整式乘法专题训练

合集下载

整式乘法计算40道(含答案)

整式乘法计算40道(含答案)

整式乘法计算题40道(含答案)一.解答题(共40小题)1.计算:2x3•x3+(3x3)2﹣8x6.2.计算(1)4a2b(﹣2ab)3(2)(3+m)(3﹣m)﹣m(m﹣6)﹣7 3.计算:a3•a4•a+(﹣2a4)2.4.计算:n2•n4+4(n2)3﹣5n3•n25.计算:3a(2﹣a)+3(a﹣3)(a+3).6.计算:m4n2+2m2⋅m4+(m2)3﹣(m2n)27.计算:(1)(﹣t4)3+(﹣t2)6;(2)(m4)2+(m3)2﹣m(m2)2•m3.8.计算a2•a4+(a3)2﹣32a610.计算:(x+3)(x﹣4)﹣x(x+2)﹣511.计算:①(a﹣2b+1)(a+2b+1)②(x+2y﹣1)2 12.计算:(a+b(a﹣b)+(2a﹣b)213.化简:(m+2)(m﹣2)−m3×3m.14.计算:(1)(a﹣2)2﹣2a3+a(2)(x+2y)(x﹣3y)+(x+y)(x﹣y)15.计算:3(2x﹣1)﹣(﹣3x﹣4)(3x﹣4)16.计算:(1)(−12x2y3)3(2)m2•(2m3)2+(﹣m2)418.计算:(1)x2(x﹣1)﹣x(x2+x﹣1)(2)(y+2)(y﹣2)﹣(y﹣1)(y+5)19.计算﹣4(a+1)2﹣(5+2a)(5﹣2a)20.计算:(1)(﹣3a2b)3﹣(2a3)2•(﹣b)3+3a6b3(2)(2a+b)(2a﹣b)﹣(a﹣b)221.化简:(1)(﹣2x2)3+4x2•3x4;(2)(a+1)2+(a+3)(3﹣a).22.计算:(2a+b)(2a﹣b)﹣2a(a﹣2b)23.计算:(2m2n)2+(﹣mn)(−13m3n).24.计算(1)(x+3)(x﹣5);(2)(x﹣2y)2+(x+y)(x﹣y).25.计算:(﹣2x2)(4xy3﹣y2)+(2xy)3.26.(1)计算:(﹣3xy)2•4x2;(2)计算:(x+2)(2x﹣3).27.计算:(2x﹣1)2﹣x(4x﹣1)28.计算:(m+n+2)(m+n﹣2)﹣m(m+4n).29.计算(1)(3x﹣2)(2x+3)﹣(x﹣1)2;(2)(x+2y)(x﹣2y)﹣2y(x﹣2y)+2xy.30.计算:(2x﹣y)2﹣(y2﹣4xy)﹣(2x+y)(x﹣2y).31.计算:(1)(﹣2x)3(2x3−12x﹣1)﹣2x(2x3+4x2);(2)(x+3)(x﹣7)﹣x(x﹣1).32.计算:(﹣2x)2﹣(2x+1)(2x﹣1)+(x﹣2)233.计算:(1)a(a+b)﹣b(a﹣b);(2)(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2 34.计算:(x+y)2﹣y(2x+y)﹣8x35.运用乘法公式计算:(2x﹣1)(2x+1)﹣(x﹣6)(4x+3).36.计算:4(x﹣y)2﹣(2x﹣y)(2x+y)37.计算:(1)3a3b•(﹣2ab)+(﹣3a2b)2(2)(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2.38.计算:(1)(﹣a2)3•4a(2)2x(x+1)+(x+1)2.39.计算:(a+1)(a﹣3)﹣(a﹣2)2.40.4(x+1)2﹣(2x+5)(2x﹣5)参考答案与试题解析一.解答题(共40小题)1.计算:2x3•x3+(3x3)2﹣8x6.【解答】解:2x3•x3+(3x3)2﹣8x6=2x6+9x6﹣8x6=3x6.2.计算(1)4a2b(﹣2ab)3(2)(3+m)(3﹣m)﹣m(m﹣6)﹣7【解答】解:(1)原式=4a2b(﹣8a3b3)=﹣32a5b4;(2)原式=9﹣m2﹣m2+6m﹣7=﹣2m2+6m+2.3.计算:a3•a4•a+(﹣2a4)2.【解答】解:a3•a4•a+(﹣2a4)2=a8+4a8=5a8.4.计算:n2•n4+4(n2)3﹣5n3•n2【解答】解:n2•n4+4(n2)3﹣5n3•n2=n6+4n6﹣5n5=5n6﹣5n5.5.计算:3a(2﹣a)+3(a﹣3)(a+3).【解答】解:原式=6a﹣3a2+3(a2﹣9)=6a﹣3a2+3a2﹣27=6a﹣27.6.计算:m4n2+2m2⋅m4+(m2)3﹣(m2n)2【解答】解:原式=m4n2+2m6+m6﹣m4n2,=3m6.7.计算:(1)(﹣t4)3+(﹣t2)6;(2)(m4)2+(m3)2﹣m(m2)2•m3.【解答】解:(1)原式=﹣t12+t12=0;(2)原式=m8+m6﹣m8=m6.8.计算a2•a4+(a3)2﹣32a6【解答】解:原式=a6+a6﹣32a6=﹣30a6.9.化简(5x)2•x7﹣(3x3)3+2(x3)2+x3【解答】解:(5x)2•x7﹣(3x3)3+2(x3)2+x3=25x2•x7﹣27x9+2x6+x3=25x9﹣27x9+2x6+x3=﹣2x9+2x6+x3.10.计算:(x+3)(x﹣4)﹣x(x+2)﹣5【解答】解:(x+3)(x﹣4)﹣x(x+2)﹣5=x2﹣4x+3x﹣12﹣x2﹣2x﹣5=﹣3x﹣17.11.计算:①(a﹣2b+1)(a+2b+1)②(x+2y﹣1)2【解答】解:①原式=(a+1)2﹣(2b)2=a2+2a+1﹣4b2②原式=[(x+2y)﹣1]2=(x+2y)2﹣2(x+2y)+1=x2+4xy+4y2﹣2x﹣4y+1=x2+4y2+4xy﹣2x﹣4y+1.12.计算:(a+b(a﹣b)+(2a﹣b)2【解答】解:原式=a2﹣b2+4a2﹣4ab+b2=5a2﹣4ab13.化简:(m+2)(m﹣2)−m3×3m.【解答】解:原式=m2﹣4﹣m2=﹣4.14.计算:(1)(a﹣2)2﹣2a3+a(2)(x+2y)(x﹣3y)+(x+y)(x﹣y)【解答】解:(1)原式=a2﹣4a+4﹣2a3+a,=﹣2a3+a2﹣3a+4;(2)原式=x2﹣3xy+2xy﹣6y2+x2﹣y2,=2x2﹣xy﹣7y2.15.计算:3(2x﹣1)﹣(﹣3x﹣4)(3x﹣4)【解答】解:原式=6x﹣3﹣(16﹣9x2)=6x﹣3﹣16+9x2=9x2+6x﹣19.16.计算:(1)(−12x2y3)3(2)m2•(2m3)2+(﹣m2)4【解答】解:(1)原式=−18x6y9;(2)原式=m2•4m6+m8=5m8.17.计算:(x+y)2﹣(x+2y)(2x﹣y).【解答】解:原式=x2+2xy+y2﹣(2x2+3xy﹣2y2)=x2+2xy+y2﹣2x2﹣3xy+2y2=﹣x2﹣xy+3y2.18.计算:(1)x2(x﹣1)﹣x(x2+x﹣1)(2)(y+2)(y﹣2)﹣(y﹣1)(y+5)【解答】解:(1)x2(x﹣1)﹣x(x2+x﹣1)=x3﹣x2﹣x3﹣x2+x=﹣2x2+x;(2)(y+2)(y﹣2)﹣(y﹣1)(y+5)=y2﹣4﹣(y2+4y﹣5)=y2﹣4﹣y2﹣4y+5=﹣4y+1.19.计算﹣4(a+1)2﹣(5+2a)(5﹣2a)【解答】解:原式=﹣4(a2+2a+1)﹣(25﹣4a2)=﹣4a2﹣8a﹣4﹣25+4a2=﹣8a﹣29.20.计算:(1)(﹣3a2b)3﹣(2a3)2•(﹣b)3+3a6b3(2)(2a+b)(2a﹣b)﹣(a﹣b)2【解答】解:(1)原式=﹣27a6b3﹣4a6(﹣b3)+3 a6b3=﹣20a6b3;(2)原式=4a2﹣b2﹣(a2﹣2ab+b2)=3a2+2ab﹣2b2.21.化简:(1)(﹣2x2)3+4x2•3x4;(2)(a+1)2+(a+3)(3﹣a).【解答】解:(1)原式=﹣8x6+12x6=4x6;(2)原式=a2+2a+1+(9﹣a2)=a2+2a+1+9﹣a2=2a+10.22.计算:(2a+b)(2a﹣b)﹣2a(a﹣2b)【解答】解:(2a+b)(2a﹣b)﹣2a(a﹣2b)=4a2﹣b2﹣2a2+4ab=2a2﹣b2+4ab.23.计算:(2m2n)2+(﹣mn)(−13m3n).【解答】解:原式=4m4n2+13m4n2=(4+13)m4n2=133m4n2.24.计算(1)(x+3)(x﹣5);(2)(x﹣2y)2+(x+y)(x﹣y).【解答】解:(1)原式=x2﹣5x+3x﹣15=x2﹣2x﹣15;(2)原式=x2﹣4xy+4y2+x2﹣y2=2x2﹣4xy+3y2.25.计算:(﹣2x2)(4xy3﹣y2)+(2xy)3.【解答】解:原式=﹣8x3y3+2x2y2+8x3y3=2x2y2.26.(1)计算:(﹣3xy)2•4x2;(2)计算:(x+2)(2x﹣3).【解答】解:(1)原式=9x2y2•4x2=36x4y2;(2)解:原式=2x2﹣3x+4x﹣6=2x2+x﹣6.27.计算:(2x﹣1)2﹣x(4x﹣1)【解答】解:(2x﹣1)2﹣x(4x﹣1)=4x2﹣4x+1﹣4x2+x=﹣3x+1.28.计算:(m+n+2)(m+n﹣2)﹣m(m+4n).=m2+2mn+n2﹣4﹣m2﹣4mn,=n2﹣2mn﹣4.29.计算(1)(3x﹣2)(2x+3)﹣(x﹣1)2;(2)(x+2y)(x﹣2y)﹣2y(x﹣2y)+2xy.【解答】解:(1)原式=6x2+9x﹣4x﹣6﹣x2+2x﹣1=5x2+7x﹣7;(2)原式=x2﹣4y2﹣2xy+4y2+2xy=x2.30.计算:(2x﹣y)2﹣(y2﹣4xy)﹣(2x+y)(x﹣2y).【解答】解:(2x﹣y)2﹣(y2﹣4xy)﹣(2x+y)(x﹣2y)=4x2﹣4xy+y2﹣y2+4xy﹣(2x2﹣3xy﹣2y2)=4x2﹣2x2+3xy+2y2=2x2+3xy+2y2.31.计算:(1)(﹣2x)3(2x3−12x﹣1)﹣2x(2x3+4x2);(2)(x+3)(x﹣7)﹣x(x﹣1).【解答】解:(1)原式=−8x3(2x3−12x−1)−(4x4+8x3)=−16x6+4x4+8x3﹣4x4﹣8x3=﹣16x6;(2)原式=x2﹣7x+3x﹣21﹣x2+x=﹣3x﹣21.32.计算:(﹣2x)2﹣(2x+1)(2x﹣1)+(x﹣2)2=x2﹣4x+5.33.计算:(1)a(a+b)﹣b(a﹣b);(2)(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2【解答】解:(1)原式=a2+ab﹣ab+b2=a2+b2;(2)原式=x2﹣4xy+4y2﹣(x2﹣y2)﹣2y2,=x2﹣4xy+4y2﹣x2+y2﹣2y2,=﹣4xy+3y2.34.计算:(x+y)2﹣y(2x+y)﹣8x【解答】解:原式=x2+2xy+y2﹣2xy﹣y2﹣8x=x2﹣8x.35.运用乘法公式计算:(2x﹣1)(2x+1)﹣(x﹣6)(4x+3).【解答】解:(2x﹣1)(2x+1)﹣(x﹣6)(4x+3)=(2x)2﹣1﹣(4x2+3x﹣24x﹣18)=4x4﹣1﹣4x2﹣3x+24x+18=21x+17.36.计算:4(x﹣y)2﹣(2x﹣y)(2x+y)【解答】解:4(x﹣y)2﹣(2x﹣y)(2x+y)=4(x2﹣2xy+y2)﹣(4x2﹣y2)=4x2﹣8xy+4y2﹣4x2+y2=5y2﹣8xy.37.计算:(1)3a3b•(﹣2ab)+(﹣3a2b)2(2)(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2.【解答】解:(1)3a3b•(﹣2ab)+(﹣3a2b)2=﹣6a4b2+9a4b2=3a4b2(2)(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2=4x2﹣9﹣4x2+4x+x2﹣4x+4=x2﹣538.计算:(1)(﹣a2)3•4a(2)2x(x+1)+(x+1)2.【解答】解:(1)原式=﹣a6•4a=﹣4a7;(2)原式=2x2+2x+x2+2x+1=3x2+4x+1.39.计算:(a+1)(a﹣3)﹣(a﹣2)2.【解答】解:(a+1)(a﹣3)﹣(a﹣2)2.=a2﹣2a﹣3﹣(a2﹣4a+4)=2a﹣7.40.4(x+1)2﹣(2x+5)(2x﹣5)【解答】解:原式=4x2+8x+4﹣4x2+25=8x+29.。

整式的乘法练习题及答案

整式的乘法练习题及答案

整式的乘法练习题及答案整式的乘法练习题及答案整式的乘法是数学中的基本运算之一,它在代数中起着重要的作用。

通过乘法运算,我们可以将两个或多个整式相乘,得到一个新的整式。

整式的乘法练习题可以帮助我们巩固和提高整式乘法的技巧。

在本文中,我将为大家提供一些整式的乘法练习题及答案,希望能够对大家的学习有所帮助。

1. 将多项式 (3x + 2y)(4x - 5y) 展开并化简。

解答:(3x + 2y)(4x - 5y) = 3x * 4x + 3x * (-5y) + 2y * 4x + 2y * (-5y)= 12x^2 - 15xy + 8xy - 10y^2= 12x^2 - 7xy - 10y^22. 将多项式 (2a - 3b)(a + 4b) 展开并化简。

解答:(2a - 3b)(a + 4b) = 2a * a + 2a * 4b - 3b * a - 3b * 4b= 2a^2 + 8ab - 3ab - 12b^2= 2a^2 + 5ab - 12b^23. 将多项式 (5x - 2)(3x^2 + 4x - 1) 展开并化简。

解答:(5x - 2)(3x^2 + 4x - 1) = 5x * 3x^2 + 5x * 4x - 5x * 1 - 2 * 3x^2 - 2 * 4x + 2= 15x^3 + 20x^2 - 5x - 6x^2 - 8x + 2= 15x^3 + 14x^2 - 13x + 24. 将多项式 (2x^2 + 3x - 4)(x^2 - 2x + 1) 展开并化简。

解答:(2x^2 + 3x - 4)(x^2 - 2x + 1) = 2x^2 * x^2 + 2x^2 * (-2x) + 2x^2 * 1 + 3x * x^2 + 3x * (-2x) + 3x * 1 - 4 * x^2 - 4 * (-2x) - 4 * 1= 2x^4 - 4x^3 + 2x^2 + 3x^3 - 6x^2 + 3x - 4x^2 + 8x - 4= 2x^4 - x^3 - 8x^2 + 11x - 45. 将多项式 (a + b + c)(a + b - c) 展开并化简。

(完整版)整式乘法计算专题训练(含答案)

(完整版)整式乘法计算专题训练(含答案)

整式乘法计算专题训练1、(2a+3b)(3a﹣2b)2、3、(x+2y﹣3)(x+2y+3)4、5x(2x2﹣3x+4)5、6、计算: a3·a5+(-a2)4-3a87、﹣5a2(3ab2﹣6a3)8、计算:(x+1)(x+2)9、(x﹣2)(x2+4)10、2x11、计算:(x﹣1)(x+3)﹣x(x﹣2)12、﹣(﹣a)2•(﹣a)5•(﹣a)313、(﹣)×(﹣)2×(﹣)3;14、(x﹣y)(x2+xy+y2).15、(﹣2xy2)2•(xy)3;16、17、计算:(x+3)(x+4)﹣x(x﹣1)18、(a+2b)(3a﹣b)﹣(2a﹣b)(a+6b)19、3x(x﹣y)﹣(2x﹣y)(x+y)20、(﹣a2)3﹣6a2•a421、(y﹣2)(y+2)﹣(y+3)(y﹣1)22、23、(2x﹣y+1)(2x+y+1)24、25、4(a+2)(a+1)-7(a+3)(a-3)参考答案一、计算题1、(2a+3b)(3a﹣2b)=6a2﹣4ab+9ab﹣6b2=6a2+5ab﹣6b2【点评】此题考查多项式的乘法,关键是根据三角函数、零指数幂和负整数指数幂计算.2、3、(x+2y﹣3)(x+2y+3)=(x+2y)2﹣9=x2+4xy+4y2﹣9;4、【考点】单项式乘多项式.【分析】原式利用单项式乘多项式法则计算即可得到结果.【解答】解:原式=10x3﹣15x2+20x.5、6、——————————6分7、原式=﹣15a3b2+30a5;8、原式=x2+2x+x+2=x2+3x+2;9、(x﹣2)(x2+4)=x3﹣2x2+4x﹣8;10、原式=x2﹣2x+x2+2x=2x2;11、(x﹣1)(x+3)﹣x(x﹣2)=x2+2x﹣3﹣x2+2x=4x﹣3;12、原式=﹣a2•a5•a3=﹣a10;13、原式=(﹣)1+2+3=(﹣)6=;14、(x﹣y)(x2+xy+y2)=x3+x2y+xy2﹣x2y﹣xy2﹣y3=x3﹣y3.【点评】此题主要考查了整式的混合运算,正确掌握运算法则是解题关键.15、(﹣2xy2)2•(xy)3=4x2y4•x3y3=4x5y7;16、17、【考点】整式的混合运算.【分析】直接利用多项式乘以多项式以及单项式乘以多项式运算法则化简求出即可.【解答】解:(x+3)(x+4)﹣x(x﹣1)=x2+7x+12﹣x2+x=8x+12.【点评】此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键. 18、(a+2b)(3a﹣b)﹣(2a﹣b)(a+6b)=3a2﹣ab+6ab﹣2b2﹣2a2﹣12ab+ab+6b2=a2﹣6ab+4b219、原式=3x2﹣3xy﹣2x2﹣xy+y2=x2﹣4xy+y2;20、(﹣a2)3﹣6a2•a4=﹣a6﹣6a6=﹣7a6;21、(y﹣2)(y+2)﹣(y+3)(y﹣1)=y2﹣4﹣y2﹣2y+3=﹣2y﹣1;22、==2a6b5c5;23、(2x﹣y+1)(2x+y+1)=[(2x+1)﹣y][(2x+1)+y]=(2x+1)2﹣y2=4x2+4x+1﹣y2;24、6a3-35a2+13a (25、。

整式乘法计算50题(含解析)

整式乘法计算50题(含解析)

整式乘除50题一、幂的运算1.计算:(1)x n﹣2•x n+2;(n是大于2的整数)(2)﹣(x3)5;(3)[(﹣2)2]3;(4)[(﹣a)3]2.2.若n为正整数且(m n)2=9,求.3.已知x a﹣3=2,x b+4=5,x c+1=10;求a、b、c间的关系.4.已知a n=2,b2n=3,求(a3b4)2n的值.5.计算:(1)﹣()1000×(﹣10)1001+()2013×(﹣3)2014(2)(8)100×(﹣)99×.6.化简:(x+y)5÷(﹣x﹣y)2÷(x+y)7.已知10x=a,10y=b,求103x+3y+103x﹣2y的值.8.己知53x+1÷5x﹣1=252x﹣3,求x的值.9.已知(x2n)2÷(x3n+2÷x3)与﹣x3是同类项,求4n2﹣1的值.10.我们约定:a⊗b=10a÷10b,如4⊗3=104÷103=10.(1)试求:12⊗3和10⊗4的值;(2)试求:21⊗5×103.二、整式乘法计算题11.计算:4xy2•(﹣x2yz3).12.计算:(a3b2)(﹣2a3b3c).13.计算:(3a2)3×b4﹣3(ab2)2×a4.14.计算:(a n•b n+1)3•(ab)n.15.计算:[﹣2a2(x+y)3]•[3a3•b(x+y)2].16.计算:﹣6a2b(x﹣y)3•ab2(y﹣x)2.17.计算:.18.计算:(﹣5x2y3)2•(﹣2x4y2)3•(xy2)4.19.计算:(﹣x3y2)3•(2xy2)2﹣(﹣x4y3)2•x3y4.20.计算:.21.计算:(x﹣2)(x2+4).22.计算:(﹣7x2﹣8y2)(﹣x2+3y2)23.计算:(2x﹣3y﹣1)(﹣2x﹣3y+5).24.计算:(2x﹣x2﹣3)(x3﹣x2﹣2).25.计算:(a﹣b+c﹣d)(c﹣a﹣d﹣b)26.计算:(x+3)(x﹣5)﹣(x﹣3)(x+5)27.计算:5x2﹣(x﹣2)(3x+1)﹣2(x+1)(x﹣5)28.计算:3(2x﹣1)(x+6)﹣5(x﹣3)(x+6)29.计算:(a+b)(a2﹣ab+b2)30.计算:(x﹣y)(x2+xy+y2)三、乘法公式及应用31.化简:(x+1)2﹣(x+2)(x﹣2).32.已知2x+2y=﹣5,求2x2+4xy+2y2﹣7的值.33.已知(a+b)2=17,ab=3.求(a﹣b)2的值.34.已知:x+y=﹣1,xy=﹣12,求x2+y2﹣xy和(x﹣y)2的值.35.已知x+y=2,x2+y2=10,求xy的值.36.已知实数x满足x+=3,则x2+的值为7.37.求代数式5x2﹣4xy+y2+6x+25的最小值.38.已知(a+1)2﹣(3a2+4ab+4b2+2)=0,求a,b的值.39.已知13x2﹣6xy+y2﹣4x+1=0,求(x+y)13•x10的值.40.已知a,b,c为实数,设.证明:A,B,C中至少有一个值大于零.41.计算:2(m+1)2﹣(2m+1)(2m﹣1).42.已知a﹣b=2,b﹣c=2,a+c=14,求a2﹣b2.43.若a=,b=,试不用将分数化小数的方法比较a、b的大小.44.用平方差公式计算:(1)99.8×100.2=(2)40×39=45.计算3001×2999的值.46.计算:(x+y)(x﹣y)(x2+y2)(x4+y4)47.计算:(x+2y)(x﹣2y)(x4﹣8x2y2+16y4)48.计算103×97×10009的值.49.对于算式2(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)+1.(1)计算出算式的结果;(2)结果的个位数字是几?50.计算12﹣22+32﹣42+52+62+…+20002﹣20012.参考答案与试题解析一、幂的运算1.计算:(1)x n﹣2•x n+2;(n是大于2的整数)(2)﹣(x3)5;(3)[(﹣2)2]3;(4)[(﹣a)3]2.解答:解:(1)原式=x n﹣2+n+2=x2n;(2)原式=﹣x15;(3)原式=43=64;(4)原式=a6.2.若n为正整数且(m n)2=9,求.解答:解:∵(m n)2=9,∴m n=±3,∴=m9n×m4n=m13n=(m n)13=±×313=±310.3.已知x a﹣3=2,x b+4=5,x c+1=10;求a、b、c间的关系.解答:解:∵2×5=10,∴x a﹣3×x b+4=x c+1,∴x a+b+1=x c+1,∴a+b=c.4.已知a n=2,b2n=3,求(a3b4)2n的值.解答:解:∵a n=2,b2n=3,∴(a3b4)2n=a6n b8n=(a n)6×(b2n)4=26×34=24×34×22=64×4=5184.5.计算:(1)﹣()1000×(﹣10)1001+()2013×(﹣3)2014(2)(8)100×(﹣)99×.解答:解:(1)原式=(×10)1000×(﹣10)+(×)2013×=﹣10+=﹣;(2)原式=﹣(×)99××=﹣.6.化简:(x+y)5÷(﹣x﹣y)2÷(x+y)解答:解:(x+y)5÷(﹣x﹣y)2÷(x+y)=(x+y)5÷(x+y)2÷(x+y)=(x+y)2.7.已知10x=a,10y=b,求103x+3y+103x﹣2y的值.解答:解:∵10x=a,10y=b,∴103x+3y+103x﹣2y=103x×103y+103x÷102y=a3×b3+a3÷b2=a3b3+=.8.己知53x+1÷5x﹣1=252x﹣3,求x的值.解答:解:原式等价于52x+2=54x﹣62x+2=4x﹣6x=4.故答案为:4.9.已知(x2n)2÷(x3n+2÷x3)与﹣x3是同类项,求4n2﹣1的值.解答:解:(x2n)2÷(x3n+2÷x3)=x n+1,可得x n+1与﹣x3是同类项,即n+1=3,解得:n=2,则原式=16﹣1=15.10.我们约定:a⊗b=10a÷10b,如4⊗3=104÷103=10.(1)试求:12⊗3和10⊗4的值;(2)试求:21⊗5×103.解答:解:(1)∵a⊗b=10a÷10b,如4⊗3=104÷103=10,∴12⊗3=1012÷103=109,10⊗4=1010÷104=106;(2)21⊗5×103=1021÷105×103=1019.二、整式乘法计算题11.计算:4xy2•(﹣x2yz3).解答:解:4xy2•(﹣x2yz3)=﹣x3y3z3.12.计算:(a3b2)(﹣2a3b3c).解答:解:(a3b2)(﹣2a3b3c)=﹣a6b5c.13.计算:(3a2)3×b4﹣3(ab2)2×a4.解答:解:(3a2)3×b4﹣3(ab2)2×a4=27a6×b4﹣3a2b4×a4=27a6b4﹣3a6b4=24a6b4.14.计算:(a n•b n+1)3•(ab)n.解答:解:原式=a3n×b3n+3×a n b n=a3n+n b3n+3+n=a4n b4n+3.15.计算:[﹣2a2(x+y)3]•[3a3•b(x+y)2].解答:解:原式=﹣6a5b(x+y)5.16.计算:﹣6a2b(x﹣y)3•ab2(y﹣x)2.解答:解:原式=﹣6a2b(x﹣y)3•ab2(x﹣y)2=﹣2a3b3(x﹣y)5.17.计算:.解答:解:原式=﹣x4y5.18.计算:(﹣5x2y3)2•(﹣2x4y2)3•(xy2)4.解答:解:原式=25x4y6•(﹣8x12y6)•(x4y8)=﹣x20y20.19.计算:(﹣x3y2)3•(2xy2)2﹣(﹣x4y3)2•x3y4.解答:解:(﹣x3y2)3•(2xy2)2﹣(﹣x4y3)2•x3y4=﹣x9y6•4x2y4﹣x8y6•x3y4=﹣x11y10﹣x11y10=﹣x11y10.20.计算:.解答:解:原式=﹣x4y4z﹣3x4y4z=﹣x4y4z.21.计算:(x﹣2)(x2+4).解答:解:原式=x3+4x﹣2x2﹣8.22.计算:(﹣7x2﹣8y2)(﹣x2+3y2)解答:解:原式=﹣7x2•(﹣x2)+(﹣7x2)•3y2﹣8y2•(﹣x2)﹣8y2•3y2 =7x4﹣21x2y2+8x2y2﹣24y4=7x4﹣13x2y2﹣24y4.23.计算:(2x﹣3y﹣1)(﹣2x﹣3y+5).解答:解:原式=﹣4x2﹣6xy+10x+6xy+9y2﹣15y+2x+3y﹣5=﹣4x2+(﹣6xy+6xy)+(10x+2x)+9y2+(3y﹣15y)﹣5=﹣4x2+12x+9y2﹣12y﹣5.24.计算:(2x﹣x2﹣3)(x3﹣x2﹣2).解答:解:原式=2x4﹣2x3﹣4x﹣x5+x4+2x2﹣3x3+3x2+6=3x4﹣x5﹣5x3++5x2﹣4x+6.25.计算:(a﹣b+c﹣d)(c﹣a﹣d﹣b)解答:解:原式=[(c﹣b﹣d)+a][(c﹣b﹣d)﹣a]=(c﹣b﹣d)2﹣a2=(c﹣b)2﹣2(c﹣b)d+d2﹣a2=c2﹣2cb+b2﹣2cd+2bd+d2﹣a2 26.计算:(x+3)(x﹣5)﹣(x﹣3)(x+5)解答:解:(x+3)(x﹣5)﹣(x﹣3)(x+5)=x2﹣2x﹣15﹣(x2+2x﹣15)=x2﹣2x﹣15﹣x2﹣2x+15=﹣4x.27.计算:5x2﹣(x﹣2)(3x+1)﹣2(x+1)(x﹣5)解答:解:原式=5x2﹣(3x2﹣5x﹣2)﹣2(x2﹣4x﹣5),=5x2﹣3x2+5x+2﹣2x2+8x+10,=13x+12.28.计算:3(2x﹣1)(x+6)﹣5(x﹣3)(x+6)解答:解:3(2x﹣1)(x+6)﹣5(x﹣3)(x+6)=3(2x2+12x﹣x﹣6)﹣5(x2+6x﹣3x﹣18)=6x2+33x﹣18﹣5x2﹣15x+90=x2+18x+7229.计算:(a+b)(a2﹣ab+b2)解答:解:原式=a3+a2b﹣a2b﹣ab2+ab2+b3,=a3+b3.30.计算:(x﹣y)(x2+xy+y2)解答:解:原式=x3+x2y+xy2﹣x2y﹣xy2﹣y3=x3﹣y3.三、乘法公式及应用31.化简:(x+1)2﹣(x+2)(x﹣2).解答:解:原式=x2+2x+1﹣x2+4=2x+5.32.已知2x+2y=﹣5,求2x2+4xy+2y2﹣7的值.解答:解:∵2x+2y=﹣5,∴x+y=,∴2x2+4xy+2y2﹣7=2(x+y)2﹣7,当x+y=时,原式=2×()2﹣7=.33.已知(a+b)2=17,ab=3.求(a﹣b)2的值.解答:解:∵(a+b)2=17,ab=3,∴a2+2ab+b2=17,则a2+b2=17﹣2ab=17﹣6=11,∴(a﹣b)2=a2﹣2ab+b2=11﹣6=5.34.已知:x+y=﹣1,xy=﹣12,求x2+y2﹣xy和(x﹣y)2的值.解答:解:∵x+y=﹣1,xy=﹣12,∴x2+y2﹣xy=(x+y)2﹣3xy=1+36=37;(x﹣y)2=(x+y)2﹣4xy=1+48=49.35.已知x+y=2,x2+y2=10,求xy的值.解答:解:将x+y=2进行平方得,x2+2xy+y2=4,∵x2+y2=10,∴10+2xy=4,解得:xy=﹣3.36.已知实数x满足x+=3,则x2+的值为7.解答:解:由题意得,x+=3,两边平方得:x2+2+=9,故x2+=7.故答案为:7.37.求代数式5x2﹣4xy+y2+6x+25的最小值.解答:解:5x2﹣4xy+y2+6x+25=4x2﹣4xy+y2+x2+6x+9+16=(2x﹣y)2+(x+3)2+16而(2x﹣y)2+(x+3)2≥0,∴代数式5x2﹣4xy+y2+6x+25的最小值是16.38.已知(a+1)2﹣(3a2+4ab+4b2+2)=0,求a,b的值.解答:解:∵(a+1)2﹣(3a2+4ab+4b2+2)=0,∴2a2﹣2a+4b2+4ab+1=0,∴(a﹣1)2+(a+2b)2=0,∴a﹣1=0,a+2b=0,解得a=1,b=﹣.故a=1,b=﹣.39.已知13x2﹣6xy+y2﹣4x+1=0,求(x+y)13•x10的值.解答:解:∵13x2﹣6xy+y2﹣4x+1=0,∴9x2﹣6xy+y2+4x2﹣4x+1=0,即(3x﹣y)2+(2x﹣1)2=0,∴3x﹣y=0,2x﹣1=0,解得x=,y=,当x=,y=时,原式=(+)13•()10=(2×)10×23=8.40.已知a,b,c为实数,设.证明:A,B,C中至少有一个值大于零.解答:证明:由题设有A+B+C=()+()+(),=(a2﹣2a+1)+(b2﹣2b+1)+(c2+2c+1)+π﹣3,=(a﹣1)2+(b﹣1)2+(c+1)2+(π﹣3),∵(a﹣1)2≥0,(b﹣1)2≥0,(c+1)2≥0,π﹣3>0,∴A+B+C>0.若A≤0,B≤0,C≤0,则A+B+C≤0与A+B+C>0不符,∴A,B,C中至少有一个大于零.41.计算:2(m+1)2﹣(2m+1)(2m﹣1).解答:解:2(m+1)2﹣(2m+1)(2m﹣1),=2(m2+2m+1)﹣(4m2﹣1),=2m2+4m+2﹣4m2+1,=﹣2m2+4m+3.42.已知a﹣b=2,b﹣c=2,a+c=14,求a2﹣b2.解答:解:∵b﹣c=2,a+c=14,∴a+b=16,∵a﹣b=2,∴a2﹣b2=(a+b)(a﹣b)=16×2=32.43.若a=,b=,试不用将分数化小数的方法比较a、b的大小.解答:解:∵a==(3分)b=(4分)20082﹣12<20082(5分)∴a<b(6分)说明:求差通分,参考此标准给分.若只写结论a<b,给(1分).44.用平方差公式计算:(1)99.8×100.2=(2)40×39=解答:解:(1)99.8×100.2,=(100﹣0.2)(100+0.2),=1002﹣0.22,=9999.96.(2)40×39,=(40+)(40﹣),=402﹣()2,=1599.45.计算3001×2999的值.解答:解:3001×2999=(3000+1)(3000﹣1)=30002﹣12=8999999.46.计算:(x+y)(x﹣y)(x2+y2)(x4+y4)解答:解:原式=(x2﹣y2))(x2+y2)(x4+y4)=(x4﹣y4)(x4+y4)=x8﹣y8.47.计算:(x+2y)(x﹣2y)(x4﹣8x2y2+16y4)解答:解:原式=(x2﹣4y2)(x2﹣4y2)2=(x2﹣4y2)3=x6﹣12x4y2+48x2y4﹣64y6.48.计算103×97×10009的值.解答:解:103×97×10009,=(100+3)(100﹣3)(10000+9),=(1002﹣9)(1002+9),=1004﹣92,=99999919.49.对于算式2(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)+1.(1)计算出算式的结果;(2)结果的个位数字是几?解答:解:(1)原式=(3﹣1)×(3+1)×(32+1)×(34+1)×(38+1)×(316+1)×(332+1)+1 =(32﹣1)×(32+1)×(34+1)×(38+1)×(316+1)×(332+1)+1=(34﹣1)×(34+1)×(38+1)×(316+1)×(332+1)+1=(332﹣1)×(332+1)+1=364;②∵31=3,32=9,33=27,34=8135=243,36=729,…∴每3个数一循环,∵64÷3=21…1,∴364的个位数字是3.50.计算12﹣22+32﹣42+52+62+…+20002﹣20012.解答:解:原式=﹣[(20012﹣20002)+(19992﹣19982)+…+(62﹣52)+(42﹣32)+(22﹣12)] =﹣[(2001+2000)×1+(1999+1998)×1+…+(6+5)×1+(4+3)+(2+1)×1]=﹣(2001+2000+1999+1998+…+6+5+4+3+2+1)=﹣2003001.。

(完整版)整式的乘法100题专项训练

(完整版)整式的乘法100题专项训练

7整式的乘法300题专项训练同底数幕的乘法:底数不变,指(次)数相加。

公式:a m - a n =a m+n1填空:⑺ (b a)3 (b a)4 _______________ ; x n x 2 ________ ;6(8) ( 1)2 1: 106 104 _________________________________3 32、简单计算:(1)a 4 a 6 (2)b b 5(3) m m 2 m3(4) c c 3 c 5 c 9计算:(1) b 3 b 2(2)( a) a 3 (3) (y)2 ( y)3(4)( a)3 ( a)4 (5)34 32(6)( 5)7 ( 5)6(7) (q)2n (q)3(8)(4 2m) ( m)(9)23(10) (2)4 ( 2)54.下面的计算对不对?如果不对,应怎样改正?325336(1) 3 5x x2 ; a a3a;n 2x x(2)23(a ) ( a)b 2 b 3 b2x6=x ;(3)(3x) x;104102小3 ;3 337⑷a 43a a =;22 3 2 5 :2a5a______ ; ( 1)a 2 a 3=______ ;(6) a 2 ( a) ( a)6 3m ?m ?(3) y n2n2y ;(4) m m2m2(5) ( a)2 ( a2) a4;(6) a3 a4a12 (1) 2 3 6 ; (2) a a a ;三、积的乘方:等于把积的每一个因式分别乘方,再把所得的幕相乘.(ab )n =a n b n1、填空:二、幕的乘方:幕的乘方,底数不变, 1、填空:指数相乘•即:(a m )n=a mn(1)((5)22)=22)=_(m 7)(4) (6)(33)2=—(22门一m 5(m 3)3=2、计算:(1) (22) 2;(2) (y 2)5(3)/ 4、 3(X )3(4)( b m)(4)(y 3)2?(y 2)3(5)a ?(5 a) ?( 4a)⑹ 23(3)( 2a 2b )=(2a 2b 4〕3 2(4) (xy )=n(5)(ab)n(6)(abc)3(n 为正整数)(7) ( 1 a 2b 3)333(8) ( ab) a b---------------- (9) ( 3x 2y 「——3(9)(a^)3(a 2nb )= -------------------(10)( x 2y 3)/3 2、2(x y )2 3 4(1) __________________ ( 2x ) = ________ ( ab ) ___________ = (ac ) . =2 2(2)(-2x ) 3-------- = -------------------------------( 2a 2) = ------ (a 4)=2、计算:232 23 3(1) (3a )(2) (- 3a )(3) (ab )(4) (-2x 10)四、整式的乘法1、单项式乘单项式1、( 3x2) • 2x 3C 3鼻 42、3a • 4a鼻 5^23、4m • 3m2 3 24、(5a b) ( 3a)2 55、x • x • x6、( 3x) • 2xy3、选择题:(1)下列计算中,错误的是( )2A , 2 3 4 6A (a b ) a bB2 2 244(3x 2y ) 9xy3C( x y ) x3y D3 2 2 6(m 3n 2) mn(2)下面的计算正确的是 ( )235235Am ?m mBm m m325 2m _ nmnC(m n) m nD2 ?2 2(5) (103) 3⑹(a 3) 7 (7) (x 2) 4; (8) (a 2)? 3 ? a,2小27、4a • 3a28、 ( 5a b) • ( 3a)9、3x • 3x 510、4b 3c • - abc 3 2 11、2x 3 • ( 3x) 212、4y • ( 2xy )13、( 3x 2y) • (1xy 2)314、(2 104) • ( 4 105) 15、7x 4 • 2x 33 , ,2「3 2、16、3a b • ( 4a b c )仃、19、x 2 • y 2( xy 3)2322221 3 3 336、4xy • ( 5x y ) • ( 2x y) 37、( 2x y) • ( xyz) • x z2538、( ^xyz) • - x 2y 2 • ( 3yz 3)39、 6m 2n • (x y)3 • (y x)22 3 52 3 2 .318、(5a b) • ( ab c)3 219、 ( 2a) • ( 3a) 4 220、 5m • ( 10m )m n , m n21、 3x • 4x2 322、(3x y) • ( 4x)21 223、4ab • ( - a e)82 224、( 5ax) • (3x y)2 4 2 2 25、( m a b ) • ( mab ),52 , 、326、4x y • 2x ( y) z3 3 2 227、( 3a be) • ( 2ab )28、( -ab) • ( 3ab)233 229、(2x) • ( 5xy )3 4、32 230、( 2x y ) ( x ye)31、4xy 2 • ( 3x 2yz 3)83 . 2 232、( 2ab e) • (2x)2 3 2 3 3 33> ( 3a b ) •( 2ab e),3 3, 2、,c 1 3 3 x34、(严)(2孑^)2 2 21 335、(4x y)・(x y)・(尹)1(严 c)•(13 3(-ab)•(1 abc 32)31 ab) 4G a3)2 2 2(8a b )(4x 2y) • ( x 2y 2) • 1 y 321 2 2 3 341、、 2xy • ( - x y z) • ( 3x y )2231 2243、6a b • (x y) • ab • (y x)3单项式乘多项式: (利用乘法分配率,转变为单项式乘单项式,然后把结果相加 2m(3x 4y)2、 3、x(x 2x 1) 1 ab(ab 2 2 4、2a(3a 2b 1) 2 3x(x 2x 1)6、4x(3x y)7、ab(a b) 8、6x(2x 1)x(x 1) 10、3a(5a 2b) 11、 3x(2 x 5)212、 2x (x扌)2 3 2 3a (a b 2a) 14、(x 3y)( 6x)15、x(x 2y 2 xy) 16、(4a b 2)( 2b)(3x 1)( 2x 2) 18、( 2a) • Qa 3 1)419、( — x 2)(2 x 3x 2 1)240、 42、 44、 _ 、 1、 5、 9、 13、 17、20、(-ab2 2ab) • -ab 3 22 221、4m( 3m n 5mn ) 22、( 3ab)(2a2b ab 2)26、2x(x2 x 1) 27、2x • (—x21)2 28、3x(- x2-)3 332、2x2y(13xy y)22 2 233、3xy(3x y 4xy )2 234、3ab(a b ab ab)40、x(x 1) 2x(x 1) 3x(2x 5)2X、524-9a2423、5ab • (2 a b 0.2)229、4a (2 a 3a 1)2 230、( 3x )( x 2x 1)5 丿、31、xy(x y 1)2 235、ab (2a 3ab 2a) 36、1 2 2 2 3严仲3ab 9b) 37、(2x 4x8)(1、x)32 x (3x 5x 6)339、(—a43 2 2 13b c 6ac )•严三、多项式乘多项式:(转化为单项式乘多项式,然后在转化为单项式乘单项式) 1、(3x 1)(x 2)2、(x 8y)(x y)3、(x 1)(x 5)4、(2x 1)(x 3)2 25、(m 2n)(m 3n)6、(a 3b)(a 3b)7、(2x 21)(x 4) 8、(x 3)(2x 5)9、(x 2)(x 3) 10、(x 4)(x 1) 11、(y 4)( y 2) 12、(y 5)(y 3)11 13、(x p)(x q)14、(x 6)(x 3)15、(x )(x) 16、(3x 2)(x 2)2341、a(b c) b(c a) c(a b)42、(3x 2 2y |y2)(-xy)343、(-x 2y22xy2y ) • ( 4xy)5 2 10 32 43、(5a 2b ®a 3b 21)( -ab) 3 3 544、、(-x 2y22xy y 2)( 4xy)17、(4y 1)(y 5) 218、(x 2)(x 4) 19、(x 4)( x 8) 20、(x 4)(x 9)21、(x 2)( x 18) 22、(x 3)(x p) 23、(x 6)(x p) 24、(x 7)(x 5)25、(x 1)(x 5)1 126、(y3)(y 2)27、(a 2b)(3a b) 28、(t 3)(2t 3)29、(4x25xy)(2x y) 30、(y 3)(3y 4) 31、(x 3)( x 2) 32、(2 a b)(a 2b) 33、(2x 3)(x 3) 34、(x 3)(x a) 35、(x 1)(x 3) 36、(a 2)(b 2)37、(3x 2y)(2x 3y) 38、(x 6)(x 1) 39、(x 3y)(3x 4y) 40、( x 2)(x 1) 41、(2x 3y)(3x 2y) 42、(1 x x2)(x 21) 43、(a b)(a ab b2)44、(3x2 2x 1)(2x2 3x 1) 45、(a b)(a2 ab『)46、(x2 xy y2)(x y)47、(x a)(x2ax a2) 48、(x y)(x2xy y2) 49、(3x43x21)(x4x22)50、(x y)(x2 xy y2)四、平方差公式和完全平方公式1、(x 1)(x 1)2、(2x 1)(2x 1)3、(x 5y)(x 5y)4、(3x 2)(3x 2)5、(b 2a)(2a b)6、( x 2y)( x 2y)7、(a b)( b a)8、( a b)(a b)5 2 5 29、(3a 2b)(3a 2b) 10、(a b )(a b ) 11、(2a 5)(2a 5)12、(1 m)( 1 m)13、( -a b)(-a b) 14、( ab 2)(2 ab) 15、102 98 16、97 1032 2217、 47 53 18、(a b)(a2 2b)(a b )19、(3a2b)(3a 2b)20、 (7m 11n)(11 n 7m) 21、(2y x)( x2y)22、(4 a)( 4 a)23、 (2a 5)(2a 5) 24、 (3a b)(3a b)25、 (2x y)(2xy)完全平方:1、(p 1)2 (p 1)2 3、(a b)24、(a b)225、(m 2)6、 (m 2)2 27、(4 m n)8、(y 1)29、 / C \ 2(x 3y)10、2b)211、 (a 1)2a212、 (5x 2y)13、2(2 a b)14、(- x y)2215、2(2 a 3b)16、 2(3x 2y)17、( 2m n)218、2 (2 a 2c)219、 ( 2 3a)20、gx 3y)221、 (3a 2b)/ 2 ■ 2、222、( a b )23、 (2x 23y)224、(1 xy)225、2 2 2(1 x y )五、同底数幕的除法:底数不变,指数相减。

整式的乘法专题训练

整式的乘法专题训练

整式的乘法专题训练题目一:(2x)(3x)解析:根据单项式乘以单项式法则,系数相乘,字母部分按同底数幂相乘,结果为6x²。

题目二:(-3a²b)(4ab²)解析:系数相乘为-12,同底数幂相乘,a 的次数为2+1 = 3,b 的次数为1+2 = 3,结果是-12a³b³。

题目三:(2x²y)(-3xy³)解析:系数相乘为-6,x 的次数为2+1 = 3,y 的次数为1+3 = 4,答案是-6x³y⁴。

题目四:(5m²n)(-2m³n²)解析:系数相乘为-10,m 的次数为2+3 = 5,n 的次数为1+2 = 3,结果是-10m⁴n³。

题目五:(3x)(x² - 2x + 1)解析:用3x 分别乘以括号里的每一项,3x·x² = 3x³,3x·(-2x) = -6x²,3x·1 = 3x,结果为3x³ - 6x² + 3x。

题目六:(2x - 1)(x + 3)解析:用2x 乘以(x + 3)得2x² + 6x,再用-1 乘以(x + 3)得-x - 3,最后相加,2x² + 6x - x - 3 = 2x² + 5x - 3。

题目七:(x - 2)(x² + 3x - 1)解析:x 乘以(x² + 3x - 1)得x³ + 3x² - x,-2 乘以(x² + 3x - 1)得-2x² - 6x + 2,相加得x³ + 3x² - x - 2x² - 6x + 2 = x³ + x² - 7x + 2。

题目八:(3x + 2)(2x² - 5x + 1)解析:3x 乘以(2x² - 5x + 1)得6x³ - 15x² + 3x,2 乘以(2x² - 5x + 1)得4x² -10x + 2,相加得6x³ - 15x² + 3x + 4x² - 10x + 2 = 6x³ - 11x² - 7x + 2。

整式的乘法100题专项训练

整式的乘法100题专项训练

整式的乘法300题专项训练同底数幕的乘法:底数不变,指(次)数相加。

公式:a m a n=a m+n 1、填空:2 3;(1) a aa) ( a)6 3 4 5 2;m ?m ?m ?m(7) (b a)3 (b a)4__________ ;x n x2_____ ;61.2 1 6 4(8) ( -) - ;10 103 32. 简单计算:(1) a4 a6(3) m m2 m33. 计算:(1) b3 b2(3)( y)2 ( y)3(5) 34 32(7) ( q)2n ( q)3(9)234. 下面的计算对不对?如果不对,(1) 23 3265;(2) b b5(4) c c3 c5 c9(2) ( a) a3(4) ( a)3 ( a)4(6) ( 5)7 ( 5)6(8) ( m)4 ( m)2(10) ( 2)4 ( 2)5应怎样改正?3 3 6(2) a a a ;(1) 3 5x x ; a a 2 3a n 2; x x ;(2)(a2) ( a)3b2b3 b 2 x6 =x ;(3)( x)2 x3;10410 ;3 32 337⑷a 4 3a a = 2 2 3 2 5一;2a 5 3a a7学习帮手、幕的乘方:幕的乘方,底数不变,指数相乘.即:(a m ) n =a mn1、填空:3(b m )2(X 3)2?X乘.(ab)n =a n b n1、填空:(1)( 22)=(2)( 33)=⑶( 22“(4)(22“ (5)(m 7)7 =(6)m (m 3)4232、计算:n n 2n(3) y y 2y ; (4) m m 2 m 2; (5) ( a)2 ( a 2) a 4 ;(6) a 3 a 4a 12(1)(22) 2;(2) (y 2)5 (3)(x 4) 3(4)( y 3)2? (y 2) 35(5)a ?( a) ?(4a)(6)积的乘方:等于把积的每一个因式分别乘方,再把所得的幕相(1) ________________ ( 2x ) 2= _________ (ab ) 3 = _________ (ac j . =3n 24 2(2) --------------------------------- (-2x )3 = ---------------------- _ 2a 2) = a 4)=-32(3) --------------------------------------------------------------------- ( 2a 2b )=——(2a 2b 4)= -------------------------------------n(4)( xy 3) 2= _________ 5)(ab) ________33 3(8)( ab) a b3(9)(a n b 3n )— 2 3 3(10)( x 2y 3)—(9) ( 3x 2y)3(a 2n b )=x 3y 2)2、计算:3、选择题:(1)下列计算中,错误的是()n(6)(abc) _________ (n 为正整数) (1)(3a ) 2(一 3a )(3)( ab 2) 2 (4)(-2 X 103) 3(7)( x 2) 4;(8) (a 2)? 3 ? a 52 2 2 4 4B (3x2y2) 9xy3 2 2 6 4D ( m3n2) mn)2 3 m ?m3 2 (mn)5m5 2m n m n mn2 ?2 2四、整式的乘法1、单项式乘单项式2 31、( 3x2) 2x32、3a3 4a43、4m5 3m24、2 3 2 (5a2b)3 ( 3a)2x2 x x56、( 3x) 2xy 2 27、4a 3a 8、( 25a b) ( 3a)9、3x 3x510、4b3c 丄 abc 11、2x3 ( 3x)212、22 4y ( 2xy )13、( 3x2y) (-xy2)34 514、(2 10 ) ( 4 10 )15、4^37x 2x(a2b3)2(2 )下面的计算正确的是(16、3a4b3 ( 4a2b3c2) 2 2 ,3、217、19、x y ( xy )18、3 2 3(5a b) ( ab c) 3 219、( 2 a) ( 3a)4 220、5m ( 10m )21、m n3x ‘ m n4x 2 322、(3x y) ( 4x)1 223、4ab ( - a c)824、(5ax) (3x2y)2 2 4 2 225、( m a b ) ( mab ),5^2/ 、326、4x y 2x ( y) z27、3 3 2 24 2(3a bc) ( 2ab ) 28、( -ab) ( 3ab)33 2.29、(2 x) ( 5xy )3 2 232、( 2ab c) (2x)34、3,2、2,230、( 2x y ) ( x yc) 31、4xy3 238xyz)2 3 2 3 333、 ( 3a b ) - ( 2ab c)3 3 2 1 3 3 x亠34 、( a b )( 2 abc) 35 、7 3(4x 2y)( x 2y 2) (£y 3)22 3 2 236、4xy ( 5x y ) ( 2x y)2 237、( 2x y)1xyz)也 2 538、 |x 2y 2 ( |yz 3)3 52 3 239、 6m n (x y) (y x)1 2 240、(严|abc 2)3 £ a 3)41、2xy (2 23 3 .x y z) ( 3x y )13 31 2 2 242、( —ab 3)3 ( - ab) ( 8a b )2 42312 243、6a b (x y) • ab (y x)32 2 244、( 4x y) ( x y )二、单项式乘多项式 :(利用乘法分配率 ,转变为单项式乘单项式 ,然后把结果相加减) 1、2m(3x 4y)1 1 2、 ab(ab )2 23、x(x 2x 1)4、2a(3a 2 2b 1)25、3x(x 2x 1)6、4x(3x y)7、ab(a b)8、6x(2 x 1)9、x(x 1) 10、3a(5a 2b) 11、3x(2 x 5)12、2x2(x 丄)22 3 213、3a (a b 2a) 14、(x 3y)( 6x)2 2 215、x(x y xy) 16、(4a b )( 2b)17、( 3x 1)( 2x2) 18、( 2a) (-a31)4, 3 2、— 3 2 八19、( x )(2 x x 1)220、(2ab2 2ab) 1 ab3 22 221、4m( 3m n 5mn )222、( 3ab)(2a b ab 2)23、5ab (2a b 0.2) 24、(2a2-a -) ( 9a)3 9225、3x(2 x 5x 1),235、ab (2a 23ab 2a) 36 、?a 2b 32 2• (6a 3ab 9b )37(2x 4x 38)(12、 2x)26、 2x(x x 1)27、2x(r 21)28、3x(- x 22) 33229、 4a(2a 3a 1)2 230、(3x)( x 2x 1)2 531、xy(x y 1)32、2x 2y(1 3xy y)22 2 233、 3xy(3x y 4xy )2 234、3ab(a b ab ab)38、2X3(3X2 5x 6) 39、(3a‘43b2c 6ac2)1ab340、X(X 1) 2X(X 1) 3X(2X 5)41、a(b c) b(c a) c(a b) 21 2 2 1 3 42、(3x y ^y )( ^xy)43、』x2y2 2xy2y ) ( 4xy) 43、(5a2b310a 3b211)( :ab)544、(gx2y 2xy y2)( 4xy)三、多项式乘多项式:(转化为单项式乘多项式,然后在转化为单项式乘单项式 )1、(3x 1)(x 2)2、(x 8y)(x y)3、(x 1)(x 5)4、(2x 1)(x 3)5、(m 2n)(m 3n)6、(a 3b)(a 3b)7、(2x2 1)(x 4)8、(x2 3)(2x 5)9、(x 2)(x 3) 10、(x 4)(x 1) 11、(y 4)( y 2) 12、(y 5)(y 3)1 113、(x p)(x q) 14、(x 6)(x 3) 15、(x )(x ) 16、(3x 2)(x 2)2 3217、(4y 1)(y 5) 18、(x 2)(x 4) 19、(x 4)(x 8) 20、(x 4)(x 9)21、(x 2)(x 18) 22、(x 3)(x p) 23、(x 6)(x p) 24、(x 7)(x 5)1 127、(a 2b)(3a b) 28、25、(x 1)(x 5) 26、(y -)(y -)3 2(t 3)(2t 3)29、(4x25xy)(2x y) 30、(y 3)(3y 4) 31、(x 3)(x 2) 32、(2 a b)(a 2b)33、(2x 3)(x 3)34、(x 3)(x a) 35、(x 1)(x 3) 36、(a 2)(b 2)37、(3x 2y)(2x 3y) 38、(x 6)(x 1)(x 2)(x 1)44、(3x 2 2x 1)(2x 2 3x 1) 45、(a b)(a 2 ab b 2)46、(x 2 xy y 2)(x y)39、 (x 3y)(3x 4y)40、41、(2x 3y)(3x 2y)42、(1 x x 2)(x 1)243、(a b)(aab b 2)49学习帮手(a b)(a b)2 2 47、 (x a)(x ax a )2 248、 (x y)(x xy y )(3x 4 3x 2 1)(x 4 x 2 2)50、(x y)(x 2 xy y 2)四、平方差公式和完全平方公式 1、(x 1)(x 1)2、(2x 1)(2x 1)3、(x 5y)(x 5y)4、(3x2)(3x 2)5、(b 2a)(2a b)6、 ( x 2y)( x 2y) 7、 (a b)(b a) 8、5 2 5 29、(3a 2b)(3a 2b) 10、(a b )(a b ) 11、(2a 5)(2a 5) 12、(1 m)( 1 m)13、( 2a b)(^a b)14、( ab 2)(2 ab) 15、102 98 16、97 1032 217、47 53 2 218、(a b)(a b)(a b ) 19、(3a 2b)(3a 2b)20、( 7m 11n)(11n 7m) 21、(2y x)( x 2y) 22、(4 a)( 4 a)(m 2)22 21 2 2 26、(m 2)7、(4m n) 8、(y )9、(x 3y) 10、( a 2b)21 22 21 211、 (a )12、(5x 2y) 13、 (2a b) 14、 (一 x y) 15、a2(2 a 3b)223、(2a 5)(2a 5) 24、(3a b)(3a b) 25、(2x y)(2x y)2完全平方:1、(p 1)2 22、(p 1)3、(a b)4、(a b)22 218、(2 a 2c) 19、( 2 3a)20、(|x 3y)22 2 2 2 2 221、(3a 2b) 22、( a b ) 23、( 2x 3y)6 2 8(1)a a (2)( b) ( b) “、4 “ 、2 ,、小15 小13⑶(ab) (ab) (4) 3 3(1 2 2、2x y )五、同底数幕的除法底数不变,指数相减。

整式的乘法公式练习题

整式的乘法公式练习题

整式的乘法公式练习题在代数学中,整式的乘法是一项基本的运算,它在解决各种代数问题中起着重要的作用。

本文将为大家提供一些整式的乘法公式练习题,通过练习巩固并加深对整式乘法的理解。

练习题一:将下列整式相乘,并将结果化简。

1. (2x + 3)(x + 4)解析:首先使用分配律,将前一项的每个项与后一项的每个项相乘:= 2x * (x + 4) + 3 * (x + 4)接下来使用分配律将每个相乘得到的结果进行合并并化简:= 2x^2 + 8x + 3x + 12最终结果为:2x^2 + 11x + 122. (3x - 5)(2x + 7)解析:同样地,使用分配律将每个项相乘:= 3x * (2x + 7) - 5 * (2x + 7)然后合并并化简结果:= 6x^2 + 21x - 10x - 35最终结果为:6x^2 + 11x - 35练习题二:将下列整式相乘,并将结果化简。

1. (a + 5)(a - 2)解析:使用分配律将每一项相乘:= a * (a - 2) + 5 * (a - 2)合并并化简结果:= a^2 - 2a + 5a - 10最终结果为:a^2 + 3a - 102. (2x + 3)(2x - 3)解析:应用分配律进行乘法运算:= 2x * (2x - 3) + 3 * (2x - 3)合并并化简结果:= 4x^2 - 6x + 6x - 9最终结果为:4x^2 - 9练习题三:将下列整式相乘,并将结果化简。

1. (3a - 2b)(4a + 5b)解析:通过使用分配律进行乘法运算:= 3a * (4a + 5b) - 2b * (4a + 5b)合并并化简结果:= 12a^2 + 15ab - 8ab - 10b^2最终结果为:12a^2 + 7ab - 10b^2 2. (2x - 3y)(x + 4y)解析:使用分配律将每一项相乘:= 2x * (x + 4y) - 3y * (x + 4y)合并并化简结果:= 2x^2 + 8xy - 3xy - 12y^2最终结果为:2x^2 + 5xy - 12y^2通过以上的练习题,我们可以对整式乘法公式进行更好的掌握。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

-----精品文档------
8、
A. C.
()
B. D.
9.计算
,结果正确的是( )
A.
B.
C.
D.
-----精品文档------
10.计算
A. C.
11、若
A. C.
12、
,结果正确的是( )
B. D.
,则M为( ).
B. D.
-----精品文档------
13、如下图所示,图①是一个边长为(m+n)的正方形,小颖将图①中的
配套专题练习:
1.已知 a2 b2 12,且 ab3 , 那么代数式
(a b)2 的值是_________
2、已知 xy)22,(5 xy)29 ,
则 x2 y2
的值_________。
-----精品文档------
3.已知x﹣ =1,则x2+ =
4.已知:
x25x10 ,计算:
x2
1 x2
基础练习:
1.计算
的结果是( )
A.
B.
C.
D.
2.计算:
3、
-----精品文档------
4、
5、2a-b-3c=2a+( )=2a-( );
6、–a+b-c=-a+( )=-( )-c.
7.在下列多项式的乘法中,可以用平方差公式计算的是( )
A.(x+1)(1+x)
C.(-a+b)(a-b)
B.(12 a+b)(b-12 a) D.(x2-y)(x+y2)
-----精品文档------
专题 二、整体思想
例6.已知 m 2 n 2 6 m 1n 0 3 4 0
则 mn =
-----精品文档------
配套练习2:
1.若x2+y2+4x-6y+13=0,x,y均为有理数,则 x y 是多少?
2.已知 a 2 b 2 2 a 4 b 5 0,求 2a2 4b3
阴影部分拼成图②的形状,由图①和图②能验证的式子是( )
A.(m+n)2-(m-n)2=4mn B.(m+n)2-(m2+n2)=2mn C.(m-n)2+2mn=m2+n2 D.(m+n)(m-n)=m2+n2
14.计算:(2a+b
3
)2-(
b 3
-4a)2
-----精品文档------
15.先化简,再求值:
A.
B.
C.
D.
-----精品文档------
4.若x2+2xy+y2﹣a(x+y)+25是完全平方式,求a的值.
5.若
是一个完全平方式,则k=
6.多项式
加上一个单项式后能成为一个整式的完
全平方, 请你写出符合条件的这个单项式是____.
7、 已知ax2-6x+1=(ax+b)2,则a= ,b= ; 8、 已知x2+2(m-3)x+16是完全平方式,则m= _______
-----精品文档------
专题四:乘法公式拓展应用
【例7】运用乘法公式计算
(1)(3a-2b+c)(-3a-2b-c)
(2)(a+b-2c)2
-----精品文档------
配套练习:
-----精品文档------
25.如图,在边长为8的等边三角形ABC中,点D沿射线AB方向由A向B 运动,点F同时从C出发,以相同的速度每秒1个单位长度沿射线BC方向 运动,过点D作DE⊥AC,连结DF交射线AC于点G. (1)当DF⊥AB时,求AD的长; (2)求证:EG= AC. (3)点D从A出发,经过几秒,CG=1.6?直接写出你的结论.
-----精品文档------
【例3】已知a+ 1 =3,则
a
1x2,求:( 1)a2a12;(2)a4a14;(3)a1 a
-----精品文档------
【例4】已知x+y=4,xy=-3,求x2-3xy+y2的值. 【例5】.已知(a+b)2=9,ab=2,那么a2+ b2= _____。
-----精品文档------
-----精品文档------
-----精品文档------
3.已知(x+y)2﹣2x﹣2y+1=0,则x+y=
4.若x2+2xy+y2﹣a(x+y)+25是完全平方式,求a的值.
5、若

-----精品文档------
专题 三、完全平方公式
1.如果
是一个完全平方公式,那么a的值是___
2.若一个多项式的平方的结果为
,则m=
3.下列多项式不是完全平方式的是( )
xy2xyxy 2x ,其中x=3,y=1
-----精品文档------
16、先化简,再求值:
a a 2 a 1 a 1
,其中 a 3 2
-----精品文档------
. 专题 一、整体思想(公式变形)
【例1】.已知:
,求下列式子的值:
【例2】.已知a+b=10,ab=24,则a2+b2的值是_________
相关文档
最新文档