ϕ为实数,若()()6f x f π≤对x R ∈恒成立,且()()2f f ππ>,则()f x 的单调递增区间是(A ),()36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ (B ),()2k k k Z πππ⎡⎤+∈⎢⎥⎣⎦ (C )2,()63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(D ),()2k k k Z πππ⎡⎤-∈⎢⎥⎣⎦ 7.在△ABC 中,222sin sin sin sin sin A B C B C ≤+-,则A 的取值范围是(A )(0,]6π(B )[,)6ππ(C )(0,]3π(D )[,)3ππ二:解答题1.已知函数()4cos sin() 1.6f x x x π=+-(Ⅰ)求()f x 的最小正周期;(Ⅱ)求()f x 在区间,64ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值。

高一数学 知识点 三角函数 诱导公式 常考题 经典题 50道 含答案和解析

高一数学 知识点 三角函数  诱导公式 常考题 经典题 50道 含答案和解析

高一数学三角函数诱导公式50道常考题经典题一、单选题1.若角的终边上有一点(-4,a),则a的值是()A. B. C. D.【答案】A【考点】任意角的三角函数的定义,诱导公式一【解析】【解答】由三角函数的定义知:,所以,因为角的终边在第三象限,所以<0,所以的值是。

【分析】三角函数是用终边上一点的坐标来定义的,和点的位置没有关系。

属于基础题型。

================================================================================2.若,则的值是( )A. B. C. D.【答案】C【解析】【解答】即,所以,,=,故选C。

【分析】简单题,此类题解的思路是:先化简已知条件,再将所求用已知表示。

================================================================================3.若,则()A. B. C. D.【答案】C【考点】诱导公式一,同角三角函数间的基本关系【解析】【解答】,故选C.================================================================================4.函数图像的一条对称轴方程是()A. B. C. D.【答案】A【考点】诱导公式一,余弦函数的图象,余弦函数的对称性【解析】【分析】,由y=cosx的对称轴可知,所求函数图像的对称轴满足即,当k=-1时,,故选A.================================================================================5.已知,则()A. B. C. D.【答案】C【考点】诱导公式一,同角三角函数间的基本关系,弦切互化【解析】【解答】因为,所以,可得,故C符合题意.故答案为:C .【分析】利用诱导公式将已知条件化简可求出tan,将中分子分母同时除以cos.================================================================================6.函数()A. 是奇函数B. 是偶函数C. 既是奇函数,又是偶函数D. 是非奇非偶函数【答案】A【考点】奇函数,诱导公式一【解析】【解答】∵,∴,∴是奇函数.故答案为:A【分析】首先利用诱导公式整理化简f(x) 的解析式,再根据奇函数的定义即可得证出结果。

(完整版)高考三角函数经典解答题及答案

(完整版)高考三角函数经典解答题及答案

1在△ABC 中,角A 、B 、C 所对的边分别是a ,b ,c ,且.21222ac b c a =-+ (1)求B CA 2cos 2sin 2++的值; (2)若b=2,求△ABC 面积的最大值. 解:(1) 由余弦定理:conB=14sin22A B ++cos2B= -14(2)由.415sin ,41cos ==B B 得 ∵b=2, a2+c 2=12ac+4≥2ac,得ac ≤38,S △ABC =12acsinB ≤315(a=c 时取等号)故S △ABC 的最大值为3152在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且.cos cos 3cos B c B a C b -= (I )求cosB 的值;(II )若2=⋅BC BA ,且22=b ,求c a 和b 的值.解:(I )由正弦定理得C R c B R b A R a sin 2,sin 2,sin 2===,,0sin .cos sin 3sin ,cos sin 3)sin(,cos sin 3cos sin cos sin ,cos sin cos sin 3cos sin ,cos sin 2cos sin 6cos sin 2≠==+=+-=-=A B A A B A C B B A B C C B B C B A C B B C R B A R C B R 又可得即可得故则因此.31cos =B(II )解:由2cos ,2==⋅B a 可得,,,0)(,12,cos 2,6,31cos 222222c a c a c a B ac c a b ac B ==-=+-+===即所以可得由故又 所以a =c = 63已知向量m =()B B cos 1,sin -, 向量n = (2,0),且m 与n 所成角为π3,其中A 、B 、C 是ABC ∆的内角。

(1)求角B 的大小;(2)求 C A sin sin +的取值范围。

高考三角函数专题(含答案)

高考三角函数专题(含答案)

高考专题复习三角函数专题模块一——选择题一、选择题: (将正确答案的代号填在题后的括号内. )π5π1.(2021天·津)以下图是函数 y =Asin(ωx+φ)(x∈R)在区间 -6,6上的图象,为了得到这个函数的图象,只要将 y =sinx(x∈R)的图象上所有的点 ( )π1A .向左平移3个单位长度,再把所得各点的横坐标缩短到原来的2,纵坐标不变π2倍,纵坐标不变B .向左平移个单位长度,再把所得各点的横坐标伸长到原来的3π1C .向左平移6个单位长度,再把所得各点的横坐标缩短2,纵坐标不变到原来的π2倍,纵坐标不变D .向左平移个单位长度,再把所得各点的横坐标伸长到原来的6y =Asin(ωx+φ)中A =1,2ππ π解析:观察图象可知,函数 ω=π,故ω=2,ω×-6+φ=0,得φ= 3,所以函数y =sin 2x + ,故只要把y =sinx 的图象向左平移π1即个单位,再把各点的横坐标缩短到原来的2可.答案:A2.(2021全·国Ⅱ)为了得到函数 y =sin2x -π的图象,只需把函数y =sin2x +π的图象()36πB .向右平移A .向左平移个长度单位个长度单位44πD .向右平移C .向左平移2个长度单位2个长度单位解析:由y=sin2x+πx→x+φ=sin2x-πππ――→y=sin2(x+φ),即2x+2φ+=2x-,解得φ=-6634π即向右平移4个长度单位.应选B. 答案:B3.(2021重·庆)函数y=sin(ωx +φ)ω>0,|φ|<π的局部图象如下图,那么()2πB.ω=1,φ=-πππA.ω=1,φ=66C.ω=2,φ=6D.ω=2,φ=-6解析:依题意得T=2π7ππππ2πππω=412-3=π,ω=2,sin2×3+φ=1.又|φ|<2,所以3+φ=2,φ=-6,选D.答案:D4.函数 y=2sin(ωx+φ)(ω>0)在区间[0,2π]上的图象如下图,那么ω=( )11A.1B.2 C.2D.32π解析:由函数的图象可知该函数的周期为π,所以 ω=π,解得ω=2.答案:Bπ()5.函数y =sinx -12cosx -12,那么以下判断正确的选项是A .此函数的最小正周期为2π,其图象的一个对称中心是π,012B .此函数的最小正周期为 π,其图象的一个对称中心是π,012C .此函数的最小正周期为 2π,其图象的一个对称中心是π,6D .此函数的最小正周期为 π,其图象的一个对称中心是π,6ππ1π解析:∵y=sinx -12·cosx-12=2sin2x -6,∴T=2ππ2=π,且当x =12时,y=0.答案:Bπa 的值为()6.如果函数y =sin2x +acos2x 的图象关于直线对称,那么实数 x =-8A.2B .-2C.1D.-1π分析:函数f(x)在x =- 时取得最值;或考虑有8ππf-+x=f--x对一切x∈R恒成立.88解析:解法一:设f(x)=sin2x+acos2x,因为函数的图象关于直线x=-πππ8对称,所以f-8+x=f-8-x对一切实数x都成立,即sin2ππ-+x+acos2-+x=sin2ππ--x+acos2--xππsin-4+2x+sin4+2xππ=acos4+2x-cos-4+2x,ππ∴2sin2x·cos4=-2asin2x·sin4,即(a+1)sin2x·=0对一切实数x恒成立,而sin2x不能恒为,∴a+1=0,即a=-1,应选D.π解法二:∵f(x)=sin2x+acos2x关于直线x=-8对称.ππ∴有f-+x=f--x对一切x∈R恒成立.88π特别,对于x=8应该成立.π将x=8代入上式,得f(0)=f-,ππ∴sin0+acos0=sin-2+acos-2∴0+a=-1+a×0.∴a=-1.应选D.解法三:y=sin2x+acos2x=1+a2sin(2x+φ),其中角φ的终边经过点(1,a).其图象的对称轴方程π2x+φ=kπ+2(k∈Z),kππφx=2+4-2(k∈Z).kππφπ令2+4-2=-8(k∈Z).3π得φ=kπ+4(k∈Z).π但角φ的终边经过点(1,a),故k为奇数,角φ的终边与-2角的终边相同,∴a=-1.解法四:y=sin2x+acos2x=21+asin(2x+φ),其中角φ满足tanφ=a.因为f(x)的对称轴为πy=-8,π∴当x=-8时函数y=f(x)有最大值或最小值,所以1+a2=fπ-8或-1+a2=fπ-8,即1+a2=sinπ-4+acosπ-4,或-1+a2=sinπ-4+acosπ-4.解之得a=-1.应选D.答案:D评析:此题给出了四种不同的解法,充分利用函数图象的对称性的特征来解题.解法一是运用了方程思想或恒等式思想求解.解法二是利用了数形结合的思想求解,抓住f(m+x)=f(m-x)的图象关于直线=m对称的性质,取特殊值来求出待定系数a的值.解法三利用函数y=Asin(ωx+φ)的对称轴是方程xωxππkπ+2-φπ+φ=kπ+2(k∈Z)的解x=ω(k∈Z),然后将x=-8代入求出相的φ,再求a的.解法四利ππ用称的特殊性,在此函数f(x)取最大或最小.于是有f-8=[f(x)]max或f-8=[f(x)]min.从而化解方程,体了方程思想.由此可,本体了丰富的数学思想方法,要从多种解法中悟出其西.模块二——填空题二、填空:(把正确答案填在后的横上.)π7.(2021福·建)函数f(x)=3sinωx-6(ω>0)和g(x)=2cos(2x+φ)+1的象的称完全相同.假设π,f(x)的取范是________.x∈0,2解析:∵f(x)与g(x)的象的称完全相同,∴f(x)与g(x)的最小正周期相等,∵ω>0,∴ω=2,∴f(x)ππππ5π13≤3,即f(x)=3sin2x-6,∵≤2x-≤≤sin2x-61,∴-≤3sin2x-6 0≤x≤2,∴-666,∴-22的取范,3.答案:-3,318.函数y=cos2πx的象位于y 右所有的称中心从左依次A1,A2,⋯,An,⋯.A50的坐是________.解析:称中心横坐x=2k+1,k≥0且k∈N,令k=49即可得.答案:(99,0)9.把函数y=cosx+π的象向左平移m个位(m>0),所得象关于y称,m的最小是3________.解析:由y=cos(x+πππ3+m)的象关于y称,所以3+m=kπ,k∈Z,m=kπ-3,当k=1,m最2小3π.答案:2π310.定义集合A,B的积A×B={(x,y)|x∈A,y∈B}.集合M={x|0≤x≤2π},N={y|cosx≤y≤1},那么M×N所对应的图形的面积为________.解析:如下图阴影面积可分割补形为ABCD的面积即BC×CD=π·2=2π.答案:2π模块三——解答题三、解答题:(写出证明过程或推演步骤.) 11.假设方程3sinx+cosx=a在[0,2π]上有两个不同的实数解x1、x2,求a的取值范围,并求x1+x2的值.分析:设函数y1=3sinx+cosx,y2=a,在同一平面直角坐标系中作出这两个函数的图象,应用数形结合解答即可.解:设f(x)=π3 sinx +cosx =2sin x+6,x∈[0,2.π]π令x+6=t,那么f(t)=2sint,且t∈π6,13π6 .在同一平面直角坐标系中作出y=2sint及y=a的图象,从图中可以看出当1<a<2和-2<a<1时,两图象有两个交点,即方程3sinx+cosx=a在[0,2上π]有两个不同的实数解.当1<a<2时,t1+t2=π,ππ即x1+6+x2+6=π,2π∴x1+x2=3;当-2<a<1时,t1+t2=3π,ππ即x1+6+x2+6=3π,8πx1+x2=3.综上可得,a的取值范围是(1,2)∪(-2,1).2π当a∈(1,2)时,x1+x2=3;8πa∈(-2,1)时,x1+x2=3.评析:此题从方程的角度考查了三角函数的图象和对称性,运用的主要思想方法有:函数与方程的思想、数形结合的思想及换元法.解答此题常见的错误是在换元时忽略新变量t的取值范围,仍把t当成在[0,2 π]中处理,从而出错.11πφ<π),其图象过点π1+φ(0<,12.(2021山·东)函数f(x)=2sin2xsinφ+cosxcosφ-2sin262.(1)求φ的值;(2)将函数y=f(x)的图象上各点的横坐标缩短到原来的1,纵坐标不变,得到函数y=g(x)的图象,求函2π数g(x)在0,4上的最大值和最小值.11π解:(1)因为f(x)=sin2xsinφ+cos2xcosφ-sin+φ(0<φ<π),2211+cos2x1所以f(x)=2sin2xsinφ+2cosφ-2cosφ1 12sin2xsinφ+2cos2xcosφ12(sin2xsinφ+cos2xcosφ)1π2cos(2x-φ),π1又函数图象过点6,2,11ππ所以2=2cos2×6-φ,即cos3-φ=1,π又0<φ<π,所以φ=3.1π1(2)由(1)知f(x)=2cos2x-3,将函数y=f(x)的图象上各点的横坐标缩短到原来的2,纵坐标不变,得1 2 3 4 56π到函数y =g(x)的象,可知g(x)=f(2x)=2cos4x -3,π4x∈[0,π],因x∈0,4 ,所以ππ2π1因此4x - 3∈-3,3 ,故- 2≤cos4x -3≤1. 所以y =g(x)在0,π114上的最大和最小分 2和-4.13.〔2021天津卷理〕在⊿ ABC 中,BC=5,AC=3,sinC=2sinA求AB 的: (II) 求sin 2A 的4本小主要考正弦定理、余弦定理、同角三角函数的根本关系、二倍角的正弦与余弦、两角差的正弦等基知,考根本运算能力。

三角函数高三计算题解析

三角函数高三计算题解析

三角函数高三计算题解析一、单选题1.(2024·湖北·二模)若ππcos ,,tan 223sin αααα⎛⎫∈-= ⎪-⎝⎭,则πsin 23α⎛⎫-= ⎪⎝⎭()A .718-B .718-C .18-D .182.(23-24高三下·重庆·阶段练习)若,π2α⎛⎫∈ ⎪⎝⎭,且cos 13αα=,则sin 212α⎛⎫- ⎪⎝⎭的值为()A B .338C .D .3.(2024·全国·模拟预测)已知角θ的顶点为坐标原点,始边与x轴的正半轴重合,点2023π2023πsin,cos46P⎛⎫⎪⎝⎭在角θ的终边上,则sin21cos2θθ=+()AB.C D.4.(2024·陕西咸阳·二模)当函数3sin4cosy x x=+取得最小值时,sin6x⎛⎫+=⎪⎝⎭()A.4+-B.310+-C.310+D.410+5.(2024·安徽·模拟预测)已知()tan 4αβ-=,()()sin 3cos αβαβ-=+,则tan tan αβ-=()A .12B .35C .65D .536.(2024·山东泰安·一模)若2πcos 24sin 22αα⎛⎫+-=- ⎪⎝⎭,则tan2α=()A .2-B .12-C .2D .127.(2024·贵州毕节·模拟预测)已知sin 125α⎛⎫+= ⎪⎝⎭,0,2α⎛⎫∈ ⎪⎝⎭,则cos 3α⎛⎫+= ⎪⎝⎭()A .10-B .5-C .4D .34-8.(2024·福建泉州·模拟预测)若0,2α⎛⎫∈ ⎪⎝⎭,3sin 2cos 2sin cos 20αααα+=,则tan α=()A .4B .2C .12D .149.(2024·河北·模拟预测)已知1tan 22θ=-,则3cos sin cos θθθ=+()A .925-B .925C .2725-D .272510.(2024·江苏盐城·模拟预测)在ABC 中,已知tan tan tan tan 1A B A B ++=,则cos 2sin C C +的值为()A .2B .2C D .11.(2024·辽宁·一模)已知,αβ满足πππ2π,44αβ≤≤-≤≤,且553π32cos 5,962sin252ααββ⎛⎫-+=+=- ⎪⎝⎭,则24πsin 994αβ⎛⎫+-=⎪⎝⎭()A B C D12.(23-24高三下·内蒙古锡林郭勒盟·开学考试)若cos 20501)a -=,则=a ()A .12B .1C .32D .213.(23-24高三下·江苏扬州·阶段练习)已知()cos(),cos 35αβαβ+=-=,则2log (tan tan )αβ-=()A .12B .12-C .2D .2-【答案】D根据余弦的和差角公式求得tan tan αβ,再求结果即可.【详解】因为()11cos(),cos35αβαβ+=-=,14.(2024高三·全国·专题练习)已知sin 1523α︒⎛⎫-= ⎪⎝⎭,则()cos 30α︒-=()A .13B .13-C .23D .23-【答案】A 【详解】因为sin (15°-)=,所以cos (30°-α)=cos 2(15°-)=1-2sin2(15°-)=1-2×=.15.(2024·吉林白山·二模)若πcos 43πcos 4αα⎛⎫+ ⎪⎝⎭=⎛⎫- ⎪⎝⎭,则πtan 24α⎛⎫-= ⎪⎝⎭()A .7-B .7C .17-D .17【详解】因为πcos cos sin 1tan 43πcos sin 1tan cos 4αααααααα⎛⎫+ ⎪--⎝⎭===++⎛⎫- ⎪⎝⎭,故1tan 2α=-,则22122tan 42tan21tan 3112ααα⎛⎫⨯- ⎪⎝⎭===--⎛⎫-- ⎪⎝⎭,故4π1tan2tanπ34tan 27π441tan2tan 143ααα---⎛⎫-== ⎪⎝⎭+⋅-.故选:B.16.(23-24高三下·江西·开学考试)已知α为锐角,且πtan tan 14αα⎛⎫++= ⎪⎝⎭,则sin 21cos 2αα+=()A .12B .3-C .2-D .13【答案】C 【分析】根据已知条件结合两角和的正切公式可得出关于tan α的方程,由已知可得出tan 0α>,可得出关于tan α的方程,求出tan α的值,利用二倍角的正弦和余弦公式可求得所求代数式的值.【详解】因为α为锐角,则tan 0α>,则πtantan π4tan tan tan π41tan tan 4ααααα+⎛⎫++=+⎪⎝⎭-1tan tan 11tan ααα+=+=-,整理可得2tan 3tan 0αα-=,解得tan 3α=,所以,()()()22222cos sin sin 21cos 2sin cos sin cos 2cos sin cos sin cos sin αααααααααααααα++++==--+cos sin 1tan 132cos sin 1tan 13αααααα+++====----.故选:C.17.(2023·全国·高考真题)已知()11sin ,cos sin 36αβαβ-==,则()cos 22αβ+=().A .79B .19C .19-D .79-18.(2021·全国·高考真题)若tan 2θ=-,则sin 1sin 2sin cos θθ+=+()A .65-B .25-C .25D .6519.(2021·全国·高考真题)若0,,tan 222sin παααα⎛⎫∈= ⎪-⎝⎭,则tan α=()A .15B C D20.(1995·全国·高考真题)已知θ是第三象限的角,且44sin cos 9+=θθ,那么sin 2θ的值为A B .C .23D .23-。

第五章:三角函数重点题型复习(解析版)

第五章:三角函数重点题型复习(解析版)

第五章:三角函数重点题型复习题型一任意角、角度制与弧度制的概念【例1】下列说法中错误的是()A.弧度制下,角与实数之间建立了一一对应关系B.1度的角是周角的1360,1弧度的角是周角的12πC.根据弧度的定义,180︒一定等于π弧度D.不论是用角度制还是用弧度制度量角,它们均与圆的半径长短有关【答案】D【解析】依据弧度的意义可知A正确;1度的角是周角的1360,1弧度的角是周角的12π,B正确;根据弧度的定义,180︒一定等于π弧度,C正确;根据角度制与弧度制的定义可知,角的大小与圆的半径长短无关,而是与弧长和半径的比值有关,所以D错误.故选:D.【变式1-1】下列说法正确的是()A.弧度的圆心角所对的弧长等于半径B.大圆中弧度的圆心角比小圆中弧度的圆心角大C.所有圆心角为弧度的角所对的弧长都相等D.用弧度表示的角都是正角【答案】A【解析】对于A,根据弧度的定义知,“1弧度的圆心角所对的弧长等于半径”,故A正确;对于B,大圆中1弧度的圆心角与小圆中1弧度的圆心角相等,故B 错误;对于C,不在同圆或等圆中,1弧度的圆心角所对的弧长是不等的,故C错误;对于D,用弧度表示的角也可以不是正角,故D错误.【变式1-2】下列说法正确的是()A.终边相同的角相等B.相等的角终边相同C.小于90︒的角是锐角D.第一象限的角是正角【答案】B【解析】终边相同的角相差周角的整数倍,A不正确;相等的角终边一定相同;所以B正确;小于90︒的角是锐角可以是负角,C错;第一象限的角是正角,也可以是负角,D错误.故选:B.【变式1-3】下列说法正确的是()A.锐角是第一象限角B.第二象限角是钝角C.第一象限角是锐角D.第四象限角是负角【答案】A【解析】锐角大于0︒而小于90︒,是第一象限角,但第一象限角不都是锐角,第二象限角不都是钝角,第四象限角有正角有负角.只有A 正确.故选:A .题型二 求终边相同的角【例2】下列各角中,与425-终边相同的是( ) A .65 B .115 C .245 D .295 【答案】D【解析】与425-终边相同的角为()360425Z k k ⋅-∈,当1k =时,36042536042565k ⋅-=-=-, 当2k =时,3604252360425295k ⋅-=⨯-=, 所以,295的终边与425-的终边相同.故选:D.【变式2-1】与525-角的终边相同的角可表示为( ) A .525360k k Z -⋅∈() B .185360k k Z +⋅∈() C .195360k k Z +⋅∈() D .195360k k Z -+⋅∈() 【答案】C【解析】525=1952360--⨯,所以525-角的终边与195角的终边相同,所以与525-角的终边相同的角可表示为195360k k Z +⋅∈().故选:C【变式2-2】若角α的顶点与原点重合,始边与x 轴的非负半轴重合,则集合{|}42k k k Z ππαπαπ+≤≤+∈,中的角α的终边在单位圆中的位置(阴影部分)是( )A .B .C .D .【答案】C【解析】当k 取偶数时,2,k n n Z =∈,2π2π,n Z 42n n ππα+≤≤+∈,故角的终边在第一象限. 当k 取奇数时,21,k n n Z =+∈,532π2π,n Z 42n n ππα+≤≤+∈, 故角的终边在第三象限.故选:C.【变式2-3】如图,写出终边落在阴影部分的角的集合.(1) (2)【答案】(1)322,Z 4k k k παπαππ⎧⎫+≤≤+∈⎨⎬⎩⎭;(2)3,Z 44k k k ππβπβπ⎧⎫+≤<+∈⎨⎬⎩⎭【解析】(1)由题图可知,终边落在阴影部分的角的集合为322,Z 4k k k παπαππ⎧⎫+≤≤+∈⎨⎬⎩⎭. (2)由题图可知,终边落在阴影部分的角的集合为35722,Z 22,Z 4444k k k k k k ππππβπβπβπβπ⎧⎫⎧⎫+≤<+∈⋃+≤<+∈⎨⎬⎨⎬⎩⎭⎩⎭ 3,Z 44k k k ππβπβπ⎧⎫=+≤<+∈⎨⎬⎩⎭.题型三 确定n 分角与n 倍角的象限【例3】若α是第二象限的角,则2α是( ) A .第一或第三象限角 B .第一或第四象限角C .第二或第三象限角D .第二或第四象限角 【答案】A【解析】α是第二象限角,222k k παπππ∴∈++(,)k Z ∈,,422k k k Z αππππ∴∈++∈(,),, 当2,k n n =∈Z 时,42222n n n Z αππππ∴∈++∈(,),,2α在第一象限;当21,k n n Z =+∈时,5342222n n n Z παπππ∴∈++∈(,),,2α在第三象限; 2α∴是第一或三象限角.故选:A .【变式3-1】若α是钝角,则2α-是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角 【答案】D【解析】90180α︒<<︒,45902α︒<<︒,90452α-︒<-<-︒,2α-在第四象限.故选:D【变式3-2】(多选)若α是第二象限的角,则3α的终边所在位置可能是( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】ABD【解析】α是第二象限的角,则222k k ππαππ+<<+,k Z ∈,2236333k k ππαππ+<<<,k Z ∈, 当3,k n n Z =∈时,3α是第一象限角,当31,k n n Z =+∈时,3α是第二象限角,当32,k n n Z =+∈时,3α是第四象限角,故选:ABD .【变式3-3】(多选)若α是第三象限的角,则1802α-可能是( )A .第一象限的角B .第二象限的角C .第三象限的角D .第四象限的角 【答案】AC【解析】由于α是第三象限的角,故180360270360,k k kZ α,所以90180135180,2k k k Z α+⋅<<+⋅∈,所以4518018090180,2k k k Z α-⋅<-<-⋅∈.当k 为偶数时,1802α-为第一象限角; 当k 为奇数时,1802α-为第三象限角.所以1802α-可能是第一象限角,也可能是第三象限角. 故选:AC.【变式3-4】2θ的终边在第三象限,则θ的终边可能在( ) A .第一、三象限 B .第二、四象限C .第一、二象限或y 轴非负半轴D .第三、四象限或y 轴非正半轴 【答案】C【解析】由于2θ的终边在第三象限,则()32222k k k Z θππππ+<<+∈, 所以,()2434k k k Z ππθππ+<<+∈,因此,θ的终边可能在第一、二象限或y 轴非负半轴.故选:C.题型四 扇形的弧长、面积计算【例4】已知弧长为3π的弧所对的圆心角为6π,则该弧所在的扇形面积为( )A 3πB .1π3C .2π3 D .4π3【答案】B【解析】依题意,扇形的半径为π32π6=,所以扇形面积为1ππ2233⋅⋅=.故选:B【变式4-1】已知某扇形的周长是6cm ,面积是22cm ,则该扇形的圆心角的弧度数为( )A .1B .4C .1或4D .1或5 【答案】C【解析】设扇形的弧长为l ,半径为r ,所以26122r l rl +=⎧⎪⎨=⎪⎩,解得22l r =⎧⎨=⎩或41l r =⎧⎨=⎩, 所以圆心角的弧度数是1lrα==或4.故选:C【变式4-2】如图是杭州2022年第19届亚运会会徽,名为“潮涌”,形象象征着新时代中国特色社会主义大潮的涌动和发展.如图是会徽的几何图形,设弧AD 长度是1l ,弧BC 长度是2l ,几何图形ABCD 面积为1S ,扇形BOC 面积为2S ,若122ll =,则12S S =( )A .1B .2C .3D .4 【答案】C【解析】设AOD θ∠=,1OAr =,2OB r =,∴11l r θ=⨯,22l r θ=⨯,而122l l =,∴122r r =,即B 是OA 的中点,()22211221322S r r r θθ=-=,22212S r θ=,123S S ∴=.故选:C【变式4-3】已知一扇形的圆心角为α,半径为R ,弧长为()0L α>. (1)已知扇形的周长为10cm ,面积是24cm ,求扇形的圆心角;(2)若扇形周长为20cm ,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?并求此扇形的最大面积.【答案】(1)12;(2)S 取得最大值25,此时2α=【解析】(1)由题意得2210142R R R αα+=⎧⎪⎨⋅=⎪⎩,解得18R α=⎧⎨=⎩(舍去),412R α=⎧⎪⎨=⎪⎩. 所以扇形圆心角12. (2)由已知得,220l R +=.所以()2112021022S lR R R R R ==-=-()2525R =--+,所以当5R =时,S 取得最大值25,21252R α⨯⨯=,解得2α=. 当扇形的圆心角α为2多少弧度时,这个扇形的面积最大为25.题型五 sina 、cosa 、tana 知一求二【例5】若α为第三象限角,且1sin 3α=-,则cos α=( ) A 22 B .2 C 2 D .22【答案】D【解析】由题意,22122cos 1sin 13αα⎛⎫=-=-- ⎪⎝⎭.故选:D【变式5-1】若12cos 13α=,且α为第四象限角,则tan α的值为( ) A .125 B .125- C .512 D .512-【答案】D 【解析】由于12cos 13α=,且α为第四象限角, 所以25sin 1cos 13αα=-=-, sin 5tan cos 12ααα==-.故选:D【变式5-2】已知()7sin cos 0π13ααα+=<<,则tan α=( ) A .125-B .512- C .512 D .125 【答案】A【解析】因为()7sin cos 0π13ααα+=<<,22sin cos 1αα+=, 则可解得125sin ,cos 1313αα==-,所以sin 12tan cos 5ααα==-.故选:A.【变式5-3】已知1tan 2θ=-,0θπ<<,则sin θ=( ) A .5 B 5 C .25 D 25【答案】B 【解析】由sin 1tan cos 2θθθ==-,得cos 2sin θθ=-,结合22sin cos 1θθ+=可得21sin 5θ=,因为0θπ<<,所以5sin θ=.故选:B题型六 正、余弦齐次式的应用【例6】若tan 2θ=,则sin 2cos cos 3sin θθθθ+=-( )A .45- B .43- C .45 D .43【答案】A 【解析】sin 2cos tan 2224cos 3sin 13tan 1325θθθθθθ+++===----⨯,故选:A .【变式6-1】已知tan 2θ=,则22sin sin cos 2cos θθθθ+-=( ) A .45 B .45- C .1 D .35【答案】A【解析】因为tan 2θ=,则cos 0θ≠,原式2222222222sin sin cos 2cos sin sin cos 2cos cos sin cos sin cos cos θθθθθθθθθθθθθθ+-+=+-+= 22tan tan 24224tan 1415θθθ+-+-===++.故选:A.【变式6-2】已知lgsin lgcos lg 2x x -=,则lgsin lgcos x x +=____________.(可用对数符号作答) 【答案】2lg 5【解析】∵lgsin lg cos lg tan lg 2cos x x x x-===,∴tan 2x =, 又222sin cos tan 2sin cos sin cos tan 15x x x x x x x x ===++,2lgsin lg cos lg(sin cos )lg 5x x x x +==.故答案为:2lg 5【变式6-3】已知,,3sin cos 522ππααα⎛⎫∈--= ⎪⎝⎭tan α=__________.【答案】2【解析】因为3sin cos 50αα-=>,所以0,2πα⎛⎫∈ ⎪⎝⎭,又因为2(3sin cos )5αα-=, 所以229sin 6sin cos cos 5αααα-+=,所以22229sin 6sin cos cos 5cos sin αααααα-+=+, 所以229tan 6tan 151tan ααα-+=+,即22tan 3tan 20αα--=, 所以tan 2α=或1tan 2α=-(舍). 故答案为:2.题型七 sinacosa 、sina ±cosa 知一求二【例7】已知1sin cos 3αα-=-,则sin cos αα=( ) A .49 B .49- C .23 D .23- 【答案】A【解析】()21sin cos 12sin cos 9αααα-=-=,解得:4sin cos 9αα=.故选:A【变式7-1】设0πα<<,1sin cos 2αα+=,则cos sin αα-=( ) A .12 B .12± C .7 D .7【答案】C【解析】因为1sin cos 2αα+=,所以()21sin cos 4αα+=,32sin cos 4αα=-,sin α与cos α异号.而已知0πα<<,所以sin 0α>,cos 0α<.因为()237cos sin 12sin cos 144αααα-=-=+=,所以取7cos sin αα-=.故选:C.【变式7-2】已知α是三角形的一个内角,且2sin cos 3αα+=,则这个三角形的形状是( )A .锐角三角形B .钝角三角形C .不等腰的直角三角形D .等腰直角三角形【答案】B【解析】由α(0,)π∈,将2sin cos 3αα+=两边平方得42sin cos 109αα=-<,而sin 0cos 0αα>∴<,,故α为钝角.故选:B.【变式7-3】已知关于x 的方程)22310x x m -+=的两个根为sin θ,cos θ,()0,2θπ∈,求:(1)sin cos 11tan 1tan θθθθ+--的值;(2)方程的两根及此时θ的值. 【答案】(131+;(2312,6πθ=或3π【解析】(1)22sin cos sin cos 31sin cos 11tan sin cos sin cos 1tan θθθθθθθθθθθθ++=+=+---+-(2)由(1)得sin cos 2m θθ=, 所以()222423sin cos sin cos 2sin cos 1m θθθθθθ++=++=+=3m , 所以方程23231)0x x -+=312, 又因为()0,2θπ∈,所以3sin 1cos 2θθ⎧⎪⎪⎨⎪=⎪⎩,此时3πθ=;或1sin 23cos θθ⎧=⎪⎪⎨⎪=⎪⎩,此时6πθ=.题型八 利用诱导公式求值化简【例8】cos 225︒的值为( ) A .3B .2C 2D 3【答案】B【解析】()2cos 225cos 18045cos 452︒=︒+︒=-︒=-.故选:B【变式8-1】若3cos 5α=,则3sin 2πα⎛⎫-= ⎪⎝⎭( )A .35 B .35C .45D .45-【答案】B【解析】33sin cos 25παα⎛⎫-=-=- ⎪⎝⎭.故选:B【变式8-2】已知()tan 2πα+=,则()()sin sin 23cos 2cos 2παπαπαπα⎛⎫++- ⎪⎝⎭=⎛⎫+-+ ⎪⎝⎭______. 【答案】34【解析】由题意得:∵()tan tan 2παα+==,∴()()sin sin cos sin tan 1323sin 2cos tan 24cos 2cos 2παπααααπααααπα⎛⎫++- ⎪++⎝⎭===++⎛⎫+-+ ⎪⎝⎭.【变式8-3】已知角α的顶点在原点,始边与x 轴的非负半轴重合,终边经过点()3,4P -.(1)求cos()cos 2ππαα⎛⎫-++ ⎪⎝⎭的值;(2)求sin()cos sin()tan()2cos(2)sin cos()tan()2πααπαπαππααπαπα⎛⎫---+ ⎪⎝⎭⎛⎫-++- ⎪⎝⎭的值.【答案】(1)15-;(2)6427【解析】(1)∵角α的终边经过点()3,4P -,∴223cos 5(3)4α==--+,224sin 5(3)4α=-+, ∴341cos()cos cos sin 2555ππαααα⎛⎫-++=--=-=- ⎪⎝⎭.(2)由(1)知:3cos 5α=-,4sin 5α, ∴4tan 3α=-,∴sin()cos sin()tan()2cos(2)sin cos()tan()2πααπαπαππααπαπα⎛⎫---+ ⎪⎝⎭⎛⎫-++- ⎪⎝⎭sin sin sin tan cos cos (cos )(tan )αααααααα-=-- 33464tan 327α⎛⎫=-=--=⎪⎝⎭.题型九 解三角函数不等式【例9】试求关于x 的不等式13sin x <≤【答案】|2263x k x k ππππ⎧+<≤+⎨⎩或2522,36k x k k Z ππππ⎫+≤<+∈⎬⎭. 【解析】作出正弦函数y =sin x 在[0,2π]上的图象,作出直线y =12和y 3如图所示.由图可知,在[0,2π]上当6π<x ≤3π或23π≤x <56π时,不等式12<sin x 3成立,所以原不等式的解集为|2263x k x k ππππ⎧+<≤+⎨⎩或2522,36k x k k Z ππππ⎫+≤<+∈⎬⎭.【变式9-1】求不等式2sin 1()12x -≤在[0,2]xπ的解集.【答案】3,44ππ⎡⎤⎢⎥⎣⎦【解析】因函数1()2xy =在R 上单调递减,则22sin sin 0221112()1()()sin 0222x x x -≤⇔≤⇔-≥, 即2sin x ≥作出函数sin y x =在区间[0,2]π上的图象,如图:观察图形知:[0,2]x π,由2sin x ≥344ππ≤≤x ,所以不等式2sin 1()12x ≤在[0,2]xπ的解集为3[,]44ππ.【变式9-2】函数 1tan y x =+ 的定义域是 . 【答案】[,),42k k k Z ππππ-+∈ 【解析】由函数 1tan y x =+,则1tan 0x +≥,即tan 1x ≥-,解得,42k x k k Z ππππ-≤<+∈,所以函数的定义域是[,),42k k k Z ππππ-+∈,故答案为:[,),42k k k Z ππππ-+∈【变式9-3】已知[0,π]α∈,若sin cos 0αα->,则α的取值范围是_______. 【答案】π3π(,)44【解析】由题,当π[0,]2α∈时,原不等式可化为sin cos αα>,解得ππ42α<≤,当ππ2α<≤时,由原不等式可得tan 1α<-,解得π3π24α<<, 综上π3π(,)44α∈.题型十 三角函数的性质及应用【例10】数sin(2)4y x π=-的单调减区间是( )A .3[,],(Z)88k k k ππππ-+∈ B .3[2,2],(Z)88k k k ππππ-+∈ C .37[2,2],(Z)88k k k ππππ++∈ D .37[,],(Z)88k k k ππππ++∈ 【答案】A【解析】sin 2sin 244y x x ππ⎛⎫⎛⎫=-=-- ⎪ ⎪⎝⎭⎝⎭,要求函数sin(2)4y x π=-的单调减区间,即求函数sin 24y x π⎛⎫=- ⎪⎝⎭的单调增区间.令222,Z 242k x k k πππππ-+≤-≤+∈,所以3,Z 88k x k k ππππ-+≤≤+∈.故选:A.【变式10-1】设函数()sin 2f x x =,x ∈R ,若[)0,θπ∈,函数()f x θ+是偶函数,则θ的值为( ) A .12π或1112π B .6π或56π C .4π或34π D .3π或23π【答案】C【解析】因为()()sin 22f x x θθ+=+是偶函数,所以22k πθπ=+,k Z ∈.ππ,Z 4k k θ∴=+∈, 又[)0,θπ∈,所以4πθ=或34πθ=.故选:C.【变式10-2】已知函数()24f x x π⎛⎫=+ ⎪⎝⎭,且()()f m x f m x +=-,34m ππ≤≤,则m =______.【答案】134π【解析】()24f x x π⎛⎫=+ ⎪⎝⎭,令()42x k k πππ+=+∈Z ,得()4x k k ππ=+∈Z , 又()()f m x f m x +=-,所以函数()f x 的图象关于直线x m =对称,即()4m k k ππ=+∈Z .因为34m ππ≤≤,所以()344k k ππππ≤+≤∈Z ,()111544k k ≤≤∈Z , 所以3k =,所以13344m πππ=+=. 故答案为:134π【变式10-3】若函数()()()tan 0f x x πωω=+>的图象的相邻两支截直线1y =所得的线段长为3π,则12f π⎛⎫= ⎪⎝⎭______.【答案】1【解析】因为()()()tan tan 0f x x x πωωω=+=>,且函数()f x 的图象的相邻两支截直线1y =所得的线段长为3π,所以,函数()f x 的最小正周期3T ππω==,所以3ω=,则()tan3f x x =, 因此,tan 1124f ππ⎛⎫== ⎪⎝⎭.题型十一 三角函数值域的求法【例11】函数1π()2sin()23f x x =+在区间[0,]π的值域为( ) A .[12,1] B .[13 C .[1,2] D .32]【答案】C【解析】当[0,]x π∈时,1ππ5π,2336x ⎡⎤+∈⎢⎥⎣⎦,1π1sin(),1232x ⎡⎤+∈⎢⎥⎣⎦,[]1,2y ∈,故选:C【变式11-1】函数2cos sin 1y x x =+-的值域为( )A .11[,]44-B .1[0,]4C .1[2,]4-D .1[1,]4- 【答案】C【解析】函数222cos sin 11sin sin 1sin sin y x x x x x x =+-=-+-=-+,设sin t x =,11t -≤≤,则()2f t t t =-+, 由二次函数的图像及性质可知2124t t -≤-+≤,所以cos 2sin 1y x x =+-的值域为1[2,]4-,故选:C.【变式11-2】函数ππ5πtan ,,6612y x x ⎛⎫⎛⎫=-∈- ⎪ ⎪⎝⎭⎝⎭的值域为( )A .()3,1-B .3⎛- ⎝⎭C .(,3(1,)-∞-+∞D 3⎫⎪⎪⎝⎭【答案】A 【解析】设π6z x =-,因为π5π,612x ⎛⎫∈- ⎪⎝⎭,所以ππ,34z ⎛⎫∈- ⎪⎝⎭, 因为正切函数tan y z =在,22ππ⎛⎫- ⎪⎝⎭上为单调递增函数,且tan 3tan 134ππ⎛⎫-== ⎪⎝⎭,,所以()tan 3,1z ∈-.∴函数ππ5πtan ,,6612y x x ⎛⎫⎛⎫=-∈- ⎪ ⎪⎝⎭⎝⎭的值域为()3,1-,故选:A .【变式11-3】函数()22tan 5tan 2f x x x =-+-,,44x ππ⎡⎤∈-⎢⎥⎣⎦的值域为______.【答案】[]9,1-【解析】因为,44x ππ⎡⎤∈-⎢⎥⎣⎦,所以[]tan 1,1x ∈-,()2592tan 48f x x ⎛⎫=--+ ⎪⎝⎭,则当tan 1x =时,()max 1f x =, 当tan 1x =-时,()min 9f x =-, 所以函数()f x 的值域为[]9,1-.故答案为:[]9,1-.题型十二 三角恒等变换求角与求值【例12】已知π2sin 33α⎛⎫-= ⎪⎝⎭,则πcos 23α⎛⎫+= ⎪⎝⎭( )A .19- B .19C .45D 45【答案】A【解析】因为π2sin 33α⎛⎫-= ⎪⎝⎭, 所以2ππππ81cos 2cos[2()π]cos[2()]2sin 11333399αααα⎛⎫⎛⎫+=-+=--=--=-=- ⎪ ⎪⎝⎭⎝⎭,故选:A.【变式12-1】已知251cos tan()3ααβ-=-,,αβ均为锐角,则β=A .512π B .3π C .4π D .6π【答案】C【解析】因为α为锐角,且25cos α=, 所以25sin 1cos αα=-=sin 1tan cos 2ααα==, 于是11()tan tan()23tan tan[()]1111tan tan()1()23ααββααβααβ----=--===+-+-,又β为锐角,所以4πβ=.故选:C.【变式12-2】求下列各式的值. (1)cos75︒; (2)7cos 12π; (3)()cos 165-︒; (4)61cos()12π-【答案】(162-(226-(3)62+;(4)26+【解析】(1)()232162cos 75cos 4530cos 45cos30sin 45sin 302-︒=︒+︒=︒︒-︒︒==(2)7212326coscos cos cos sin sin 124343432πππππππ-⎛⎫=+=- ⎪⎝⎭(3)()()cos 165cos 18s 015co 15︒-︒-︒+︒==-()232162cos 4530cos 45cos30sin 45sin 302+=-︒-︒=-︒︒-︒︒==(4)6161cos()cos cos(5)cos 12121212πππππ-==+=- 212326cos cos cos sin sin 344343222ππππππ+⎛⎫=--=--=--= ⎪⎝⎭【变式12-3】求下列各式的值: (1)234cos coscos cos 9999ππππ; (2)21sin 352cos10cos80︒-︒⋅︒;(3)()sin 5013︒︒. 【答案】(1)116;(2)1-;(3)1 【解析】(1)234124cos coscos cos cos cos cos 99992999πππππππ= 242248sincoscoscos 4sin cos cos119999999228sin 8sin99πππππππππ=⋅=⋅ 448sin 2sincos sin sin11111999992222168sin 8sin 8sin 8sin 9999ππππππππππ⎛⎫- ⎪⎝⎭=⋅=⋅=⋅=⋅=. (2)()()2211sin 352sin 35122cos10cos80cos10cos 9080︒-︒-=︒⋅︒︒⋅︒-︒()2112sin 352cos10sin10--︒=︒⋅︒()cos 7020cos 70sin 2012cos10sin10sin 20sin 20-︒-︒-︒-︒====-︒⋅︒︒︒(3)()sin10sin 5013sin 5013cos10︒⎛︒+︒=︒ ︒⎝132cos102cos103sin10sin 50sin 50cos10⎛⎫︒︒ ⎪︒+︒⎝⎭==︒⋅︒()2cos 60102sin 50cos50sin 50cos10cos10︒-︒︒︒=︒⋅=︒︒()sin 9010sin100cos101cos10cos10cos10︒+︒︒︒====︒︒︒题型十三 三角函数图象变换及应用【例13】要得到函数π3sin 25y x ⎛⎫=+ ⎪⎝⎭的图像,需( )A .将函数3sin π5y x =⎛⎫+ ⎪⎝⎭图像上所有点的横坐标变为原来的2倍(纵坐标不变)B .将函数π3sin 10y x ⎛⎫=+⎪⎝⎭图像上所有点的横坐标变为原来的2倍(纵坐标不变) C .将函数3sin 2y x =图像上所有点向左平移π5个单位长度 D .将函数3sin 2y x =图像上所有点向左平移π10个单位长度 【答案】D【解析】对于A ,将3sin π5y x =⎛⎫+ ⎪⎝⎭图像上所有点的横坐标变为原来的2倍(纵坐标不变),得到1π3sin 25y x ⎛⎫=+ ⎪⎝⎭的图像,错误;对于B ,将π3sin 10y x ⎛⎫=+⎪⎝⎭图像上所有点的横坐标变为原来的2倍(纵坐标不变),得到1π3sin 210y x ⎛⎫=+ ⎪⎝⎭的图像,错误;对于C ,将3sin 2y x =图像上所有点向左平移π5个单位长度后, 得到2π3sin 25y x ⎛⎫=+⎪⎝⎭的图像,错误; 对于D ,将3sin 2y x =图像上所有点向左平移π10个单位长度后, 得到π3sin 25y x ⎛⎫=+ ⎪⎝⎭的图像,正确.故选:D.【变式13-1】为得到函数cos 23y x π⎛⎫=- ⎪⎝⎭的图象,只需将函数sin 24y x π⎛⎫=--⎪⎝⎭图象上所有的点( ) A .向左平移712π个单位长度 B .向右平移712π个单位长度 C .向左平移724π个单位长度 D .向右平移724π个单位长度 【答案】D【解析】因为sin 2sin 2cos 24424y x x x ππππ⎛⎫⎛⎫⎛⎫=--=-+-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,将其图象上所有的点向右平移724π个单位长度, 得到函数7cos 2cos 22443πππ⎛⎫⎛⎫⎛⎫=-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭y x x 的图象.A ,B ,C 都不满足.故选:D【变式13-2】将函数sin y x =的图象上所有的点向右平行移动π4个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是( )A .πsin 24y x ⎛⎫=- ⎪⎝⎭B .πsin 28y x ⎛⎫=- ⎪⎝⎭C .1πsin 24y x ⎛⎫=- ⎪⎝⎭D .1πsin 28y x ⎛⎫=- ⎪⎝⎭【答案】C【解析】将函数sin y x =的图像上所有的点向右平行移动π4个单位长度,得sin 4y x π⎛⎫=- ⎪⎝⎭的图象,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是1sin 24y x π⎛⎫=- ⎪⎝⎭.故选:C .【变式13-3】已知函数()()sin 20f x x ωω=>,将()y f x =的图像向右平移4π个单位长度后,若所得图像与原图像重合,则ω的最小值等于( )A .2B .4C .6D .8 【答案】B【解析】()()sin 20f x x ωω=>,()f x ∴的周期为22T ππωω==,将()y f x =的图像向右平移4π个单位长度后,所得图像与原图像重合,∴4π是周期的整数倍,∴Z 4k k πωπ=∈,,Z 4,k k ω=∈∴,0ω>,ω∴的最小值等于4.故选:B【变式13-4】已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>≤ ⎪⎝⎭的图像如图.(1)根据图像,求()f x 的表达式及严格增区间; (2)将函数()y f x =的图像向右平移4π个单位长度得到曲线C ,把C 上各点的横坐标保持不变,纵坐标变为原来的2倍得到()g x 的图像,且关于x 的方程()0g x m -=在0,2π⎡⎤⎢⎥⎣⎦上有解,求m 的取值范围.【答案】(1)()πsin 23f x x ⎛⎫=+ ⎪⎝⎭,增区间为5πππ,π,1212k k k ⎡⎤-++∈⎢⎥⎣⎦Z ;(2)[-1,2]. 【解析】(1)根据函数()sin()(00||)2f x A x A πωϕωϕ=+>>,,的图象,可得1A =,124312πππω⋅=-,所以2ω=,()sin(2)f x x ϕ=+, 由五点法作图,可得2122ππϕ⨯+=,3πϕ∴=,故()sin(2)3f x x π=+,令222232k x k πππππ-++,求得51212k x k ππππ-++,k ∈Z ,()f x 的单调递增区间5,1212k k ππππ⎡⎤-++⎢⎥⎣⎦,k ∈Z .(2)将函数()y f x =的图象向右平移4π个单位长度得到曲线:sin 26C y x π⎛⎫=- ⎪⎝⎭的图象,把C 上各点的横坐标保持不变,纵坐标变为原来的2倍,得到()2sin 26g x x π⎛⎫=- ⎪⎝⎭的图象, 由()0g x m -=在0,2π⎡⎤⎢⎥⎣⎦上有解,即2sin 26m x π⎛⎫=- ⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦上有解, 因为0,2x π⎡⎤∈⎢⎥⎣⎦,52,666x πππ⎡⎤-∈-⎢⎥⎣⎦,所以[]2sin(2)1,26x π-∈-,所以m 的取值范围为[]1,2-.题型十四 三角函数实际应用【例14】阻尼器是一种以提供运动的阻力,从而达到减振效果的专业工程装置.深圳第一高楼平安金融中心的阻尼器减震装置,是亚洲最大的阻尼器,被称为“镇楼神器”.由物理学知识可知,某阻尼器模型的运动过程可近似为单摆运动,其离开平衡位置的位移s (cm )和时间t (s )的函数关系式为()2sin s t ωϕ=+,其中0>ω,若该阻尼器模型在摆动过程中连续三次位移为()0022s s -<<的时间分别为1t ,2t ,3t ,且312t t -=,则ω=( ) A .2π B .π C .32πD .2π 【答案】B【解析】由正弦型函数的性质,函数示意图如下:所以312T t t =-=,则22πω=,可得ωπ=.故选:B【变式14-1】某游乐场的摩天轮示意图如图所示,已知该摩天轮的半径为30米,轮上最低点与地面的距离为2米,沿逆时针方向匀速旋转,旋转一周所需时间为24T =分钟.在圆周上均匀分布12个座舱,标号分别为1~12(可视为点),在旋转过程中,座舱与地面的距离h (单位:米)与时间t (单位:分)的函数关系基本符合正弦函数模型,现从图示位置,即1号座舱位于圆周最右端时开始计时,旋转时间为t 分钟,则1号座舱与地面的距离h 与时间t 的函数关系()h t 的解析式为___________;【答案】()()30sin32012h t t t π=+≥ 【解析】设函数解析式为:()sin()h t A t b ωϕ=++,因为最小正周期24T =,所以212T ππω==, h 的最大值为62,最小值为2,所以622302A -==, 摩天轮正中心离地面32米,所以32b =, 当0=t 时,32h =,所以30sin 3232+=ϕ,0ϕ=. 所以解析式为:()()30sin 32012h t t t π=+≥. 故答案为:()()30sin32012h t t t π=+≥.【变式14-2】某实验室一天的温度(单位:℃)随时间t (单位:h )的变化近似满足函数关系:()[)()103sin,0,241212f t t t t ππ=-∈.(1)求实验室这一天上午8时的温度; (2)求实验室这一天的最大温差. 【答案】(1)10℃;;(2)4℃. 【解析】(1)()888103sin 1212f ππ=-22103sin 33ππ=-13103102⎛⎫=-= ⎪⎝⎭.故实验室上午8时的温度为10℃. (2)()103sin1212f t t t ππ=-31102sin 12212t t ππ⎫=-+⎪⎪⎝⎭102sin 123t ππ⎛⎫=-+ ⎪⎝⎭,因为024t ≤<,所以731233t ππππ≤+<,1sin 1123t ππ⎛⎫-≤+≤ ⎪⎝⎭. 当=2t 时,sin 1123t ππ⎛⎫+= ⎪⎝⎭;当=14t 时,sin 1123t ππ⎛⎫+=- ⎪⎝⎭,故()[]8,12f t ∈,于是()f t 在[)0,24上取得最大值12,取得最小值8. 故实验室这一天最高温度为12℃,最低温度为8℃,最大温差为4℃.【变式14-3】某港口的水深y (单位:m )是时间t (024t ≤≤,单位:h )的函数,下面是该港口的水深数据:/h t0 3 6 9 12 15 18 21 24/m y 10 13 9.9 7 10 13 9.9 710一般情况下,船舶航行时船底与海底的距离不小于4.5m 时就是安全的. (1)若有以下几个函数模型:()sin y at b y A t K ωφ=+=++,,你认为哪个模型可以更好地刻画y 与t 之间的对应关系?请说明理由,并求出该拟合模型的函数解析式;(2)如果船的吃水深度(船底与水面的距离)为7m ,那么该船在什么时间段能够安全进港?若该船欲当天安全离港,它在港内停留的时间最多不能超过多长时间?【答案】(1)()sin y A t K ωφ=++函数模型更好,函数解析式为3sin10(024).6y t t π=+(2)当15t ≤≤与1317t ≤≤时,船能够安全进港,停留的时间最多不能超过16h .【解析】(1)()sin y A t K ωφ=++函数模型更好地刻画y 与t 之间的对应关系.根据上述数据描出的曲线如图所示,经拟合,该曲线可近似地看成正弦函数()sin y A t K ωφ=++的图像.从拟合曲线知,函数()sin y A t K ωφ=++在一个周期内由最大变到最小需9-3=6(h),此为半个周期,∴函数的最小正周期为12,因此212,6ππωω==.又当0=t 时,10y =;当3t =时max 13y =,10,13103,0K A φ∴==-==,∴所求函数的表达式为3sin10(024).6y t t π=+(2)由于船的吃水深度为7m ,船底与海底的距离不少于4.5m ,故在船舶航行时,水深y 应大于或等于7+4.5=11.5(m ).令3sin1011.56y t π=+,可得15sin ,22(),62666tk t k k ππππππ∴++∈Z 121125()k t k k ∴++∈Z取0k = ,则15t ≤≤ ;取1k =,则1317t ≤≤; 取2k =时,2529t ≤≤(不符合题意,舍去).∴ 当15t ≤≤与1317t ≤≤时,船能够安全进港,船舶要在一天之内在港口停留时间最长,就应从凌晨1时进港, 而下午的17时离港,在港内停留的时间最长为16h .。

人教版高中数学高考三角函数重点题型解析及常见试题、答案及参考答案

人教版高中数学高考三角函数重点题型解析及常见试题、答案及参考答案

高考三角函数重点题型解析及常见试题(附参考答案)三角函数的主要考点是:三角函数的概念和性质(单调性,周期性,奇偶性,最值),三角函数的图象,三角恒等变换(主要是求值),三角函数模型的应用,正余弦定理及其应用,平面向量的基本问题及其应用.题型1 三角函数的最值:最值是三角函数最为重要的内容之一,其主要方法是利用正余弦函数的有界性,通过三角换元或者是其它的三角恒等变换转化问题.例 1 若x 是三角形的最小内角,则函数sin cos sin cos y x x x x =++的最大值是( )A .1-BC .12-+D .12+分析:三角形的最小内角是不大于3π的,而()2sin cos 12sin cos x x x x +=+,换元解决.解析:由03x π<≤,令s i n c s2s i n (4t x x π=++而74412x πππ<+≤,得1t <≤ 又212sin cos t x x =+,得21sin cos 2t x x -=,得2211(1)122t y t t -=+=+-,有2111022y -+<≤=.选择答案D .点评:涉及到sin cos x x ±与sin cos x x 的问题时,通常用换元解决.解法二:1sin cos sin cos sin 242y x x x x x x π⎛⎫=++=++ ⎪⎝⎭,当4x π=时,max 12y =+,选D 。

例2.已知函数2()2sin cos 2cos f x a x x b x =+.,且(0)8,()126f f π==.(1)求实数a ,b 的值;(2)求函数)(x f 的最大值及取得最大值时x 的值.分析:待定系数求a ,b ;然后用倍角公式和降幂公式转化问题. 解析:函数)(x f 可化为()sin 2cos 2f x a x b x b =++.(1)由(0)8f = ,()126f π=可得(0)28f b ==,3()12622f a b π=+= ,所以4b =,a =(2)()24cos 248sin(2)46f x x x x π=++=++,故当2262x k πππ+=+即()6x k k Z ππ=+∈时,函数()f x 取得最大值为12.点评:结论()sin cos a b θθθϕ+=+是三角函数中的一个重要公式,它在解决三角函数的图象、单调性、最值、周期以及化简求值恒等式的证明中有着广泛应用,是实现转化的工具,是联系三角函数问题间的一条纽带,是三角函数部分高考命题的重点内容.题型2 三角函数的图象:三角函数图象从“形”上反应了三角函数的性质,一直是高考所重点考查的问题之一.例3.(2009年福建省理科数学高考样卷第8题)为得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图象,只需将函数sin 2y x =的图象A .向左平移5π12个长度单位 B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位分析:先统一函数名称,在根据平移的法则解决. 解析:函数π55cos 2sin 2sin 2sin 2332612y x x x x ππππ⎛⎫⎛⎫⎛⎫⎛⎫=+=++=+=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,故要将函数sin 2y x =的图象向左平移5π12个长度单位,选择答案A .例 4 (2008高考江西文10)函数tan sin tan sin y x x x x =+--在区间3(,)22ππ内的图象是 分析:分段去绝对值后,结合选择支分析判断. 解析:函数2tan ,tan sin tan sin tan sin 2sin ,tan sin x x x y x x x x x x x <⎧=+--=⎨≥⎩当时当时.结合选择支和一些特殊点,选择答案D .点评:本题综合考察三角函数的图象和性质,当不注意正切函数的定义域或是函数分段不准确时,就会解错这个题目.题型3 用三角恒等变换求值:其主要方法是通过和与差的,二倍角的三角变换公式解决.例 5 (2008高考山东卷理5)已知πc o s s i n 36αα⎛⎫-+= ⎪⎝⎭,则7πs i n 6α⎛⎫+ ⎪⎝⎭的值是A. BC .45-D .45分析:所求的7πsin sin()66παα⎛⎫+=+ ⎪⎝⎭,将已知条件分拆整合后解决. 解析: C.ABCD34cos sin sin cos sin 6522565ππααααα⎛⎫⎛⎫-+=⇔+=⇔+=⎪ ⎪⎝⎭⎝⎭,所以74sin sin 665ππαα⎛⎫⎛⎫+=-+=- ⎪ ⎪⎝⎭⎝⎭. 点评:本题考查两角和与差的正余弦、诱导公式等三角函数的知识,考查分拆与整合的数 学思想和运算能力.解题的关键是对πcos sin 6αα⎛⎫-+= ⎪⎝⎭例6(2008高考浙江理8)若cos 2sin αα+=则tan α= A .21B .2C .21-D .2- 分析:可以结合已知和求解多方位地寻找解题的思路.()αϕ+=其中sin ϕϕ==即1t a n 2ϕ=,再由()sin 1αϕ+=-知道()22k k παϕπ+=-∈Z ,所以22k παπϕ=--, 所以s c 2t a 2c 2k πϕπαππϕϕ⎛⎫-- ⎪⎛⎫⎛⎫⎝⎭=--=--=== ⎪ ⎪⎛⎫⎝⎭⎝⎭-- ⎪⎝⎭.方法二:将已知式两端平方得()2222222cos 4cos sin 4sin 55sin cos sin 4sin cos 4cos 0tan 4tan 40tan 2ααααααααααααα++==+⇒-+=⇒-+=⇒=方法三:令sin 2cos t αα-=,和已知式平方相加得255t =+,故0t =, 即sin 2cos 0αα-=,故tan 2α=.方法四:我们可以认为点()cos ,sin M αα在直线2x y +=而点M 又在单位圆221x y +=上,解方程组可得x y ⎧=⎪⎪⎨⎪=⎪⎩从而tan 2y x α==.这个解法和用方程组22cos 2sin sin cos 1αααα⎧+=⎪⎨+=⎪⎩是一致的.方法五:α只能是第三象限角,排除C .D .,这时直接从选择支入手验证,由于12计算麻烦,我们假定tan 2α=,不难由同角三角函数关系求出sin 55αα=-=-B . 点评:本题考查利用三角恒等变换求值的能力,试题的根源是考生所常见的“已知()1sin cos ,0,5βββπ+=∈,求tan β的值(人教A 版必修4第三章复习题B 组最后一题第一问)”之类的题目 ,背景是熟悉的,但要解决这个问题还需要考生具有相当的知识迁移能力.题型4 正余弦定理的实际应用:这类问题通常是有实际背景的应用问题,主要表现在航海和测量上,解决的主要方法是利用正余弦定理建立数学模型. 例7.(2008高考湖南理19)在一个特定时段内,以点E 为中心的7海里以内海域被设为警戒水域.点E 正北55海里处有一个雷达观测站A .某时刻测得一艘匀速直线行驶的船只位于点A 北偏东45且与点A相距置B ,经过40分钟又测得该船已行驶到点A 北偏东45θ+ (其中sin 26θ=,090θ<<)且与点A相距C . (1)求该船的行驶速度(单位:海里/小时);(2)若该船不改变航行方向继续行驶.判断它是否会进入警戒水域,并说明理由.分析:根据方位角画出图形,如图.第一问实际上就是求BC 的长,在ABC ∆中用余弦定理即可解决;第二问本质上求是求点E 到直线BC 的距离,即可以用平面解析几何的方法,也可以通过解三角形解决. 解析:(1)如图,AB =AC =,,sin BAC θθ∠== 由于090θ<<,所以cos θ==由余弦定理得BC ==所以船的行驶速度为23=/小时). (2)方法一 : 如上面的图所示,以A 为原点建立平面直角坐标系, 设点,B C 的坐标分别是()()1122,,,B x y C x y ,BC 与x 轴的交点为D . 由题设有,11402x y AB ===,2cos )30x AC CAD θ=∠=-=,2sin )20.y AC CAD θ=∠=-=所以过点,B C 的直线l 的斜率20210k ==,直线l 的方程为240y x =-. 又点()0,55E -到直线l的距离7d ==<,所以船会进入警戒水域.解法二: 如图所示,设直线AE 与BC 的延长线相交于点Q .在ABC ∆中,由余弦定理得,222cos 2AB BC AC ABC AB BC +-∠=⋅222=10.从而sin 10ABC ∠=== 在ABQ ∆中,由正弦定理得,sin 40sin(45)AB ABC AQ ABC ∠===-∠. 由于5540A E A Q =>=,所以点Q 位于点A 和点E 之间,且15EQ AE AQ =-=.过点E 作EP BC ⊥于点P ,则EP 为点E 到直线BC 的距离. 在QPE ∆Rt 中,sin sin sin(45)157.5PE QE PQE QE AQC QE ABC =∠=⋅∠=⋅-∠=⨯=<所以船会进入警戒水域.点评:本题以教材上所常用的航海问题为背景,考查利用正余弦定理解决实际问题的能力,解决问题的关键是根据坐标方位画出正确的解题图. 本题容易出现两个方面的错误,一是对方位角的认识模糊,画图错误;二是由于运算相对繁琐,在运算上出错.题型5 三角函数与平面向量的结合:三角函数与平面向量的关系最为密切,这二者的结合有的是利用平面向量去解决三角函数问题,有的是利用三角函数去解决平面向量问题,更多的时候是平面向量只起衬托作用,三角函数的基本问题才是考查的重点.例8(2009年杭州市第一次高考科目教学质量检测理科第18题)已知向量)1,(sin ),2cos ,cos 2(x x x ωωω==,(0>ω),令x f ⋅=)(,且)(x f 的周期为π. (1) 求4f π⎛⎫⎪⎝⎭的值;(2)写出()f x 在]2,2[ππ-上的单调递增区间. 分析:根据平面向量数量积的计算公式将函数()f x 的解析式求出来,再根据)(x f 的周期为π就可以具体确定这个函数的解析式,下面只要根据三角函数的有关知识解决即可.解析:(1)xx x b a x f ωωω2cos sin cos 2)(+=⋅=xx ωω2cos 2sin +=)42sin(2πω+=x ,∵)(x f 的周期为π. ∴1=ω, )42sin(2)(π+=x x f ,12cos 2sin )4(=π+π=π∴f .(2) 由于)42sin(2)(π+=x x f ,当πππππk x k 224222+≤+≤+-(Z k ∈)时,()f x 单增,即ππππk x k +≤≤+-883(Z k ∈),∵∈x ]2,2[ππ- ∴()f x 在]2,2[ππ-上的单调递增区间为]8,83[ππ-.点评:本题以平面向量的数量积的坐标运算为入口,但本质上是考查的三角函数的性质,这是近年来高考命题的一个热点. 例9 (2009江苏泰州期末15题)已知向量()3sin ,cos a αα=,()2sin ,5sin 4cos b ααα=-,3,22παπ⎛⎫∈⎪⎝⎭,且a b ⊥. (1)求tan α的值; (2)求cos 23απ⎛⎫+⎪⎝⎭的值. 分析:根据两个平面向量垂直的条件将问题转化为一个三角函数的等式,通过这个等式探究第一问的答案,第一问解决后,借助于这个结果解决第二问. 解析:(1)∵a b ⊥,∴0a b ⋅=.而()3s i n,c os a αα=,()2sin ,5sin 4cos b ααα=-,故226sin5sin cos 4cos 0a b αααα⋅=+-=,由于c o s α≠,∴26tan 5tan 40αα+-=,解得4tan 3α=-,或1tan 2α=.∵3π 2π2α⎛⎫∈ ⎪⎝⎭,,tan 0α<,故1tan 2α=(舍去).∴4tan 3α=-. (2)∵3π 2π2α⎛⎫∈ ⎪⎝⎭,,∴3ππ24α∈(,). 由4tan 3α=-,求得1tan 22α=-,tan 22α=(舍去).∴sincos 22αα==,cos 23απ⎛⎫+= ⎪⎝⎭ππcoscos sin sin 2323αα-=12=点评:本题以向量的垂直为依托,实质上考查的是三角恒等变换.在解题要注意角的范围对解题结果的影响.题型6 三角形中的三角恒等变换:这是一类重要的恒等变换,其中心点是三角形的内角和是π,有的时候还可以和正余弦定理相结合,利用这两个定理实现边与角的互化,然后在利用三角变换的公式进行恒等变换,是近年来高考的一个热点题型. 例10.(安徽省皖南八校2009届高三第二次联考理科数学17题)三角形的三内角A ,B ,C 所对边的长分别为a ,b ,c ,设向量(,),(,)m c a b a n a b c =--=+,若//m n ,(1)求角B 的大小;(2)求sin sin A C +的取值范围.分析:根据两个平面向量平行的条件将向量的平行关系转化为三角形边的关系,结合余弦定理解决第一问,第一问解决后,第二问中的角,A C 就不是独立关系了,可以用其中的一个表达另一个,就把所要解决的问题归结为一个角的三角函数问题. 解析:(1)//,()()()m n c c a b a a b ∴---+,222222,1a c b c ac b a ac +-∴-=-∴=. 由余弦定理,得1cos ,23B B π==.(2)2,3A B C A C ππ++=∴+=,222sin sin sin sin()sin sin cos cos sin 333A C A A A A A πππ∴+=+-=+-3sin )226A A A π=+=+ 250,3666A A ππππ<<∴<+<1sin()1,sin sin 262A A C π∴<+≤∴<+≤点评:本题从平面向量的平行关系入手,实质考查的是余弦定理和三角形中的三角恒等变换,解决三角形中的三角恒等变换要注意三角形内角和定理和角的范围对结果的影响.题型7 用平面向量解决平面图形中的问题:由于平面向量既有数的特征(能进行类似数的运算)又具有形的特征,因此利用平面向量去解决平面图形中的问题就是必然的了,这在近年的高考中经常出现.考试大纲明确指出用会用平面向量解决平面几何问题.例11. 如图,已知点G 是ABO ∆的重心,点P 在OA 上,点Q 在OB 上,且PQ 过ABO ∆ 的重心G ,OP mOA =,OQ nOB =,试证明11m n+为常数,并求出这个常数.分析:根据两向量共线的充要条件和平面向量基本定理,把题目中需要的向量用基向量表达出来,本题的本质是点,,P G Q 共线,利用这个关系寻找,m n 所满足的方程.解析:令OA a =,OB b =,则OP ma =,OQ nb =,设AB 的中点为M , 显然1().2O M a b =+,因为G 是ABC ∆的重心,所以21()33OG OM a b ==⋅+.由P 、G 、Q 三点共线,有PG 、GQ 共线,所以,有且只有一个实数λ,使 PG GQ λ=,而111()()333P G O GO P a b m a m ab=-=+-=-+,111()()333GQ OQ OG nb a b a n b =-=-+=-+-,所以1111()[()]3333m a b a n b λ-+=-+-.又因为a 、不共线,由平面向量基本定理得⎪⎪⎩⎪⎪⎨⎧-=-=-)31(313131n m λλ,消去λ,整理得3mn m n =+,故311=+nm .结论得证.这个常数是3. 【点评】平面向量是高中数学的重要工具,它有着广泛的应用,用它解决平面几何问题是一个重要方面,其基本思路是根据采用基向量或坐标把所要解决的有关的问题表达出来,再根据平面向量的有关知识加以处理.课标区已把几何证明选讲列入选考范围,应引起同学们的注意.题型8 用导数研究三角函数问题:导数是我们在中学里引进的一个研究函数的重要工具,利用导数探讨三角函数问题有它极大的优越性,特别是单调性和最值.例12. 已知函数22()cos 2sin cos sin f x x t x x x =+-,若函数()f x 在区间(,]126ππ上是增函数,求实数t 的取值范围. 分析:函数的()f x 导数在(,]126ππ大于等于零恒成立. 解析:函数()f x 在区间(,]126ππ上是增函数,则等价于不等式()0f x '≥在区间(,]126ππ上恒成立,即()2sin 22cos 20f x x t x '=-+≥在区间(,]126ππ上恒成立, 从而tan 2t x ≥在区间(,]126ππ上恒成立, 而函数tan 2y x =在区间(,]126ππ上为增函数,所以函数tan 2y x =在区间(,]126ππ上的最大值为m a x tan(2)6y π=⨯t ≥为所求. 点评:用导数研究函数问题是导数的重要应用之一,是解决高中数学问题的一种重要的思想意识.本题如将()f x 化为()s i n 2s 21s i n (2)fxt xt x ϕ=+++的形式,则ϕ与t 有关,讨论起来极不方便,而借助于导数问题就很容易解决.题型9 三角函数性质的综合应用:将三角函数和其它的知识点相结合而产生一些综合性的试题,解决这类问题往往要综合运用我们的数学知识和数学思想,全方位的多方向进行思考.例13. 设二次函数2()(,)f x x bx c b c R =++∈,已知不论α,β为何实数,恒有(sin )0f α≥和(2cos )0f β+≤. (1)求证:1b c +=- ; (2)求证:3c ≥;(3)若函数(sin )f α的最大值为8,求b ,c 的值.分析:由三角函数的有界性可以得出()10f =,再结合有界性探求. 解析:(1)因为1sin 1α-≤≤且(sin )0f α≥恒成立,所以(1)0f ≥,又因为 12c o s 3β≤+≤且(2cos )0f β+≤恒成立,所以(1)0f ≤, 从而知(1)0f =,10b c ++=,即1b c +=-.(2)由12c o s 3β≤+≤且(2cos )0f β+≤恒成立得(3)0f ≤, 即930b c ++≤,将1b c =--代如得9330c c --+≤,即3c ≥.(3)22211(sin )sin(1)sin (sin )()22c c f c c c αααα++=+--+=-+-, 因为122c+≥,所以当sin 1α=-时max [(sin )]8f α=, 由1810b c b c -+=⎧⎨++=⎩, 解得 4b =-,3c =.点评:本题的关键是1b c +=-,由(sin )0(2cos )0f f αβ≥⎧⎨+≤⎩ 利用正余弦函数的有界性得出()()1010f f ≥⎧⎪⎨≤⎪⎩,从而(1)0f =,使问题解决,这里正余弦函数的有界性在起了重要作用.【专题训练与高考预测】 一、选择题1.若[0,2)απ∈sin cos αα=-,则α的取值范围是( )A .[0,]2πB .[,]2ππC .3[,]2ππ D .3[,2)2ππ 2.设α是锐角,且lg(1cos )m α-=,1lg 1cos n α=+,则lgsin α=( ) A .m n - B .11()2m n - C .2m n - D .11()2n m-3.若00||2sin15,||4cos15a b ==,a 与b 的夹角为30。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数的主要考点是:三角函数的概念和性质(单调性,周期性,奇偶性,最值),三角函数的图象,三角恒等变换(主要是求值),三角函数模型的应用,正余弦定理及其应用,平面向量的基本问题及其应用.题型1 三角函数的最值:最值是三角函数最为重要的内容之一,其主要方法是利用正余弦函数的有界性,通过三角换元或者是其它的三角恒等变换转化问题.例1 若x 是三角形的最小内角,则函数sin cos sin cos y x x x x =++的最大值是( )A .1-BC .12-D .12+分析:三角形的最小内角是不大于3π的,而()2sin cos 12sin cos x x x x +=+,换元解决.解析:由03x π<≤,令sin cos ),4t x x x π=+=+而74412x πππ<+≤,得1t <≤又212sin cos t x x =+,得21sin cos 2t x x -=,得2211(1)122t y t t -=+=+-,有1102y +<≤=.选择答案D . 点评:涉及到sin cos x x ±与sin cos x x 的问题时,通常用换元解决.解法二:1sin cos sin cos sin 242y x x x x x x π⎛⎫=++=++ ⎪⎝⎭,当4x π=时,max 12y =,选D 。

例2.已知函数2()2sin cos 2cos f x a x x b x =+.,且(0)8,()126f f π==.(1)求实数a ,b 的值;(2)求函数)(x f 的最大值及取得最大值时x 的值.分析:待定系数求a ,b ;然后用倍角公式和降幂公式转化问题. 解析:函数)(x f 可化为()sin 2cos 2f x a x b x b =++.(1)由(0)8f = ,()126f π=可得(0)28f b ==,3()12622f a b π=+= ,所以4b =,a =(2)()24cos 248sin(2)46f x x x x π=++=++,故当2262x k πππ+=+即()6x k k Z ππ=+∈时,函数()f x 取得最大值为12.点评:结论()sin cos a b θθθϕ+=+是三角函数中的一个重要公式,它在解决三角函数的图象、单调性、最值、周期以及化简求值恒等式的证明中有着广泛应用,是实现转化的工具,是联系三角函数问题间的一条纽带,是三角函数部分高考命题的重点内容.题型2 三角函数的图象:三角函数图象从“形”上反应了三角函数的性质,一直是高考所重点考查的问题之一.例3.(2009年福建省理科数学高考样卷第8题)为得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图象,只需将函数sin 2y x =的图象A .向左平移5π12个长度单位 B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位分析:先统一函数名称,在根据平移的法则解决. 解析:函数π55cos 2sin 2sin 2sin 2332612y x x x x ππππ⎛⎫⎛⎫⎛⎫⎛⎫=+=++=+=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,故要将函数sin 2y x =的图象向左平移5π12个长度单位,选择答案A . 例4 (2008高考江西文10)函数tan sin tan sin y x x x x =+--在区间3(,)22ππ内的图象是分析:分段去绝对值后,结合选择支分析判断.ABCD-解析:函数2tan ,tan sin tan sin tan sin 2sin ,tan sin x x x y x x x x x x x <⎧=+--=⎨≥⎩当时当时.结合选择支和一些特殊点,选择答案D .点评:本题综合考察三角函数的图象和性质,当不注意正切函数的定义域或是函数分段不准确时,就会解错这个题目. 题型3 用三角恒等变换求值:其主要方法是通过和与差的,二倍角的三角变换公式解决. 例5 (2008高考山东卷理5)已知πcos sin 6αα⎛⎫-+= ⎪⎝⎭7πsin 6α⎛⎫+ ⎪⎝⎭的值是A.5-B.5C .45-D .45分析:所求的7πsin sin()66παα⎛⎫+=+ ⎪⎝⎭,将已知条件分拆整合后解决. 解析: C.34cos sin sin sin 6522565ππααααα⎛⎫⎛⎫-+=⇔+=⇔+= ⎪ ⎪⎝⎭⎝⎭,所以74sin sin 665ππαα⎛⎫⎛⎫+=-+=- ⎪ ⎪⎝⎭⎝⎭. 点评:本题考查两角和与差的正余弦、诱导公式等三角函数的知识,考查分拆与整合的数学思想和运算能力.解题的关键是对πcos sin 6αα⎛⎫-+= ⎪⎝⎭ 例6(2008高考浙江理8)若cos 2sin αα+=则tan α= A .21B .2C .21-D .2- 分析:可以结合已知和求解多方位地寻找解题的思路.()αϕ+=sin ϕϕ==,即1tan 2ϕ=,再由()sin 1αϕ+=-知道()22k k παϕπ+=-∈Z ,所以22k παπϕ=--,所以sin cos 2tan tan 2tan 222sin cos 2k πϕππϕαπϕϕπϕϕ⎛⎫-- ⎪⎛⎫⎛⎫⎝⎭=--=--=== ⎪ ⎪⎛⎫⎝⎭⎝⎭-- ⎪⎝⎭.方法二:将已知式两端平方得()2222222cos 4cos sin 4sin 55sin cos sin 4sin cos 4cos 0tan 4tan 40tan 2ααααααααααααα++==+⇒-+=⇒-+=⇒=方法三:令sin 2cos t αα-=,和已知式平方相加得255t =+,故0t =, 即sin 2cos 0αα-=,故tan 2α=.方法四:我们可以认为点()cos ,sin M αα在直线2x y +=而点M 又在单位圆221x y +=上,解方程组可得5x y ⎧=-⎪⎪⎨⎪=⎪⎩从而tan 2y x α==.这个解法和用方程组22cos 2sin sin cos 1αααα⎧+=⎪⎨+=⎪⎩求解实质上是一致的. 方法五:α只能是第三象限角,排除C .D .,这时直接从选择支入手验证, 由于12计算麻烦,我们假定tan 2α=,不难由同角三角函数关系求出sin 55αα=-=-,检验符合已知条件,故选B . 点评:本题考查利用三角恒等变换求值的能力,试题的根源是考生所常见的“已知()1sin cos ,0,5βββπ+=∈,求tan β的值(人教A 版必修4第三章复习题B 组最后一题第一问)”之类的题目 ,背景是熟悉的,但要解决这个问题还需要考生具有相当的知识迁移能力.题型4 正余弦定理的实际应用:这类问题通常是有实际背景的应用问题,主要表现在航海和测量上,解决的主要方法是利用正余弦定理建立数学模型. 例7.(2008高考湖南理19)在一个特定时段内,以点E 为中心的7海里以内海域被设为警戒水域.点E 正北55海里处有一个雷达观测站A .某时刻测得一艘匀速直线行驶的船只位于点A 北偏东45且与点A相距B ,经过40分钟又测得该船已行驶到点A 北偏东45θ+ (其中26sin 26θ=,090θ<<)且与点A 相距1013海里的位置C .(1)求该船的行驶速度(单位:海里/小时);(2)若该船不改变航行方向继续行驶.判断它是否会进入警戒水域,并说明理由.分析:根据方位角画出图形,如图.第一问实际上就是求BC 的长,在ABC ∆中用余弦定理即可解决;第二问本质上求是求点E 到直线BC 的距离,即可以用平面解析几何的方法,也可以通过解三角形解决. 解析:(1)如图,402AB =2, 1013AC =26,sin BAC θθ∠==由于090θ<<,所以226526cos 1()2626θ=-= 由余弦定理得222cos 10 5.BC AB AC AB AC θ=+-=10515523=/小时). (2)方法一 : 如上面的图所示,以A 为原点建立平面直角坐标系, 设点,B C 的坐标分别是()()1122,,,B x y C x y ,BC 与x 轴的交点为D . 由题设有, 11240x y AB ===, 2cos 1013cos(45)30x AC CAD θ=∠=-=, 2sin 1013sin(45)20.y AC CAD θ=∠=-=所以过点,B C 的直线l 的斜率20210k ==,直线l 的方程为240y x =-.又点()0,55E -到直线l 的距离|05540|35714d +-==<+,所以船会进入警戒水域.解法二: 如图所示,设直线AE 与BC 的延长线相交于点Q .在ABC ∆中,由余弦定理得,222cos 2AB BC AC ABC AB BC +-∠=⋅2222402105⨯⨯=31010.从而2910sin 1cos 110ABC ABC ∠=-∠=-= 在ABQ ∆中,由正弦定理得,102sin 1040sin(45)2210AB ABC AQ ABC ∠===-∠⨯. 由于5540AE AQ =>=,所以点Q 位于点A 和点E 之间,且15EQ AE AQ =-=. 过点E 作EP BC ⊥于点P ,则EP 为点E 到直线BC 的距离. 在QPE ∆Rt 中,5sin sin sin(45)15357.5PE QE PQE QE AQC QE ABC =∠=⋅∠=⋅-∠=⨯= 所以船会进入警戒水域.点评:本题以教材上所常用的航海问题为背景,考查利用正余弦定理解决实际问题的能力,解决问题的关键是根据坐标方位画出正确的解题图. 本题容易出现两个方面的错误,一是对方位角的认识模糊,画图错误;二是由于运算相对繁琐,在运算上出错. 题型5 三角函数与平面向量的结合:三角函数与平面向量的关系最为密切,这二者的结合有的是利用平面向量去解决三角函数问题,有的是利用三角函数去解决平面向量问题,更多的时候是平面向量只起衬托作用,三角函数的基本问题才是考查的重点.例8(2009年杭州市第一次高考科目教学质量检测理科第18题)已知向量)1,(sin ),2cos ,cos 2(x b x x a ωωω==,(0>ω),令b a x f ⋅=)(,且)(x f 的周期为π. (1) 求4f π⎛⎫⎪⎝⎭的值;(2)写出()f x 在]2,2[ππ-上的单调递增区间. 分析:根据平面向量数量积的计算公式将函数()f x 的解析式求出来,再根据)(x f 的周期为π就可以具体确定这个函数的解析式,下面只要根据三角函数的有关知识解决即可. 解析:(1)x x x b a x f ωωω2cos sin cos 2)(+=⋅=x x ωω2cos 2sin +=)42sin(2πω+=x ,∵)(x f 的周期为π. ∴1=ω, )42sin(2)(π+=x x f ,12cos 2sin )4(=π+π=π∴f .(2) 由于)42sin(2)(π+=x x f ,当πππππk x k 224222+≤+≤+-(Z k ∈)时,()f x 单增,即ππππk x k +≤≤+-883(Z k ∈),∵∈x ]2,2[ππ-∴()f x 在]2,2[ππ-上的单调递增区间为]8,83[ππ-. 点评:本题以平面向量的数量积的坐标运算为入口,但本质上是考查的三角函数的性质,这是近年来高考命题的一个热点. 例9 (2009江苏泰州期末15题)已知向量()3sin ,cos a αα=,()2sin ,5sin 4cos b ααα=-,3,22παπ⎛⎫∈⎪⎝⎭,且a b ⊥.(1)求tan α的值; (2)求cos 23απ⎛⎫+⎪⎝⎭的值. 分析:根据两个平面向量垂直的条件将问题转化为一个三角函数的等式,通过这个等式探究第一问的答案,第一问解决后,借助于这个结果解决第二问.解析:(1)∵a b ⊥,∴0a b ⋅=.而()3sin ,cos a αα=,()2sin ,5sin 4cos b ααα=-, 故226sin 5sin cos 4cos 0a b αααα⋅=+-=,由于cos 0α≠,∴26tan 5tan 40αα+-=, 解得4tan 3α=-,或1tan 2α=.∵3π 2π2α⎛⎫∈ ⎪⎝⎭,,tan 0α<, 故1tan 2α=(舍去).∴4tan 3α=-. (2)∵3π 2π2α⎛⎫∈ ⎪⎝⎭,,∴3ππ24α∈(,). 由4tan 3α=-,求得1tan 22α=-,tan 22α=(舍去).∴sincos 22αα==,cos 23απ⎛⎫+= ⎪⎝⎭ππcos cos sin sin 2323αα-=12= . 点评:本题以向量的垂直为依托,实质上考查的是三角恒等变换.在解题要注意角的范围对解题结果的影响.题型6 三角形中的三角恒等变换:这是一类重要的恒等变换,其中心点是三角形的内角和是π,有的时候还可以和正余弦定理相结合,利用这两个定理实现边与角的互化,然后在利用三角变换的公式进行恒等变换,是近年来高考的一个热点题型. 例10.(安徽省皖南八校2009届高三第二次联考理科数学17题)三角形的三内角A ,B ,C 所对边的长分别为a ,b ,c ,设向量(,),(,)m c a b a n a b c =--=+,若//m n , (1)求角B 的大小;(2)求sin sin A C +的取值范围.分析:根据两个平面向量平行的条件将向量的平行关系转化为三角形边的关系,结合余弦定理解决第一问,第一问解决后,第二问中的角,A C 就不是独立关系了,可以用其中的一个表达另一个,就把所要解决的问题归结为一个角的三角函数问题. 解析:(1)//,()()()m n c c a b a a b ∴---+,222222,1a c b c ac b a ac +-∴-=-∴=. 由余弦定理,得1cos ,23B B π==.(2)2,3A B C A C ππ++=∴+=,222sin sin sin sin()sin sin cos cos sin 333A C A A A A A πππ∴+=+-=+-3sin )226A A A π=+=+ 250,3666A A ππππ<<∴<+<1sin()1,sin sin 262A A C π∴<+≤<+≤点评:本题从平面向量的平行关系入手,实质考查的是余弦定理和三角形中的三角恒等变换,解决三角形中的三角恒等变换要注意三角形内角和定理和角的范围对结果的影响.题型7 用平面向量解决平面图形中的问题:由于平面向量既有数的特征(能进行类似数的运算)又具有形的特征,因此利用平面向量去解决平面图形中的问题就是必然的了,这在近年的高考中经常出现.考试大纲明确指出用会用平面向量解决平面几何问题. 例11. 如图,已知点G 是ABO ∆的重心,点P 在OA 上,点Q 在OB 上,且PQ 过ABO ∆ 的重心G ,OP mOA =,OQ nOB =,试证明11m n+为常数,并求出这个常数.分析:根据两向量共线的充要条件和平面向量基本定理,把题目中需要的向量用基向量表达出来,本题的本质是点,,P G Q 共线,利用这个关系寻找,m n 所满足的方程. 解析:令OA a =,OB b =,则OP ma =,OQ nb =,设AB 的中点为M , 显然1().2OM a b =+,因为G 是ABC ∆的重心,所以21()33OG OM a b ==⋅+.由P 、G 、Q 三点共线,有PG 、GQ 共线,所以,有且只有一个实数λ,使 PG GQ λ=,而111()()333PG OG OP a b ma m a b =-=+-=-+, 111()()333GQ OQ OG nb a b a n b =-=-+=-+-,所以1111()[()]3333m a b a n b λ-+=-+-.又因为a 、b 不共线,由平面向量基本定理得⎪⎪⎩⎪⎪⎨⎧-=-=-)31(313131n m λλ,消去λ,整理得3mn m n =+,故311=+nm .结论得证.这个常数是3. 【点评】平面向量是高中数学的重要工具,它有着广泛的应用,用它解决平面几何问题是一个重要方面,其基本思路是根据采用基向量或坐标把所要解决的有关的问题表达出来,再根据平面向量的有关知识加以处理.课标区已把几何证明选讲列入选考范围,应引起同学们的注意.题型8 用导数研究三角函数问题:导数是我们在中学里引进的一个研究函数的重要工具,利用导数探讨三角函数问题有它极大的优越性,特别是单调性和最值. 例12. 已知函数22()cos 2sin cos sin f x x t x x x =+-,若函数()f x 在区间(,]126ππ上是增函数,求实数t 的取值范围.分析:函数的()f x 导数在(,]126ππ大于等于零恒成立.解析:函数()f x 在区间(,]126ππ上是增函数,则等价于不等式()0f x '≥在区间(,]126ππ上恒成立,即()2sin 22cos 20f x x t x '=-+≥在区间(,]126ππ上恒成立, 从而tan 2t x ≥在区间(,]126ππ上恒成立, 而函数tan 2y x =在区间(,]126ππ上为增函数,所以函数tan 2y x =在区间(,]126ππ上的最大值为max tan(2)6y π=⨯=所以t ≥为所求.点评:用导数研究函数问题是导数的重要应用之一,是解决高中数学问题的一种重要的思想意识.本题如将()f x 化为()sin 2cos 2)f x t x x x ϕ=+=+的形式,则ϕ与t 有关,讨论起来极不方便,而借助于导数问题就很容易解决.题型9 三角函数性质的综合应用:将三角函数和其它的知识点相结合而产生一些综合性的试题,解决这类问题往往要综合运用我们的数学知识和数学思想,全方位的多方向进行思考.例13. 设二次函数2()(,)f x x bx c b c R =++∈,已知不论α,β为何实数,恒有(sin )0f α≥和(2cos )0f β+≤.(1)求证:1b c +=- ; (2)求证:3c ≥;(3)若函数(sin )f α的最大值为8,求b ,c 的值.分析:由三角函数的有界性可以得出()10f =,再结合有界性探求.解析:(1)因为1sin 1α-≤≤且(sin )0f α≥恒成立,所以(1)0f ≥,又因为12cos 3β≤+≤且(2cos )0f β+≤恒成立,所以(1)0f ≤, 从而知(1)0f =,10b c ++=,即1b c +=-.(2)由12cos 3β≤+≤且(2cos )0f β+≤恒成立得(3)0f ≤, 即 930b c ++≤,将1b c =--代如得9330c c --+≤,即3c ≥. (3)22211(sin )sin(1)sin (sin )()22c c f c c c αααα++=+--+=-+-,因为122c+≥,所以当sin 1α=-时max [(sin )]8f α=, 由1810b c b c -+=⎧⎨++=⎩ , 解得 4b =-,3c =.点评:本题的关键是1b c +=-,由(sin )0(2cos )0f f αβ≥⎧⎨+≤⎩利用正余弦函数的有界性得出()()1010f f ≥⎧⎪⎨≤⎪⎩,从而(1)0f =,使问题解决,这里正余弦函数的有界性在起了重要作用. 【专题训练与高考预测】 一、选择题1.若[0,2)απ∈,sin cos αα+=-,则α的取值范围是( )A .[0,]2πB .[,]2ππ C .3[,]2ππ D .3[,2)2ππ 2.设α是锐角,且lg(1cos )m α-=,1lg 1cos n α=+,则lgsin α=( ) A .m n - B .11()2m n - C .2m n - D .11()2n m-3.若00||2sin15,||4cos15a b ==,a 与b 的夹角为30。

相关文档
最新文档