九年级数学竞赛专题讲座 二次函数的最值问题(含答案)
北师大版数学九年级下册第二章二次函数综合探究——最值问题及存在性问题课时对应练习(Word版含答案)

第13课时二次函数综合探究——最值问题及存在性问题1.已知抛物线y1=﹣x2+mx+n,直线y2=kx+b,y1的对称轴与y2交于点A(﹣1,5),点A与y1的顶点B的距离是4.(1)求y1的解析式;(2)若y2随着x的增大而增大,且y1与y2都经过x轴上的同一点,求y2的解析式.2.如图,已知抛物线y=ax2+bx+c(a≠0)经过点A(1,0)、B(3,0)、C(0,3).(1)试求出抛物线的解析式;(2)问:在抛物线的对称轴上是否存在一个点Q,使得△QAC的周长最小,试求出△QAC 的周长的最小值,并求出点Q的坐标;(3)现有一个动点P从抛物线的顶点T出发,在对称轴上以1个单位长度每秒的速度向y 轴的正方向运动,试问,经过几秒后,△P AC是等腰三角形?3.如图,抛物线y=x2﹣2x﹣3与直线y=﹣x+b交于A,C两点,与x轴交于点A,B.点P为直线AC下方抛物线上的一个动点(不包括点A和点C),过点P作PN⊥AB交AC与点M,垂足为N,连接AP,CP.设点P的横坐标为m.(1)求b的值;(2)用含m的代数式表示线段PM的长并写出m的取值范围;(3)求△P AC的面积S关于m的函数解析式,并求使得△APC面积最大时,点P的坐标;(4)直接写出当△CMP为等腰三角形时点P的坐标.4.已知抛物线y=﹣mx2+4x+2m与x轴交于点A(α,0),B(β,0),且1α+1β=−2,(1)求抛物线的解析式.(2)抛物线的对称轴为l,与y轴的交点为C,顶点为D,点C关于l的对称点为E,是否存在x轴上的点M,y轴上的点N,使四边形DNME的周长最小?若存在,请画出图形(保留作图痕迹),并求出周长的最小值;若不存在,请说明理由.(3)若点P在抛物线上,点Q在x轴上,当以点D、E、P、Q为顶点的四边形是平行四边形时,求点P的坐标.5.如图,抛物线y=ax2+bx+4与x轴交于A(﹣2,0),D两点,与y轴交于点C,对称轴x=3交x轴交于点B.(1)求抛物线的解析式.(2)点M是x轴上方抛物线上一动点,过点M作MN⊥x轴于点N,交直线BC于点E.设点M的横坐标为m,用含m的代数式表示线段ME的长,并求出线段ME长的最大值.(3)若点P在y轴的正半轴上,连接P A,过点P作P A垂线,交抛物线的对称轴于点Q.是否存在点P,使以点P、A、Q为顶点的三角形与△BAQ全等?若存在,直接写出点P的坐标;若不存在,请说明理由.6.(2019•广州)已知抛物线G :y =mx 2﹣2mx ﹣3有最低点.(1)求二次函数y =mx 2﹣2mx ﹣3的最小值(用含m 的式子表示);(2)将抛物线G 向右平移m 个单位得到抛物线G 1.经过探究发现,随着m 的变化,抛物线G 1顶点的纵坐标y 与横坐标x 之间存在一个函数关系,求这个函数关系式,并写出自变量x 的取值范围;(3)记(2)所求的函数为H ,抛物线G 与函数H 的图象交于点P ,结合图象,求点P 的纵坐标的取值范围.7.已知抛物线y =mx 2+(1﹣2m )x +1﹣3m 与x 轴相交于不同的两点A 、B(1)求m 的取值范围;(2)证明该抛物线一定经过非坐标轴上的一点P ,并求出点P 的坐标;(3)当14<m ≤8时,由(2)求出的点P 和点A ,B 构成的△ABP 的面积是否有最值?若有,求出该最值及相对应的m 值.8.已知O 为坐标原点,抛物线y 1=ax 2+bx +c (a ≠0)与x 轴相交于点A (x 1,0),B (x 2,0),与y 轴交于点C ,且O ,C 两点间的距离为3,x 1•x 2<0,|x 1|+|x 2|=4,点A ,C 在直线y 2=﹣3x +t 上.(1)求点C 的坐标;(2)当y 1随着x 的增大而增大时,求自变量x 的取值范围;(3)将抛物线y 1向左平移n (n >0)个单位,记平移后y 随着x 的增大而增大的部分为P ,直线y 2向下平移n 个单位,当平移后的直线与P 有公共点时,求2n 2﹣5n 的最小值.【参考答案】1.(1)∵抛物线y 1=﹣x 2+mx +n ,直线y 2=kx +b ,y 1的对称轴与y 2交于点A (﹣1,5),点A 与y 1的顶点B 的距离是4.∴B (﹣1,1)或(﹣1,9),∴−m 2×(−1)=−1,4×(−1)n−m 24×(−1)=1或9, 解得m =﹣2,n =0或8,∴y 1的解析式为y 1=﹣x 2﹣2x 或y 1=﹣x 2﹣2x +8;(2)①当y 1的解析式为y 1=﹣x 2﹣2x 时,抛物线与x 轴交点是(0,0)和(﹣2,0), ∵y 1的对称轴与y 2交于点A (﹣1,5),∴y 1与y 2都经过x 轴上的同一点(﹣2,0),把(﹣1,5),(﹣2,0)代入得{−k +b =5−2k +b =0, 解得{k =5b =10, ∴y 2=5x +10.②当y 1=﹣x 2﹣2x +8时,解﹣x 2﹣2x +8=0得x =﹣4或2,∵y 2随着x 的增大而增大,且过点A (﹣1,5),∴y 1与y 2都经过x 轴上的同一点(﹣4,0),把(﹣1,5),(﹣4,0)代入得{−k +b =5−4k +b =0, 解得{k =53b =203; ∴y 2=53x +203.2.(1)∵抛物线y =ax 2+bx +c (a ≠0)经过点A (1,0)、B (3,0)、C (0,3),∴把此三点代入得{a +b +c =09a +3b +c =0c =3,解得{a =1b =−4c =3,故抛物线的解析式为,y =x 2﹣4x +3;(2)点A 关于对称轴的对称点即为点B ,连接B 、C ,交x =2于点Q ,可得直线BC:y=﹣x+3,与对称轴交点Q(2,1),BC=3√2,可得△QAC周长为√10+3√2.(3)设t秒后△P AC是等腰三角形,因为P在对称轴上,所以P点坐标为(2,t﹣1)于是①当P A=CA时;根据勾股定理得:(2﹣1)2+(t﹣1)2=12+32;解得t=4秒或t=﹣2秒(负值舍去).②PC=P A时;根据勾股定理得:22+(t﹣4)2=(2﹣1)2+(t﹣1)2;解得t=3秒;③CP=CA时;根据勾股定理得:22+(t﹣4)2=12+32;解得t=(4+√6)秒或t=(4−√6)秒所以经过4秒,或3秒,或4+√6秒,或4−√6秒时,△P AC是等腰三角形.3.(1)令x2﹣2x﹣3=0,解得:x1=﹣1,x2=3,即A=(﹣1,0),B(3,0),把A(﹣1,0)代入y=﹣x+b,得b=﹣1,则一次函数解析式为y=﹣x﹣1;(2)把x=m代入抛物线解析式得:y=m2﹣2m﹣3,把x=m代入直线解析式得:y=﹣m﹣1,∴NP=﹣(m2﹣2m﹣3),MN=﹣(﹣m﹣1),∴MP=NP﹣NM=﹣(m2﹣2m﹣3)+(﹣m﹣1)=﹣m2+m+2,m 的取值范围是﹣1<m <2;(3)过点作CE ⊥AB 于点E ,则S △APC =S △AMP +S △CMP =12MP •AN +12MP •NE =12MP •AE =−32m 2+32m +3, ∵﹣1<0,开口向下,∴当m =−b 2a =12时,S △APC 面积最大,此时P (12,−154);(4)分三种情况:①当P 为抛物线顶点时,此时MC =PC ,△CMP 为等腰三角形,P 点坐标为P 1(1,﹣4);②当P 为C 关于抛物线对称轴对称的点时,此时MP =MC 时,△CMP 为等腰三角形,∵点C (2,﹣3),对称轴为:x =1,∴点P 坐标为P 2(0,﹣3);③当P 为MC 的垂直平分线上点时,此时PM =PC ,△CMP 为等腰三角形,P 3(√2−1,2﹣4√2).4.(1)由题意可得:α,β是方程﹣mx 2+4x +2m =0的两根,由根与系数的关系可得, α+β=4m ,αβ=﹣2,∵1α+1β=−2,∴α+βαβ=−2,即4m −2=−2,解得:m=1,故抛物线解析式为:y=﹣x2+4x+2;(2)存在x轴上的点M,y轴上的点N,使得四边形DNME的周长最小,∵y=﹣x2+4x+2=﹣(x﹣2)2+6,∴抛物线的对称轴l为x=2,顶点D的坐标为:(2,6),又∵抛物线与y轴交点C的坐标为:(0,2),点E与点C关于l对称,∴E点坐标为:(4,2),作点D关于y轴的对称点D′,点E关于x轴的对称点E′,则D′的坐标为;(﹣2,6),E′坐标为:(4,﹣2),连接D′E′,交x轴于M,交y轴于N,此时,四边形DNME的周长最小为:D′E′+DE,如图1所示:延长E′E,′D交于一点F,在Rt△D′E′F中,D′F=6,E′F=8,则D′E′=√D′F2+E′F2=√62+82=10,设对称轴l与CE交于点G,在Rt△DGE中,DG=4,EG=2,∴DE=√DG2+EG2=√42+22=2√5,∴四边形DNME的周长最小值为:10+2√5;(3)如图2,P为抛物线上的点,过点P作PH⊥x轴,垂足为H,若以点D、E、P、Q为顶点的四边形为平行四边形,则△PHQ≌△DGE,∴PH=DG=4,∴|y|=4,∴当y=4时,﹣x2+4x+2=4,解得:x1=2+√2,x2=2−√2,当y=﹣4时,﹣x2+4x+2=﹣4,解得:x3=2+√10,x4=2−√10,无法得出以DE为对角线的平行四边形,故P点的坐标为;(2−√2,4),(2+√2,4),(2−√10,﹣4),(2+√10,﹣4).5.(1)由题意得,点D 的坐标为(8,0),把点A 、D 的坐标代入y =ax 2+bx +4{4a −2b +4=064a +8b +4=0, 解{a =−14b =32. 故抛物线解析式为y =−14x 2+32x +4.(2)由题意,点C ,点B 坐标分别为(0,4),(3,0),则直线CB 解析式y =−43x +4,点M 坐标为(m ,−14m 2+32m +4),点E 坐标为(m ,−43m +4),①当﹣2<m ≤0时,ME =−43m +4﹣(−14m 2+32m +4)=14m 2−176m , m =﹣2时,ME =203,由二次函数性质可知,ME <203;②当0<m <8时,ME =−14m 2+32m +4﹣(−43m +4)=14m 2−176m =−14(m −173)2+28936 当m =173时,ME 取得最大值,最大值为28936. 综上所述,当﹣2<m ≤0时,ME =14m 2−176m ,当0<m <8时,ME =−14m 2+176m .当m =173时,ME 取得最大值,最大值为28936. (3)存在,∵P A ⊥PQ ,BQ ⊥x 轴∴∠APQ =∠ABQ =90°,∴△APQ 和△ABQ 中.点P 和点B 是对应点,∵以点P 、A 、Q 为顶点的三角形与△BAQ 全等,只有两种情况:设点P (0,c ),Q (3,n )(c >0),∴AB =5,BQ =n ,P A =√4+c 2,PQ =√9+(c −n)2,①△P AQ ≌△BAQ ,∴P A =BA ,PQ =BQ ,∴√4+c 2=5,√9+(c −n)2=n ,∴c =√21或c =−√21(舍),∴P (0,√21),②△PQA ≌△BAQ ,∴P A =BQ ,PQ =AB ,∴√4+c 2=n ,√9+(c −n)2=5,∴c 1=32,n 1=−52或c 2=−32,n 2=52(舍)故点P 坐标为P 1(0,√21),P 2(0,32). 6.(1)∵y =mx 2﹣2mx ﹣3=m (x ﹣1)2﹣m ﹣3,抛物线有最低点 ∴二次函数y =mx 2﹣2mx ﹣3的最小值为﹣m ﹣3(2)∵抛物线G :y =m (x ﹣1)2﹣m ﹣3∴平移后的抛物线G 1:y =m (x ﹣1﹣m )2﹣m ﹣3∴抛物线G 1顶点坐标为(m +1,﹣m ﹣3)∴x =m +1,y =﹣m ﹣3∴x +y =m +1﹣m ﹣3=﹣2即x +y =﹣2,变形得y =﹣x ﹣2∵m >0,m =x ﹣1∴x ﹣1>0∴x >1∴y 与x 的函数关系式为y =﹣x ﹣2(x >1)(3)法一:如图,函数H :y =﹣x ﹣2(x >1)图象为射线x =1时,y =﹣1﹣2=﹣3;x =2时,y =﹣2﹣2=﹣4∴函数H 的图象恒过点B (2,﹣4)∵抛物线G :y =m (x ﹣1)2﹣m ﹣3x =1时,y =﹣m ﹣3;x =2时,y =m ﹣m ﹣3=﹣3∴抛物线G 恒过点A (2,﹣3)由图象可知,若抛物线与函数H 的图象有交点P ,则y B <y P <y A ∴点P 纵坐标的取值范围为﹣4<y P <﹣3法二:{y =−x −2y =mx 2−2mx −3整理的:m (x 2﹣2x )=1﹣x∵x >1,且x =2时,方程为0=﹣1不成立∴x ≠2,即x 2﹣2x =x (x ﹣2)≠0∴m =1−x x(x−2)>0∵x >1∴1﹣x<0∴x(x﹣2)<0∴x﹣2<0∴x<2即1<x<2∵y P=﹣x﹣2∴﹣4<y P<﹣37.(1)解:当m=0时,函数为一次函数,不符合题意,舍去;当m≠0时,∵抛物线y=mx2+(1﹣2m)x+1﹣3m与x轴相交于不同的两点A、B,∴△=(1﹣2m)2﹣4×m×(1﹣3m)=(1﹣4m)2>0,∴1﹣4m≠0,∴m≠1 4,∴m的取值范围为m≠0且m≠1 4;(2)证明:∵抛物线y=mx2+(1﹣2m)x+1﹣3m,∴y=m(x2﹣2x﹣3)+x+1,抛物线过定点说明在这一点y与m无关,显然当x2﹣2x﹣3=0时,y与m无关,解得:x=3或x=﹣1,当x=3时,y=4,定点坐标为(3,4);当x=﹣1时,y=0,定点坐标为(﹣1,0),∵P不在坐标轴上,∴P(3,4);(3)解:|AB|=|x A﹣x B|=√b2−4ac|a|=√(1−2m)2−4m(1−3m)|m|=√1−4m+4m2−4m+12m2m2=√(1−4m)2m2=|1−4mm|=|1m−4|,∵14<m ≤8, ∴18≤1m <4, ∴−318≤1m−4<0, ∴0<|1m−4|≤318, ∴|AB |最大时,|1m−4|=318, 解得:m =8,或m =863(舍去),∴当m =8时,|AB |有最大值318,此时△ABP 的面积最大,没有最小值,则面积最大为:12|AB |y P =12×318×4=314. 8.(1)令x =0,则y =c ,故C (0,c ),∵OC 的距离为3,∴|c |=3,即c =±3,∴C (0,3)或(0,﹣3);(2)∵x 1x 2<0,∴x 1,x 2异号,①若C (0,3),即c =3,把C (0,3)代入y 2=﹣3x +t ,则0+t =3,即t =3, ∴y 2=﹣3x +3,把A (x 1,0)代入y 2=﹣3x +3,则﹣3x 1+3=0, 即x 1=1,∴A (1,0),∵x 1,x 2异号,x 1=1>0,∴x 2<0,∵|x 1|+|x 2|=4,∴1﹣x 2=4,解得:x 2=﹣3,则B (﹣3,0),代入y 1=ax 2+bx +3得,{a +b +3=09a −3b +3=0, 解得:{a =−1b =−2,∴y 1=﹣x 2﹣2x +3=﹣(x +1)2+4,则当x ≤﹣1时,y 随x 增大而增大.②若C (0,﹣3),即c =﹣3,把C (0,﹣3)代入y 2=﹣3x +t ,则0+t =﹣3,即t =﹣3, ∴y 2=﹣3x ﹣3,把A (x 1,0),代入y 2=﹣3x ﹣3,则﹣3x 1﹣3=0,即x 1=﹣1,∴A (﹣1,0),∵x 1,x 2异号,x 1=﹣1<0,∴x 2>0∵|x 1|+|x 2|=4,∴1+x 2=4,解得:x 2=3,则B (3,0),代入y 1=ax 2+bx ﹣3得,{a −b −3=09a +3b −3=0, 解得:{a =1b =−2, ∴y 1=x 2﹣2x ﹣3=(x ﹣1)2﹣4,则当x ≥1时,y 随x 增大而增大,综上所述,若c =3,当y 随x 增大而增大时,x ≤﹣1; 若c =﹣3,当y 随x 增大而增大时,x ≥1;(3)①若c =3,则y 1=﹣x 2﹣2x +3=﹣(x +1)2+4,y 2=﹣3x +3, y 1向左平移n 个单位后,则解析式为:y 3=﹣(x +1+n )2+4, 则当x ≤﹣1﹣n 时,y 随x 增大而增大,y 2向下平移n 个单位后,则解析式为:y 4=﹣3x +3﹣n , 要使平移后直线与P 有公共点,则当x =﹣1﹣n ,y 3≥y 4, 即﹣(﹣1﹣n +1+n )2+4≥﹣3(﹣1﹣n )+3﹣n , 解得:n ≤﹣1,∵n >0,∴n ≤﹣1不符合条件,应舍去;②若c =﹣3,则y 1=x 2﹣2x ﹣3=(x ﹣1)2﹣4,y 2=﹣3x ﹣3, y 1向左平移n 个单位后,则解析式为:y 3=(x ﹣1+n )2﹣4, 则当x ≥1﹣n 时,y 随x 增大而增大,y 2向下平移n 个单位后,则解析式为:y 4=﹣3x ﹣3﹣n , 要使平移后直线与P 有公共点,则当x =1﹣n ,y 3≤y 4,即(1﹣n﹣1+n)2﹣4≤﹣3(1﹣n)﹣3﹣n,解得:n≥1,综上所述:n≥1,2n2﹣5n=2(n−54)2−258,∴当n=54时,2n2﹣5n的最小值为:−258.。
初中数学竞赛:最值问题求法应用举例[附答案]
![初中数学竞赛:最值问题求法应用举例[附答案]](https://img.taocdn.com/s3/m/9093e0372af90242a895e5b2.png)
最值问题求法例题(1)、若实数a ,b ,c 满足a2 + b2+ c2= 9,则代数式(a - b)2 + (b —c)2 +(c - a)2的最大值是()A.27 B、 18 C、15 D、 12例题(2)、如果对于不小于8的自然数N ,当3N+1是一个完全平方数时,N + 1都能表示成K个完全平方数的和,那么K的最小值是()A、 1B、 2C、 3D、 4例题(3)、设a、b为实数,那么a2+ab+b2-a-2b的最小值是——————————。
例题(4)、已知实数a、b满足a2+ab+b2=1 ,则a2-ab+b2的最小值和最大值的和是————————。
例题5、若a、b满足3a+5∣b∣= 7 ,则S= 2a-3∣b∣的最大值为-------------------,最小值为--------------------。
(二)、直接运用a 2+b 2≥ 2ab ( a +b ≥ 2ab )性质求最值。
例题(6)、若X > 0,则函数Y =3X +31X+21++XX 的最小值。
例题(7)、已知 a 、b 、c 、d 均为实数,且a +b +c +d = 4 ,a 2+b 2+c 2+d 2 =316,求a 的最小值与最大值。
(三)、用一元二次方程根的判别式Δ=b 2-4ac (结合韦达定理)求最值。
例题(8)、已知实数a 、b 、c 满足a +b +c = 2 ,abc = 4 ,○1求a 、b 、c 中最大者的最小值 ;○2求∣a ∣+∣b ∣+∣c ∣的最小值。
例题(9)、求函数Y = 12156322++++X X X X 的最小值。
(四)、用绝对值的几何意义和取零点、分段讨论法求最值。
例题(10)、a b c d e是一个五位自然数,其中a ,b ,c ,d ,e 为阿拉伯数字,且a<b<c<d ,则│a-b │+│b-c │+│c -d │+│d -e │的最大值是 ———。
部编数学九年级下册专项10二次函数和线段和差最值问题(解析版)含答案

专项10 二次函数和线段和差最值问题“将军饮马”问题主要利用构造对称图形解决求两条线段和差、三角形周长、四边形周长等一类最值问题,会与直线、角、三角形、四边形、圆、抛物线等图形结合,在近年的中考和竞赛中经常出现,而且大多以压轴题的形式出现。
“两点定点一定长”模型一:当两定点 A、B 在直线l异侧时,在直线l上找一点 P,使 PA+PB 最小。
作法:连接AB交直线l 于点 P,点P即为所求作的点。
结论:PA+PB值最小模型二:作法:作点B关于直线l的对称点B’,连接AB’与直线l相交的点P即为所求结论:AP+PB’值最小模型三:PA-最大。
当两定点 A、B 在直线l同侧时,在直线l上找一点 P,使PB作法:接 AB并延长交直线l于点 P,点P即为所求作的点。
PA-的最大值为 AB。
结论:PBPA-最大。
当 l 两B定点 A、B 在直线l 异侧时,在直线l 上找一点 P,使PB作法:作点B关于直线l的对称点B′,连接AB′并延长交直线于点 P,点P即为所求作的点。
PA-的最大值为AB′结论:PB模型四:当 l 两定点 A、B 在直线l同侧时,在直线l上找一点 P,使PBPA-最小。
作法:连接 AB,作AB的垂直平分线交直线l于点 P,点 P 即为所求作的点。
PA-的最小值为 0结论:PB【考点1 线段最值问题】【典例1】(盘锦)如图,在平面直角坐标系中,抛物线y=ax2+bx+4交y轴于点C,交x 轴于A、B两点,A(﹣2,0),a+b=,点M是抛物线上的动点,点M在顶点和B点之间运动(不包括顶点和B点),ME∥y轴,交直线BC于点E.(1)求抛物线的解析式;(2)求线段ME的最大值;【解答】解:(1)将点A的坐标代入抛物线表达式得:0=4a﹣2b+4,则,解得:,故抛物线的表达式为:y=﹣x2+x+4;(2)y=﹣x2+x+4,令x=0,则y=4,令y=0,则x=4或﹣2,故点A、B、C的坐标分别为:(﹣2,0)、(4,0)、(0,4),设直线BC的表达式为:y=kx+b,则,解得:,故直线BC的表达式为:y=﹣x+4,设点M(x,﹣x2+x+4),则点E(x,﹣x+4),则ME=(﹣x2+x+4)﹣(x﹣4)=﹣x2+2x,∵,故ME有最大值,当x=2时,ME的最大值为2;【变式1-1】(2021•柳南区校级模拟)如图,已知二次函数图象的顶点坐标为C(1,0),直线y=x+m与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在轴y上.(1)求m的值及这个二次函数的关系式;(2)P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于点E点,设线段PE的长为h,点P的横坐标为x.①求h与x之间的函数关系式,并写出自变量x的取值范围;②线段PE的长h是否存在最大值?若存在,求出它的最大值及此时的x值;若不存在,请说明理由?【解答】解:(1)∵点A(3,4)在直线y=x+m上,∴4=3+m.∴m=1.设所求二次函数的关系式为y=a(x﹣1)2.∵点A(3,4)在二次函数y=a(x﹣1)2的图象上,∴4=a(3﹣1)2,∴a=1.∴所求二次函数的关系式为y=(x﹣1)2.即y=x2﹣2x+1.(2)①设P、E两点的纵坐标分别为y P和y E.∴PE=h=y P﹣y E=(x+1)﹣(x2﹣2x+1)=﹣x2+3x.即h=﹣x2+3x(0<x<3).②存在.∵h=﹣(x﹣)2+,又∵a=﹣1<0,∴x=时,h的值最大,最大值为.【变式1-2】(2022春•丰城市校级期末)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).(1)求这个二次函数的表达式;(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点M,连接PC.求线段PM的最大值;【解答】解:(1)将A,B,C代入函数解析式得,,解得,∴这个二次函数的表达式y=x2﹣2x﹣3;(2)设BC的解析式为y=kx+b,将B,C的坐标代入函数解析式得,,解得,∴BC的解析式为y=x﹣3,设M(n,n﹣3),P(n,n2﹣2n﹣3),PM=(n﹣3)﹣(n2﹣2n﹣3)=﹣n2+3n=﹣(n﹣)2+,=,当n=时,PM最大∴线段PM的最大值;【典例2】(2020秋•椒江区校级月考)如图,已知抛物线y=ax2+bx+3(a≠0)经过点A (1,0)和点B(3,0),与y轴交于点C.(1)求此抛物线的解析式;(2)若点T为对称轴直线x=2上一点,则TC﹣TB的最大值为多少?【解答】解:(1)设抛物线的表达式为y=a(x﹣x1)(x﹣x2)=a(x﹣1)(x﹣3)=a(x2﹣4x+3)=ax2+bx+3,解得a=1,故抛物线的表达式为y=x2﹣4x+3①;(2)点B关于函数对称轴的对称点为点A,连接CA交函数对称轴于点T,则点T为所求点,则TC﹣TB=TC﹣TA=AC为最大,故TC﹣TB的最大值为AC==,故答案为;【变式2】(2020•连云港)在平面直角坐标系xOy中,把与x轴交点相同的二次函数图象称为“共根抛物线”.如图,抛物线L1:y=x2﹣x﹣2的顶点为D,交x轴于点A、B(点A在点B左侧),交y轴于点C.抛物线L2与L1是“共根抛物线”,其顶点为P.(1)若抛物线L2经过点(2,﹣12),求L2对应的函数表达式;(2)当BP﹣CP的值最大时,求点P的坐标;【解答】解:(1)当y=0时,x2﹣x﹣2=0,解得x=﹣1或4,∴A(﹣1,0),B(4,0),C(0,﹣2),由题意设抛物线L2的解析式为y=a(x+1)(x﹣4),把(2,﹣12)代入y=a(x+1)(x﹣4),﹣12=﹣6a,解得a=2,∴抛物线的解析式为y=2(x+1)(x﹣4)=2x2﹣6x﹣8.(2)∵抛物线L2与L1是“共根抛物线”,A(﹣1,0),B(4,0),∴抛物线L1,L2的对称轴是直线x=,∴点P在直线x=上,∴BP=AP,如图1中,当A,C,P共线时,BP﹣PC的值最大,此时点P为直线AC与直线x=的交点,∵直线AC的解析式为y=﹣2x﹣2,∴P(,﹣5)【典例3】(2022•澄海区模拟)如图,抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C,点A的坐标为(﹣1,0),点C坐标为(0,3),对称轴为x=1.点M为线段OB上的一个动点(不与两端点重合),过点M作PM⊥x轴,交抛物线于点P,交BC 于点Q.(1)求抛物线及直线BC的表达式;(2)过点P作PN⊥BC,垂足为点N.求线段PN的最大值;【解答】解:(1)∵抛物线对称轴为x=1,点B与A(﹣1,0)关于直线x=1对称,∴B(3,0),设y=a(x﹣3)(x+1),把C(0,3)代入得:﹣3a=3,解得:a=﹣1,∴y=﹣(x﹣3)(x+1)=﹣x2+2x+3,设直线BC的解析式为y=kx+d,则,解得:,∴直线BC的解析式为y=﹣x+3,故抛物线解析式为y=﹣x2+2x+3,直线BC的解析式为y=﹣x+3;(2)设P(t,﹣t2+2t+3),则Q(t,﹣t+3),∴PQ=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t,∵OB=OC=3,∠BOC=90°,∴∠BCO=45°,∵PQ⊥x轴,∴PQ∥y轴,∴∠PQN=∠BCO=45°,∵PN⊥BC,∴PN=PQ•sin∠PQN=(﹣t2+3t)•sin45°=﹣(t﹣)2+,∵<0,∴当t=时,PN的最大值为;【变式3】(2022•广元)在平面直角坐标系中,直线y=﹣x﹣2与x轴交于点A,与y轴交于点B,抛物线y=ax2+bx+c(a>0)经过A,B两点,并与x轴的正半轴交于点C.(1)求a,b满足的关系式及c的值;(2)当a=1时,若点Q是直线AB下方抛物线上的一个动点,过点Q作QD⊥AB于点D,当QD的值最大时,求此时点Q的坐标及QD的最大值.【解答】解:(1)直线y=﹣x﹣2中,当x=0时,y=﹣2,∴B(0,﹣2),当y=0时,﹣x﹣2=0,∴x=﹣2,∴A(﹣2,0),将A(﹣2,0),B(0,﹣2)代入抛物线y=ax2+bx+c(a>0)中,得,,∴2a﹣b=1,c=﹣2;(2)当a=1时,2×1﹣b=1,∴b=1,∴y=x2+x﹣2,∴A(﹣2,0),B(0,﹣2),C(1,0),∴OA=OB,∴△AOB是等腰直角三角形,∴∠OAB=45°,如图2,过点Q作QF⊥x轴于F,交AB于E,则△EQD是等腰直角三角形,设Q(m,m2+m﹣2),则E(m,﹣m﹣2),∴QE=(﹣m﹣2)﹣(m2+m﹣2)=﹣m2﹣2m=﹣(m+1)2+1,∴QD=QE=﹣(m+1)2+,当m=﹣1时,QD有最大值是,当m=﹣1时,y=1﹣1﹣2=﹣2,综上,点Q的坐标为(﹣1,﹣2)时,QD有最大值是.【考点2 线段和最小】【典例4】(2019秋•东莞市校级期末)已知,抛物线y=ax2+bx+c,过A(﹣1,0)、B (3,0)、C(0,﹣3),M为顶点.(1)求抛物线的解析式;(2)在该抛物线的对称轴上找一点P,使得PA+PC的值最小,并求出P的坐标;【解答】解:(1)设抛物线解析式为y=a(x+1)(x﹣3),把C(0,﹣3)代入得a×(0+1)×(0﹣3)=﹣3,解得a=1,∴抛物线解析式为y=(x+1)(x﹣3),即y=x2﹣2x﹣3;(2)抛物线的对称轴为直线x=1,点A与点B关于直线x=1对称,连接BC交直线x=1于P点,则PA=PB,∵PA+PC=PB+PC=BC,∴此时PA+PC的值最小,设直线BC的解析式为y=mx+n,把B(3,0),C(0,﹣3)代入得,解得,∴直线BC的解析式为y=x﹣3,当x=1时,y=x﹣3=﹣2,则满足条件的P点坐标为(1,﹣2);【变式4-1】(2019•赤峰)如图,直线y=﹣x+3与x轴、y轴分别交于B、C两点,抛物线y=﹣x2+bx+c经过点B、C,与x轴另一交点为A,顶点为D.(1)求抛物线的解析式;(2)在x轴上找一点E,使EC+ED的值最小,求EC+ED的最小值;【解答】解:(1)直线y=﹣x+3与x轴、y轴分别交于B、C两点,则点B、C的坐标分别为(3,0)、(0,3),将点B、C的坐标代入二次函数表达式得:,解得:,故函数的表达式为:y=﹣x2+2x+3,令y=0,则x=﹣1或3,故点A(﹣1,0);(2)如图1中,作点C关于x轴的对称点C′,连接CD′交x轴于点E,则此时EC+ED 为最小,函数顶点D坐标为(1,4),点C′(0,﹣3),将C′、D的坐标代入一次函数表达式并解得:直线C′D的表达式为:y=7x﹣3,当y=0时,x=,故点E(,0),则EC+ED的最小值为DC′=;【变式4-2】(2016•黑龙江二模)如图,抛物线y=x2+bx﹣2与x轴交于A、B两点,与y轴交于C点,且A(﹣1,0).(1)求抛物线的解析式及顶点D的坐标;(2)点M(m,0)是x轴上的一个动点,当CM+DM的值最小时,求m的值.【解答】解:(1)∵点A(﹣1,0)在抛物线y=x2+bx﹣2上,∴×(﹣1)2+b×(﹣1)﹣2=0,解得:b=﹣,∴抛物线的解析式为:y=x2﹣x﹣2.∵y=x2﹣x﹣2=(x2﹣3x﹣4 )=,∴顶点D的坐标为(,﹣).(2)设点C关于x轴的对称点为C′,直线C′D的解析式为y=kx+n,则,解得:.∴y=﹣x+2.∴当y=0时,﹣x+2=0,解得:x=.∴m=.【典例5】(2022•恩施州模拟)如图1,已知抛物线.点A(﹣1,2)在抛物线的对称轴上,是抛物线与y轴的交点,D为抛物线上一动点,过点D 作x轴的垂线,垂足为点C.(1)直接写出h,k的值;(2)如图1,若点D的坐标为(3,m),点Q为y轴上一动点,直线QK与抛物线对称轴垂直,垂足为点K.探求DK+KQ+QC的值是否存在最小值,若存在,求出这个最小值及点Q的坐标;若不存在,请说明理由;【解答】解:(1)∵点A(﹣1,2)在抛物线的对称轴上,∴抛物线的对称轴为直线x=﹣1,∴h=1,∴y=(x+1)2+k,∵是抛物线与y轴的交点,∴+k=,∴k=1;(2)存在最小值,理由如下:由(1)可知y=(x+1)2+1,作C点关于直线x=﹣的对称点C',连接C'D交抛物线对称轴于点K,连接CQ,由对称性可知C'K=CQ,∴CQ+KQ+KD=C'K+KD+KQ≥C'D+KQ,当C'、K、D三点共线时,CQ+KQ+KD的值最小,∵抛物线的对称轴为直线x=﹣1,∴KQ=1,∵D(3,5),CD⊥x轴,∵C(3,0),∴C'(﹣4,0),∴C'D=,∴CQ+KQ+KD的最小值为+1,设直线C'D的解析式为y=kx+b,∴,解得,∴y=x+,∴K(﹣1,),∴Q(0,);【变式5】(2022•桂林)如图,抛物线y=﹣x2+3x+4与x轴交于A,B两点(点A位于点B 的左侧),与y轴交于C点,抛物线的对称轴l与x轴交于点N,长为1的线段PQ(点P位于点Q的上方)在x轴上方的抛物线对称轴上运动.(1)直接写出A,B,C三点的坐标;(2)求CP+PQ+QB的最小值;【解答】解:(1)在y=﹣x2+3x+4中,令x=0得y=4,令y=0得x=﹣1或x=4,∴A(﹣1,0),B(4,0),C(0,4);(2)将C(0,4)向下平移至C',使CC'=PQ,连接BC'交抛物线的对称轴l于Q,如图:∵CC'=PQ,CC'∥PQ,∴四边形CC'QP是平行四边形,∴CP=C'Q,∴CP+PQ+BQ=C'Q+PQ+BQ=BC'+PQ,∵B,Q,C'共线,∴此时CP+PQ+BQ最小,最小值为BC'+PQ的值,∵C(0,4),CC'=PQ=1,∴C'(0,3),∵B(4,0),∴BC'==5,∴BC'+PQ=5+1=6,∴CP+PQ+BQ最小值为6;【考点3 周长最值问题】【典例6】(2020春•五华区校级期末)如图,抛物线y=x2+bx﹣3与x轴交于A,B两点,与y轴交于C点,且A(﹣1,0).(1)求抛物线的解析式及顶点D的坐标;(2)点M是对称轴上的一个动点,当△ACM的周长最小时,求点M的坐标.【解答】解:(1)∵点A(﹣1,0)在抛物线y=x2+bx﹣3上,∴b=﹣2,∴抛物线解析式y=x2﹣2x﹣3,∵抛物线y=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点D的坐标(1,﹣4);(2)对于y=x2﹣2x﹣3,当x=0时,y=﹣3,∴C(0,﹣3),当y=0时,0=x2﹣2x﹣3,解得:x=3或﹣1,∴B(3,0),由抛物线的性质可知:点A和B是对称点,∴连接BC交函数的对称轴于点M,此时AM+CM=BC为最小值,而BC的长度是常数,故此时△ACM的周长最小,设直线BC的表达式为y=mx+n,则,解得,故直线BC的表达式为y=x﹣3,当x=1时,y=﹣2,故点M(1,﹣2).【变式6-1】(2021•富拉尔基区模拟)如图,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C.(1)求抛物线解析式;(2)若M是抛物线对称轴上的一点,则△ACM周长的最小值为多少?【解答】解:(1)∵抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),∴,解得,∴抛物线解析式为y=﹣x2﹣2x+3;(2)∵△ACM周长的值最小,∴MC+AM的值最小,即点M即为直线BC与抛物线对称轴的交点,∴△ACM周长的最小值为BC+AC,∵点B(﹣3,0),C(0,3),∴BC==3,AC==,∴△ACM周长的最小值为,故答案为:;【变式6-2】(2022•齐河县模拟)如图1,抛物线y=ax2+bx+3过A(1,0)、B(3,0)两点,交y轴于点C.(1)求抛物线的函数解析式;(2)在抛物线的对称轴上是否存在点M,使△ACM的周长最小?若存在,求出△ACM 周长的最小值;若不存在,请说明理由.(3)如图2,连接BC,抛物线上是否存在一点P,使得∠BCP=∠ACB?若存在,求出点P的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线y=ax2+bx+3过A(1,0)、B(3,0)两点,∴方程ax2+bx+3=0的两根为x=1或x=3,∴1+3=﹣,1×3=,∴a=1,b=﹣4,∴二次函数解析式是y=x2﹣4x+3;(2)∵二次函数解析式是y=x2﹣4x+3,∴抛物线的对称轴为直线x=2,C(0,3).∵点A、B关于对称轴对称,∴点M为BC与对称轴的交点时,MA+MC=BC的值最小.设直线BC的解析式为y=kx+t(k≠0),则,解得:.∴直线BC的解析式为y=﹣x+3.∵抛物线的对称轴为直线x=2.∴当x=2时,y=1.∴抛物线对称轴上存在点M(2,1)符合题意,∵A(1,0)、B(3,0),C(0,3).∴AC==,BC==3,∴AC+BC=+3,∴在抛物线的对称轴上存在点M,使△ACM的周长最小,△ACM周长的最小值为+3;【典例7】(2022春•衡阳期中)如图,直线y=﹣x+3与x轴交于点A,与y轴交于点B,抛物线y=ax2+x+c经过A、B两点.(1)求二次函数解析式;(2)如图1,点E在线段AB上方的抛物线上运动(不与A、B重合),过点E作ED⊥AB,交AB于点D,作EF⊥AC,交AC于点F,交AB于点M,求△DEM的周长的最大值;【解答】解:(1)∵直线y=﹣x+3与x轴交于点A,与y轴交于点B,∴A(4,0),B(0,3).∵抛物线y=ax2+x+c经过A、B两点,∴,解得.∴二次函数的解析式为:y=﹣x2+x+3.(2)∵A(4,0),B(0,3).∴OA=4,OB=3,∴AB=5.∵ED⊥AB,∴∠EDM=∠AOB=90°,∵∠DEM+∠EMD=∠FMA+∠BAO=90°,∠FMA=∠EMD,∴∠DEM=∠BAO,∴△AOB∽△EDM,∴AO:OB:AB=ED:DM:EM=4:3:5,设E的横坐标为t,则E(t,﹣t2+t+3),∴M(t,﹣t+3),∴EM=﹣t2+t+3﹣(﹣t+3)=﹣t2+t.∴△DEM的周长为:ED+DM+EM=EM=﹣(t﹣2)2+,∴当t=2时,△DEM的周长的最大值为.【变式7】(2022春•北碚区校级期中)如图,在平面直角坐标系中,抛物线C1:y=ax2+bx+2交x轴于A、B两点(点A在点B的左侧),交y轴于点C,一次函数y=﹣x﹣1交抛物线于A,D两点,其中点D(3,﹣4).(1)求抛物线C1的解析式;(2)点G为抛物线上一点,且在线段BC上方,过点G作GH∥y轴交BC于H,交x 轴于点N,作GM⊥BC于点M,求△GHM周长的最大值;【解答】解:(1)∵一次函数y=﹣x﹣1交抛物线于A点,且点A在x轴上,∴A(﹣1,0);将A(﹣1,0)和D(3,﹣4)代入抛物线C1:y=ax2+bx+2,∴,解得,∴抛物线C1:y=﹣x2+x+2.(2)由(1)知抛物线C1:y=﹣x2+x+2.令y=0,解得x=﹣1或x=2,∴B(2,0);令x=0,则y=2,∴C(0,2).∴OB=OC=2,直线BC的解析式为:y=﹣x+2;∴△OBC是等腰直角三角形,且∠OBC=∠OCB=45°;∵GH∥y轴,∴∠GNB=90°,∴∠BHN=45°,∵GM⊥BC,∴∠GMH=90°,∵∠MGH=∠GHM=45°,∴GM=MH=GH;设点G的横坐标为t,则G(t,﹣t2+t+2),H(t,﹣t+2),∴GH=﹣t2+2t=﹣(t﹣1)2+1.∵﹣1<0,∴当t=1时,GH有最大值1;∵△GHM的周长为:GM+MH+GH=(+1)GH,∴△GHM周长的最大值为+1.1.(2022春•丰城市校级期末)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A (﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).(1)求这个二次函数的表达式;(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点M,连接PC.求线段PM的最大值;【解答】解:(1)将A,B,C代入函数解析式得,,解得,∴这个二次函数的表达式y=x2﹣2x﹣3;(2)①设BC的解析式为y=kx+b,将B,C的坐标代入函数解析式得,,解得,∴BC的解析式为y=x﹣3,设M(n,n﹣3),P(n,n2﹣2n﹣3),PM=(n﹣3)﹣(n2﹣2n﹣3)=﹣n2+3n=﹣(n﹣)2+,=,当n=时,PM最大∴线段PM的最大值;2.(2022•宁远县模拟)如图,抛物线y=x2+bx+c与x轴交于A,B两点,其中点A的坐标为(﹣3,0),与y轴交于点C,点D(﹣2,﹣3)在抛物线上.(1)求抛物线的解析式;(2)抛物线的对称轴上有一动点P,求出PA+PD的最小值;【解答】解:(1)∴二次函数y=x2+bx+c的图象经过A(﹣3,0),D(﹣2,﹣3),∴,解得:.∴二次函数解析式为y=x2+2x﹣3;(2)∵抛物线y=x2+2x﹣3的对称轴x=﹣=﹣1,D(﹣2,﹣3),C(0,﹣3),∴C、D关于抛物线的对称轴x=﹣1对称,连接AC与对称轴的交点就是点P,此时PA+PD=PA+PC=AC===3.∴PA+PD的最小值为3;3.(2022•昭平县二模)如图1,对称轴为直线x=1的抛物线经过B(3,0)、C(0,4)两点,抛物线与x轴的另一交点为A.(1)求抛物线的解析式;(2)若点P为抛物线对称轴上的一点,使PA+PC取得最小值,求点P的坐标;【解答】解:(1)由对称性得:A(﹣1,0),设抛物线的解析式为:y=a(x+1)(x﹣3),把C(0,4)代入:4=﹣3a,a=﹣,∴y=﹣(x+1)(x﹣3),∴抛物线的解析式为:y=﹣x2+x+4;(2)如图,点A与点B关于对称轴直线x=1对称,连接BC,交抛物线对称轴于点P,连接PA,即点P为所求点,此时PA+PC=PB+PC=BC的值最小,∵B(3,0)、C(0,4),设直线BC的函数解析式为y=kx+b,∴,解得,∴直线BC的函数解析式为y=﹣x+4,当x=1时,y=,∴P点的坐标为(1,);4.(2022春•石鼓区校级月考)已知:二次函数y=x2+bx+c的图象与x轴交于A,B两点,其中A点坐标为(﹣3,0),与y轴交于点C,点D(﹣2,﹣3)在抛物线上.(1)求抛物线的解析式;(2)抛物线的对称轴上有一动点P,求△PAD周长的最小值.【解答】解:(1)将(﹣3,0),(﹣2,﹣3)代入y=x2+bx+c得,解得,∴抛物线解析式为y=x2+2x﹣3.(2)∵y=x2+2x﹣3,∴抛物线对称轴为直线x=﹣1,连接BD,交对称轴于点P,∵点A坐标为(﹣3,0),抛物线对称轴为直线x=﹣1,∴点B坐标为(1,0),∴BD==3,又∵AD==,∴△PAD周长的最小值为3+.5.(2022•江阴市校级一模)如图1,在平面直角坐标系xOy中,抛物线y=ax2+bx+c与x 轴分别相交于A(﹣1,0)、B(3,0)两点,与y轴相交于点C(0,3).(1)求出这条抛物线的解析式及顶点M的坐标;(2)PQ是抛物线对称轴上长为1的一条动线段(点P在点Q上方),求AQ+QP+PC 的最小值;【解答】解:(1)∵抛物线过点A(﹣1,0),B(3,0),C(0,3),∴设抛物线解析式为y=a(x+1)(x﹣3),将C(0,3)代入,得:3=a(0+1)(0﹣3),解得:a=﹣1,∴y=﹣(x+1)(x﹣3)=﹣x2+2x+3=﹣(x﹣1)2+4,∴该抛物线解析式为y=﹣x2+2x+3,顶点坐标为M(1,4).(2)如图1,将点C沿y轴向下平移1个单位得C′(0,2),连接BC′交抛物线对称轴x=1于点Q′,过点C作CP′∥BC′,交对称轴于点P′,连接AQ′,∵A、B关于直线x=1对称,∴AQ′=BQ′,∵CP′∥BC′,P′Q′∥CC′,∴四边形CC′Q′P′是平行四边形,∴CP′=C′Q′,Q′P′=CC′=1,在Rt△BOC′中,BC′=,==.∴AQ′+Q′P′+P′C=BQ′+C′Q′+Q′P′=BC′+Q′P′=+1,此时,C′、Q′、B三点共线,BQ′+C′Q′的值最小,∴AQ+QP+PC的最小值为+1.6.(2022•常德)如图,已知抛物线过点O(0,0),A(5,5),且它的对称轴为x=2,点B是抛物线对称轴上的一点,且点B在第一象限.(1)求此抛物线的解析式;(2)当△OAB的面积为15时,求B的坐标;(3)在(2)的条件下,P是抛物线上的动点,当PA﹣PB的值最大时,求P的坐标以及PA﹣PB的最大值.【解答】解:(1)∵抛物线过点O(0,0),A(5,5),且它的对称轴为x=2,∴抛物线与x轴的另一个交点坐标为(4,0),设抛物线解析式为y=ax(x﹣4),把A(5,5)代入,得5a=5,解得:a=1,∴y=x(x﹣4)=x2﹣4x,故此抛物线的解析式为y=x2﹣4x;(2)∵点B是抛物线对称轴上的一点,且点B在第一象限,∴设B(2,m)(m>0),设直线OA的解析式为y=kx,则5k=5,解得:k=1,∴直线OA的解析式为y=x,设直线OA与抛物线对称轴交于点H,则H(2,2),∴BH=m﹣2,=15,∵S△OAB∴×(m﹣2)×5=15,解得:t=8,∴点B的坐标为(2,8);(3)设直线AB的解析式为y=cx+d,把A(5,5),B(2,8)代入得:,解得:,∴直线AB的解析式为y=﹣x+10,当PA﹣PB的值最大时,A、B、P在同一条直线上,∵P是抛物线上的动点,∴,解得:,(舍去),∴P(﹣2,12),此时,PA﹣PB=AB==3.7.(2022•玉州区一模)如图,抛物线y=﹣x2x+4交x轴于A,B两点(点B在A的右边),与y轴交于点C,连接AC,BC.点P是第一象限内抛物线上的一个动点,点P 的横坐标为m,过点P作PM⊥x轴,垂足为点M,PM交BC于点Q.(1)求A、B两点坐标;(2)过点P作PN上BC,垂足为点N,请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?【解答】解:(1)当y=0,﹣x2+x+4=0,解得x1=﹣3,x2=4,∴A(﹣3,0),B(4,0),(2)设点P(m,﹣m2+m+4),则点Q(m,﹣m+4),∵OB=OC,∴∠ABC=∠OCB=45°=∠PQN,P~N=PQ•sin∠PQN=(﹣m2+m+4+m﹣4)=﹣(m﹣2)2+,∵﹣<0,∴PN有最大值,当m=2时,PN的最大值为.8.(2022•怀化)如图一所示,在平面直角坐标中,抛物线y=ax2+2x+c经过点A(﹣1,0)、B(3,0),与y轴交于点C,顶点为点D.在线段CB上方的抛物线上有一动点P,过点P作PE⊥BC于点E,作PF∥AB交BC于点F.(1)求抛物线和直线BC的函数表达式.(2)当△PEF的周长为最大值时,求点P的坐标和△PEF的周长.【解答】解:(1)∵抛物线y=ax2+2x+c经过点A(﹣1,0)、B(3,0),∴,解得,∴抛物线的解析式为y=﹣x2+2x+3,令x=0,可得y=3,∴C(0,3),设直线BC的解析式为y=kx+b,则,∴,∴直线BC的解析式为y=﹣x+3;(2)如图一中,连接PC,OP,PB.设P(m,﹣m2+2m+3),∵B (3,0),C (0,3),∴OB =OC =3,∴∠OBC =45°,∵PF ∥AB ,∴∠PFE =∠OBC =45°,∵PE ⊥BC ,∴△PEF 是等腰直角三角形,∴PE 的值最大时,△PEF 的周长最大,∵S △PBC =S △POB +S △POC ﹣S △OBC=×3×(﹣m 2+2m +3)+×3×m ﹣×3×3=﹣m 2+m=﹣(m ﹣)2+,∵﹣<0,∴m =时,△PBC 的面积最大,面积的最大值为,此时PE 的值最大,∵×3×PE =,∴PE =,∴△PEF 的周长的最大值=++=+,此时P (,);。
2023年中考高频数学专题突破--二次函数的最值问题(含解析)

2023年中考高频数学专题突破--二次函数的最值问题1.永嘉某商店试销一种新型节能灯,每盏节能灯进价为18元,试销过程中发现,每周销量y(盏)与销售单价x(元)之间关系可以近似地看作一次函数y=﹣2x+100.(利润=售价﹣进价)(1)写出每周的利润w(元)与销售单价x(元)之间函数解析式;(2)当销售单价定为多少元时,这种节能灯每周能够获得最大利润?最大利润是多少元?(3)物价部门规定,这种节能灯的销售单价不得高于30元.若商店想要这种节能灯每周获得350元的利润,则销售单价应定为多少元?2.经市场调查,某种商品在第x天的售价与销量的相关信息如下表;已知该商品的进价为每件30元,设销售该商品每天的利润为y元.(1)求出y与x的函数关系式(2)问销售该商品第几天时,当天销售利润最大?最大利润是多少?.3.为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为xm,矩形区域ABCD的面积为ym2.(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)x为何值时,y有最大值?最大值是多少?4.小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现:每月的销售量y(件)与销售单价x(元/件)之间的关系可近似地看作一次函数y=-10x+500,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.(1)设小明每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元/件)之间的函数表达式,并确定自变量x的取值范围;(2)当销售单价定为多少元/件时,每月可获得最大利润?每月的最大利润是多少?5.自2020年3月开始,我国生猪、猪肉价格持续上涨,某大型菜场在销售过程中发现,从2020年10月1日起到11月9日的40天内,猪肉的每千克售价与上市时间的关系用图1的一条折线表示:猪肉的进价与上市时间的关系用图2的一段抛物线()2=-+表示.y a x30100(1)a=;(2)求图1表示的售价P与时间x的函数关系式;(3)问从10月1日起到11月9日的40天内第几天每千克猪肉利润最低,最低利润为多少?6.2022年冬奥会即将在北京召开,某网络经销商购进了一批以冬奥会为主题的文化衫进行销售,文化衫的进价每件40元,每月销售量y(件)与销售单价x(元)之间的函数关系如图所示,设每月获得的利润为W(元).(1)求出每月的销售量y(件)与销售单价x(元)之间的函数关系式;(2)这种文化衫销售单价定为多少元时,每月的销售利润最大?最大利润是多少元?(3)为了扩大冬奥会的影响,物价部门规定这种文化衫的销售单价不高于60元,该商店销售这种文化衫每月要获得最大利润,销售单价应定为多少元?每月的最大利润为多少元?7.我市绿色和特色农产品在国际市场上颇具竞争力,其中香菇远销日本和韩国等地.上市时,外贸商李经理按市场价格10元/千克在我市收购了2000千克香菇存放入冷库中.请根据李经理提供的预测信息(如下图)帮李经理解决以下问题:(1)若存放x天后,将这批香菇一次性出售,设这批香菇的销售总金额.....为y 元,试写出y与x之间的函数表达式;(销售总金额=销售单价×销售量)(2)将这批香菇仔放多少天后出售可获得最大利润..?最大利润是多少?8.“绿水青山就是金山银山”的理念已融入人们的日常生活中,因此,越来越多的人喜欢骑自行车出行,某自行车店在销售某型号自行车时,标价1500元已知拔标价九折销售该型号自行车8辆与将标价直降100元销售7辆获利相同。
最新二次函数的最值问题举例(附练习、答案)

二次函数的最值问题举例(附练习、答案)二次函数y = ax2bx c (a = 0)是初中函数的主要内容,也是高中学习的重要基础. 在初x取任意实数时的最值情况(当a ■ 0时,函数在本节我们将在这个基础上继续学习当自变量x在某个范围内取值时,函数的最值问题.同时还将学习二次函数的最值问题在实际生活中的简单应用.2【例1】当-2弐x玄2时,求函数y=x -2x-3的最大值和最小值.分析:作出函数在所给范围的及其对称轴的草图,观察图象的最高点和最低点,由此得到函数的最大值、最小值及函数取到最值时相应自变量x的值.解:作出函数的图象.当x=1时,y mi n =-4,当x=-2时,y max=5.【例2】当1^x^2时,求函数y =-X2「x T的最大值和最小值.X = 1 时,y min = T ,当X = 2 时,y max = 一5 .由上述两例可以看到,二次函数在自变量x的给定范围内,对应的图象是抛物线上的一段.那么最高点的纵坐标即为函数的最大值,最低点的纵坐标即为函数的最小值.根据二次函数对称轴的位置,函数在所给自变量x的范围的图象形状各异.下面给出一些常见情况:【例3】当x - 0时,求函数y = -x(2 - x)的取值范围.中阶段大家已经知道:二次函数在自变量b2a处取得最小值4ac - b24a,无最大值;当 a c 0时,函数在x = -亠-处取得最大值2a4ac -b24a无最小值.解:作出函数的图象.当解:作出函数y =-x(2 - x) n x? — 2x在x_0内的图象.可以看出:当x = 1时,ymin - -1,无最大值.所以,当X _ 0时,函数的取值范围是y _ -1 .1 25【例4】当t <x <t 1时,求函数y x「x 的最小值(其中t为常数).2 2分析:由于x所给的范围随着t的变化而变化,所以需要比较对称轴与其范围的相对位置.1 25解:函数y x2-X 的对称轴为x=1 .画出其草图.2 21 25(1)当对称轴在所给范围左侧•即t 1时:当X = t时,『min t -t-2 2⑵当对称轴在所给范围之间•即t乞1乞t • 1 = 0乞t乞1时:1 25当X=1 时,『min -1—? = 一3 ;⑶当对称轴在所给范围右侧.即t • 1 ::: 1= t ::: 0时:1 2 5 1 2当X=t 1 时,y min —(t 1) -(t 1)—?=?t -3 .1 2—t —3,t < 02综上所述:y二-3,0乞t乞1-1 -5,t A1.2 2在实际生活中,我们也会遇到一些与二次函数有关的问题:【例5】某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量与每件的销售价x(元)满足一次函数m =162 -3x,30 _ x _ 54 .(1)写出商场卖这种商品每天的销售利润y与每件销售价x之间的函数关系式;(2)若商场要想每天获得最大销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?解:(1)由已知得每件商品的销售利润为(x-30)元,m (件)那么m件的销售利润为y = m(x - 30),又m = 162 - 3x .2y = (x - 30)(162 - 3x)二-3x 252x - 4860,30 - x - 54(2)由⑴知对称轴为x=42,位于x的范围内,另抛物线开口向下.当x=42 时,y max - -3 421 2252 42 -4860 =432•当每件商品的售价定为42元时每天有最大销售利润,最大销售利润为432元.A 组21.抛物线y =x —(m —4)x +2m -3,当m = _________ 时,图象的顶点在y轴上;当m = _______ 时, 图象的顶点在x轴上;当m = _____ 时,图象过原点.2•用一长度为I米的铁丝围成一个长方形或正方形,则其所围成的最大面积为 _______ .3.求下列二次函数的最值:2(1) y = 2x -4x 5 ;(2) y = (1 - x)(x 2).24.求二次函数y = 2x -3x - 5在-2 _ x _ 2上的最大值和最小值,并求对应的x的值.25•对于函数y =2x • 4x -3,当x _0时,求y的取值范围.6.求函数y = 3 —€5x —3x —2的最大值和最小值.7 .已知关于x的函数y = x2• (2t T)x • t2-1,当t取何值时,y的最小值为0 ?B 组21 当a - -1时,求函数的最大值和最小值;2 当a为实数时,求函数的最大值.2.函数y =x2• 2x 3在m^x乞0上的最大值为3,最小值为2,求m的取值范围.23 .设a • 0,当-1乞x乞1时,函数y x - ax b 1的最小值是-4,最大值是0,求a,b的值.4.已知函数y = x2 2ax 1在-1空x乞2上的最大值为4,求a的值.25.求关于x的二次函数y=x -2tx 1在-1辽x^1上的最大值(t为常数).1 .已知关于x的函数y =x2• 2ax • 2在-5辽x乞5上.第五讲二次函数的最值问题答案ymin- 0 •(1)当 X =1 时,Y min =1 ;当 X 「-5 时, ⑵当 a - 0 时,Y max =2710a ;当 a 0 时,Y max =27 —10a •一2空m 乞一1 • a =2,b 一2 •1a 或 a - -1.4123 4567123 44 14或 2,I 2 2 —m 16(1)有最小值 3, 无最大值;(2)有最大值9-,无最小值•4 --5时,Y min3 ;当x 「2时, 8Y max =19 •ymin2i 或 1 时,Ymaxymax- 37 •5.当t <0时,y max =2 —2t,此时X = 1 ;当t 0 时,y max =2 • 2t,此时X = -1 .。
奥数基础讲座 二次函数(含解答)-

二次函数讲座问题选讲1.二次函数y=ax 2,y=a (x-h )2,y=a (x-h )2+k ,y=ax 2+b x+c (各式中,a ≠0)•的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:2.抛物线y=ax 2+bx+c (a ≠0)的图象;当a>0时,开口向上,当a<0时开口向下,•对称轴是直线x=-2b a ,顶点坐标是(-2b a ,244ac b a-). 3.抛物线y=a x 2+bx+c (a ≠0),若a>0,当x ≤-2b a 时,y 随x 的增大而减小;当x ≥-2b a时,y•随x 的增大而增大.若a<0,当x ≤-2b a 时,y 随x 的增大而增大;当x ≥-2b a 时,y 随x 的增大而减小. 4.抛物线y=a x 2+bx+c 的图象与坐标轴的交点:(1)图象与y 轴一定相交,交点坐标为(0,c );(2)当△=b 2-4ac>0,图象与x 轴交于两点A (x 1,0)和B (x 2,0),其中的x 1,x 2是一元二次方程ax 2+bx+c=0(a ≠0)的两根.这两点间的距离AB=│x 1-x 2│. 当△=0,图象与x 轴只有一个交点;当△<0,图象与x 轴没有交点.当a>0时,图象落在x 轴的上方,x 为任何实数,•都有y>0;当a<0时,图象落在x 轴的下方,x 为任何实数时,都有y<0.5.用待定系数法求二次函数的解析式(1)当题给条件为已知图象经过三个已知点或已知x 、y 的三对对应值时,可设解析式为一般形式:y=a x 2+bx +c (a ≠0).(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=•a (x-h )2+k (a ≠0).(3)当题给条件为已知图象与x 轴的两个交点坐标时,可设解析式为两根式:y=a (x-x 1)(x-x 2)(a ≠0).6.二次函数知识很容易与其他知识综合应用,而形成较为复杂的综合题目.因此,以二次函数知识为主的综合性题目是热点考题,往往以大题形式出现.例题剖析例1 (2006年全国初中数学竞赛(浙江赛区)初赛试题)作抛物线A关于x•轴对称的抛物线B,再将抛物线B向左平移2个单位,向上平移1个单位,得到的抛物线C的函数解析式是y=2(x+1)2-1,则抛物线A所对应的函数表达式是()(A)y=-2(x+3)2-2; (B)y=-2(x+3)2+2;(C)y=-2(x-1)2-2; (D)y=-2(x-1)2+2例2 (2006年全国初中数学竞赛(海南赛区))根据下列表格的对应值,判断方程a x2+bx+c=0(a≠0,a,b,c为常数)一个解x的范围是()(A)3<x<3.23 (B)3.23<x<3.24(C)3.24<x<3.25 (D)3.25<x<3.26例3 (2006年芜湖市鸠江区初中数学竞赛试题)函数y=ax2+bx+c图象的大致位置如右图所示,则ab,bc,2a+b,(a+c)2-b2,(a+b)2-c2,b2-a2等代数式的值中,正数有()(A)2个(B)3个(C)4个(D)5个例4 (2004年河北省初中数学创新与知识应用竞赛决赛试题)一条抛物线y=ax2+bx+c的顶点为(4,-11),且与x轴的两个交点的横坐标为一正一负,则a、b、c中为正数的()(A)只有a (B)只有b (C)只有c (D)只有a和b例5 (2006年“信利杯”全国初中数学竞赛(广西赛区)初赛试题)设b>0,二次函数y=ax2+bx+a2-1的图象为下列图象之一,则a的值是()(A)1 (B)-1 (C(D例6 (2006年芜湖市鸠江区初中数学竞赛试题)若二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(-1,0)•,•则S=•a+•b+•c•的值的变化范围是__________.例7 (2005年全国初中数学竞赛试题)Rt △ABC 的三个顶点A ,B ,C•均在抛物线y=x 2上,并且斜边AB 平行于x 轴.若斜边上的高为h ,则( )(A )h<1 (B )h=1 (C )1<h<2 (D )h>2例8 (1993年江苏初中数学竞赛试题)已知mn 是两位数,二次函数y=x 2+mx+n•的图象与x 轴交于不同的两点,这两点间距离不超过2.(1)求证:0<m 2-4n ≤4;(2)求出所有这样的两位数mn .例9 (1997年天津市初中数学竞赛试题)已知函数y=x 2-│x │-12的图象与x 轴交于相异两点A ,B ,另一抛物线y=ax 2+bx+c 过点A ,B ,顶点为P ,且△APB 是等腰直角三角形,求a ,b ,c .例10 (2006年全国初中数学竞赛(浙江赛区)初赛试题)已知二次函数y=x 2+2(m+1)x-m+1.(1)随着m 的变化,该二次函数图象的顶点P 是否都在某条抛物线上?如果是,请求出该抛物线的函数表达式;如果不是,请说明理由.(2)如果直线y=x+1经过二次函数y=x 2+2(m+1)x-m+1图象的顶点P ,求此时m 的值.例11 (2004年河北省初中数学创新与知识应用竞赛决赛试题)通过实验研究,•专家们发现:初中学生听课的注意力指标数是随着老师讲课时间的变化而变化的,讲课开始时,学生的兴趣激增,中间有一段时间,学生的兴趣保持平衡的状态,随后开始分散.学生注意力指标数y 随时间x (分钟)变化的函数图象如图所示(y•越大表示学生注意力越集中).当0≤x ≤10时,图象是抛物线的一部分,当10≤x ≤20和20≤x≤40时,图象是线段.(1)当0≤x ≤10时,求注意力指标数y 与时间x 的函数关系式;(2)一道数学竞赛题需要讲解24分钟.问老师能否经过适当安排,•使学生在听这道题时,注意力的指标数都不低于36.例12 (2006年全国初中数学竞赛(海南赛区))已知A 1、A 2、A 3是抛物线y=12x 2上的三点,A 1B 1、A 2B 2、A 3B 3分别垂直于x 轴,垂足为B 1、B 2、B 3,直线A 2B 2交线段A 1A 3于点C .(1)如图(a ),若A 1、A 2、A 3三点的横坐标依次为1、2、3,求线段CA 2的长;(2)如图(b ),若将抛物线y=12x 2改为抛物线y=12x 2-x+1,A 1、A 2、A 3•三点的横坐标为连续整数,其他条件不变,求线段CA 2的长;(3)若将抛物线y=12x 2改为抛物线y=ax 2+bx+c ,A 1、A 2、A 3三点的横坐标为连续整数,其他条件不变,请猜想线段CA 2的长(用a 、b 、c 表示,并直接写出答案).例13 设抛物线C 的解析式为y=x 2-2kx+)k ,k 为实数.(1)求抛物线的顶点坐标和对称轴方程(用k 表示);(2)任意给定k 的三个不同实数值,请写出三个对应的顶点坐标,试说明当k•变化时,抛物线C 的顶点在一条定直线L 上,求出直线L 的解析式并画出图象;(3)在第一象限有任意两圆O 1、O 2相外切,且都与x 轴和(2)中的直线L 相切,设两圆在x 轴上的切点分别为A 、B (OA<OB ),试问:OA OB是否为一定值?若是,请求出该定值;若不是,请说明理由; (4)已知一直线L 1与抛物线C 中任意一条都相截,且截得的线段长都为6,求这条直线的解析式.巩固练习一、选择题1.直线y=52x-2与抛物线y=x 2-12x 的交点个数是( ) (A )0个 (B )1个 (C )2个 (D )互相重合的两个 2.关于抛物线y=a x 2+bx+c (a ≠0),下面几点结论中,正确的有( )①当a>0时,对称轴左边y 随x 的增大而减小,对称轴右边y 随x 的增大而增大,•当a<0时,情况相反.②抛物线的最高点或最低点都是指抛物线的顶点.③只要解析式的二次项系数的绝对值相同,两条抛物线的形状就相同.④一元二次方程a x 2+bx+c=0(a ≠0)的根,就是抛物线y=ax 2+bx+c 与x 轴交点的横坐标.(A )①②③④ (B )①②③ (C )①② (D )①③④3.若函数y=a x的图象经过点(1,-2),那么抛物线y=ax 2+(a-1)x+a+3的性质说得全对的是( ) (A )开口向下,对称轴在y 轴右侧,图象与正半y 轴相交(B )开口向下,对称轴在y 轴左侧,图象与正半y 轴相交(C)开口向上,对称轴在y轴左侧,图象与负半y轴相交(D)开口向下,对称轴在y轴右侧,图象与负半y轴相交4.函数y=a x2与y=ax(a<0)在同一直角坐标系中的大致图象是()5.如图,抛物线y=x2+bx+c与y轴交于A点,与x轴正半轴交于B,C两点,且BC=3,S△ABC=6,则b的值是()(A)b=5 (B)b=-5 (C)b=±5 (C)b=4(第5题)(第5题)6.不论x为何值,函数y=ax+bx+c(a≠0)的永远小于0的条件是()(A)a>0,△>0 (B)a>0,△<0 (C)a<0,△>0 (D)a<0,△<07.已知抛物线y=a x2+bx+c如图所示,则关于x的方程a x2+bx+c-3=0的根的情况是(• )(A)有两个不相等的正实数根(B)有两个异号实数根(C)有两个相等的实数根(D)没有实数根8.为了备战世界杯,中国足球队在某次训练中,一队员在距离球门12米处挑射,•正好射中了2.4米高的球门横梁.若足球运行的路线是抛物线y=a x2+bx+c(如图),则下列结论:①a<-160;②-160<a<0;③a-b+c>0;④0<b<-12a,其中正确的结论是()(A)①③(B)①④(C)②③(D)②④(第8题) (第12题) (第15题)9.已知:二次函数y=x2+b x+c与x轴相交于A(x1,0),B(x2,0)两点,其顶点坐标为P(-24,24b c b),AB=│x1-x2│,若S△APB=1,则b与c的关系式是()(A)b2-4c+1=0 (B)b2-4c-1=0 (C)b2-4c+4=0 (D)b2-4c-4=010.若函数y=12(x2-100x+196+│x2-100x+196│),则当自变量x取1、2、3、…、•10这100个自然数时,函数值的和是()A.540;B.390;C.194;D.9711.已知二次函数y=ax2+bx的图象经过点A(-1,1),则ab有()(A)最小值0 (B)最大值1 (C)最大值2 (D)有最小值1 412.抛物线y=ax2+bx+c的图象如图,OA=OC,则()(A)ac+1=b (B)ab+1=c (C)bc+1=a (D)以上都不是13.若二次函数y=a x2+bx+c的顶点在第一象限,且经过点(0,1),(-1,0),则S=a+b+c的变化范围是()(A)0<S<2 (B)S>1 (C)1<S<2 (D)-1<S<114.如果抛物线y=x2-6x+c-2的顶点到x轴的距离是3,那么c的值等于()(A)8 (B)14 (C)8或14 (D)-8或-1415.(2005年全国初中数学联赛初赛试题)如图,直线x=1是二次函数y=a x2+bx+c的图象的对称轴,则有()(A)a+b+c=0 (B)b>a+c (C)c>2b (D)abc<0二、填空题1.二次函数y=a x2+c(c不为零),当x取x1,x2(x1≠x2)时,函数值相等,则x1与x2的关系是________.2.已知直线y=2x-1与抛物线y=5x2+k交点的横坐标为2,则k=________,•交点坐标为________.3.已知二次函数y1=ax2+b x+c(a≠0)与一次函数y2=kx+m(k≠0)的图象相交于点A(-2,4)和B(8,2)(如图所示),则能使y1>y2成立的x的取值范围是________.(第3题) (第6题) (第9题)4.有一个二次函数的图象,三位学生分别说出了它的一些特点:甲:对称轴是直线x=4;乙:与x轴两个交点的横坐标都是整数;丙:与y轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形面积为3.请你写出满足上述全部特点的一个二次函数解析式:_______.5.对于反比例函数y=-2x与二次函数y=-x2+3,•请说出它们的两个相同点①______②________;再说出它们的两个不同点①______,②_______.6.如图,已知点M(p,q)在抛物线y=x2-1上,以M为圆心的圆与x轴交于A、B两点,且A、B两点的横坐标是关于x的方程x2-2px+q=0的两根,则弦AB的长等于_______.7.设x、y、z满足关系式x-1=1223y z+-=,则x2+y2+z2的最小值为_______.8.已知二次函数y=ax2(a≥1)的图象上两点A、B的横坐标分别是-1、2,点O•是坐标原点,如果△AOB 是直角三角形,则△OAB的周长为________.9.如图,A、B、C是二次函数y=a x2+bx+c(a≠0)的图像上三点,根据图中给出的三点的位置,可得a_____0,c_____0,△_____0.10.炮弹从炮口射出后,飞行的h(m)高度与飞行的时间t(s)之间的函数关系是h=vtsina-5t2,其中v是炮弹发射的初速度,a是炮弹的发射角,当v0=300(m/s),sina=12时,炮弹飞行的最大高度是_______.11.抛物线y=-(x-L)(x-3-k)+L与抛物线y=(x-•3)2•+•4•关于原点对称,•则L+•k=________.12.(2000年全国初中数学联合竞赛试题)a,b是正数,并且抛物线y=x2+ax+2b和y=x2+2bx+a都与x 轴有公共点,则a2+b2的最小值是________.13.已知直线y=-2x+3与抛物线y=x2相交于A、B两点,O为坐标原点,那么△OAB•的面积等于________.14.(2003年“TRULY@信利杯”全国初中数学竞赛试题)已知二次函数y=ax 2+bx+c (其中a 是正整数)的图象经过点A (-1,4)与点B (2,1),并且与x 轴有两个不同的交点,则b+c 的最大值为________.15.(2005年全国初中数学竞赛浙江赛区试题)在直角坐标系中,抛物线y=x 2+mx-34m 2(m>0)与x 轴交于A ,B 两点,若A ,B 两点到原点的距离分别为OA ,OB ,且满足11OB OA =23,则m•的值等于_______. 三、解答题1.已知抛物线y=23x 2与直线y=x+k 有交点,求k 的取值范围. 2.如图,P 是抛物线y =x 2上第一象限内的一个点,A 点的坐标是(3,0).(1)令P 点坐标为(x ,y ),求△OPA 的面积S ;(2)S 是y 的什么函数?(3)S 是x 的什么函数?(4)当S=6时,求点P 的坐标;(5)在抛物线y=x 2上求一点P ′,使△OP ′A 的两边P ′O=P ′A .3.抛物线y=ax 2+bx+c 的顶点位于直线y=x-1和y=-2x-4的交点上,且与直线y=•4x-4有唯一交点,试求函数表达式.4.已知实数p<q ,抛物线y 1=x 2-px+2q 与y 2=x 2-qx+2p 在x 轴上有相同的交点A .(1)求A 点坐标;(2)求p+q 的值.5.已知抛物线y =x 2+kx+k-1.(1)求证:无论k 是什么实数,抛物线经过x 轴上一个定点;(2)设抛物线与y 轴交于C 点,与x 轴交于A (x 1,0),B (x 2,0)两点,且满足:x 1<x 2,│x 1│<│x 2│,S △ABC =6,问:过A 、B 、C 三点的圆与抛物线是否有第四个交点,试说明理由,•如果有,求出其坐标.6.如图,已知直线y=-2x+2在x 轴、y 轴分别交于点A 、B ,以线段AB•为直角边在第一象限内作等腰直角△ABC ,∠BAC=90°,过C 作CD ⊥x 轴,垂足为D .(1)求点A 、B 的坐标和AD 的长.(2)求过B 、A 、D 三点的抛物线的解析式.7.如图有一座抛物线形拱桥,桥下面在正常水位是AB 宽20m ,水位上升3m•就达到警戒线CD ,这是水面宽度为10m .(1)在如图的坐标系中求抛物线的解析式.(2)若洪水到来时,水位以每小时0.2m 的速度上升,从警戒线开始,再持续多少小时才能到拱桥顶?8.先阅读下面一段材料,再完成后面的问题:材料:过抛物线y=a x 2(a>0)的对称轴上一点(0,-14a )作对称轴的垂线L ,•则抛物线上任一点P 到点F (0,14a)的距离与P 到L 的距离一定相等.我们将点F 与直线L•分别称作这抛物线的焦点和准线,如y=x 的焦点为(0,14).问题:若直线y=kx+b 交抛物线y=14x 2于A 、B ,•AC 、BD 垂直于抛物线的准线L ,垂足分别为C 、D (如图).(1)求抛物线y=14x 2的焦点F 的坐标;(2)求证:直线AB 过焦点F 时,CF ⊥DF ; (3)当直线AB 过点(-1,0),且以线段AB 为直径的圆与准线L 相切时,求这直线对应的函数解析式.9.已知某绿色蔬菜生产基地收获的蒜苔,从四月一日起开始上市的30天内,蒜苔每10千克的批发价y (元)是上市时间x (元)的二次函数,•由近几年的行情可知如下信息:(1)求y 关于x 的函数解析式;(2)蒜台每10千克的批发价为10.8元时,问是在上市的多少天?10.已知:抛物线y=ax 2+4ax+t 与x 轴的一个交点为A (-1,0).(1)求抛物线与x 轴的另一个交点B 的坐标;(2)D 是抛物线与y 轴的交点,C 是抛物线上的一点,且以AB 为一底的梯形ABCD 的面积为9,求此抛物线的解析式;(3)E 是第二象限内到x 轴、y 轴的距离的比为5:2的点,如果点E 在(2)中的抛物线上,且它与点A 在此抛物线对称轴的同侧,问:在抛物线的对称轴上是否存在点P ,使△APE 的周长最小?若存在,求出点P 的坐标;若不存在,请说明理由.11.已知二次函数y=x 2+b x+c 的图像与x 轴的两个交点的横坐标分别为x 1、x 2,•一元二次方程x 2+b 2x+20=0的两实数为x 3、x 4,且x 2-x 3=x 1-x 4=3,求二次函数的解析式,•并写出顶点坐标.12.改革开放以来,某镇通过多种途径发展地方经济,1995•年该镇国民生产总值为2亿元,根据测算,该镇国民生产总产值为5亿元时,可达到小康水平.(1)若从1996年开始,该镇国民生产总值每年比上一年增加0.6亿元,该镇通过几年可达到小康水平?(2)设以2001年为第一年,该镇第x 年的国民生产总值为y 亿元,y 与x•之间的关系是y=19x 2+23x+5(x ≥0)该镇那一年的国民生产总值可在1995•年的基础上翻两番(•即达到1995年的年国民生产总值的4倍)?13.已知:二次函数y=-x 2+3b x+c 与x 轴交于点M (x ,0),N (x ,0)两点,与y 轴交于点H .(1)若∠HMO=45°,∠MHN=105°时,求:函数解析式;(2)若│x 1│2+│x 2│2=1,当点Q (b ,c )在直线y=19x+13上时,求二次函数y=-x+3b x+c 的解析式.14.如图,一次函数y=kx+n 的图象与x 轴和y 轴分别交于点A (6,0)和B (0,• 线段AB 的垂直平分线交x 轴于点C ,交AB 于点D .(1)试确定这个一次函数关系式;(2)求过A 、B 、C 三点的抛物线的函数关系式.15.如图,在直角坐标系中,O 是原点,A 、B 、C 三点的坐标分别为A (18,0),B (•18,6),C (8,6),四边形OABC 是梯形,点P 、Q 同时从原点出发,分别坐匀速运动,•其中点P 沿OA 向终点A 运动,速度为每秒1个单位,点Q 沿OC 、CB 向终点B 运动,•当这两点有一点到达自己的终点时,另一点也停止运动.(1)求出直线OC 的解析式及经过O 、A 、C 三点的抛物线的解析式.(2)试在(1)中的抛物线上找一点D ,使得以O 、A 、D 为顶点的三角形与△AOC 全等,请直接写出点D 的坐标.(3)设从出发起,运动了t 秒,如果点Q 的速度为每秒2个单位,试写出点Q 的坐标,•并写出此时t 的取值范围.(4)设从出发起,运动了t 秒,当P 、Q 两点运动的路程之和恰好等于梯形OABC 的周长的一半,这时,直线PQ 能否把梯形的面积也分成相等的两部分,如有可能,•请求出t 的值;如不可能,请说明理由.16.抛物线y=ax 2+bx+c 交x 轴于A ,B 两点,交y 轴于点C ,已知抛物线的对称轴为x=1,B (3,0),C (0,-3).(1)求二次函数y=ax 2+bx+c 的解析式;(2)在抛物线对称轴上是否存在一点P ,使点P 到B 、C 两点距离之差最大?若存在,求出P 点坐标;若不存在,请说明理由;(3)平行于x 轴的一条直线交抛物线于M 、N 两点,若以MN 为直径的圆恰好与x 轴相切,求此圆的半径.答案:一、1~9.CDBDD DCBD10.B .提示:∵x 2-100x+196=(x-2)(x-98),∴当2≤x ≤98时,│x 2-100x+196│=-(x 2-100x+196). ∴当自变量x 取2、3、…、98时,函数值都为0. 而当x 取1、99、100时,│x 2-100x+196│=x 2-100x+196,故所求的和为:(1-2)(1-98)+(99-2)(99-98)+(100-•2)(100-98)=97+97+196=390. 11~15.DAACC二、1.互为相反数 2.-17,(2,3). 3.x<-2或x>8 4.y=15x 2-85x+3等 5.图象都是曲线,都过点(-1,2);图象形状不同,x 取值范围不同6.13.2 7.59148..<、<、> 10.1125m 11.-9 12.2013.如图,直线y=-2x+3与抛物线y =x 2的交点坐标为A (1,1),B (-3,9),作AA 1,BB 1分别垂直于x 轴,垂足为A 1,B 1, ∴S △OAB =S梯形AA1BB1-S △AA1O -S △BB1O =12³(1+9)³(1+3)-12³1³1-12³9³3=6.14.由于二次函数的图象过点A (-1,4),点B (2,1),所以4,1,421,32.a b c b a a b c c a -+==--⎧⎧⎨⎨++==-⎩⎩解得 • 因为二次函数图象与x 轴有两个不的交点,所以△=b 2-4ac>0,(-a-1)2-4a (3-2a )>0,即(9a-1)(a-1)>0,• 由于a 是正整数,故a>1,所以a ≥2.又因为b+c=-3a+2≤-4,且当a=2,b=-3,c=-1时,•满足题意, 故b+c 的最大值为-4. 15.2.提示:设方程x 2+mx-34m 2=0的两根分别x 1,x 2,且x 1<x 2, 则有x 1+x 2=-m<0,x 1x 2=-34m 2<0,•所以x 1<0,x 2>0,由11OB OA -=23,可知OA>OB ,又m>0, 所以抛物线的对称轴y 轴的左侧,于是OA=│x 1│=-x 1,OB=x 2. 所以2111x x +=23,1212x x x x +=23,故234mm --=23,解得m=2.三、1.由题意知,方程组22,3.y k y x k ⎧=⎪⎨⎪=+⎩有实数解,即方程23x 2=x+k 有实数解, 整理,得2x 2-3x-3k=0,∴△=9-4³2³(-3k )≥0,∴k ≥-38. 2.(1)S=32y ,又y =x 2,∴S=32x 2;(2)正比例函数;(3)二次函数;(4)P (2,4);(5)P ′(32,94).3.y=23x2+43x-43.4.(1)A(-2,0);(2)p+q=-2.5.(1)(-1,0);(2)过A,B,C三点的圆与抛物线有第四个交点D.∵│x1│<│x2│,•C点在y轴上,∴点C不是抛物线的顶点,由于抛物线都是轴对称图形,过A、B、C三点的圆与抛物线组成一个轴对称图形,所以过A、B、C•三点的圆与抛物线第四个交点与C是对称点.∵x1=-1<0,x1<x2,│x1│<│x2│,∴x2>1,即x2>-1,-k>1,∴k<0,∵S△ABC=6,∴12│1-•k│)²(1+│1-k│)=6,∴(1-k)2+(1-k)-12=0,解得1-k=-4或1-k=3,∴k=-2或k=5(舍去),∴y=x2-2x-3.其对称轴为x=1,据对称性,D点坐标为(2,-3).6.(1)A(1,0),B(0,2),AD=2;(2)y=23x2-83x+2.7.y=-125x2;5小时8.(1)F(0,1);(2)∵AC=AF,∴∠ACF=∠AFC.又∵AC∥OF,∴∠ACF=∠CFO,∴CF平分∠AFO.同理DF平分∠BFO.而∠AFO+∠BFO=180°,∴∠CFO+∠DFO=12(∠AFO+∠BFO)=90°,∴CF⊥DF.(3)设圆心为M切L于N,连结MN,∴MN=12 AB.在直角梯形ACDB中,M•是AB中点,∴MN=12(AC+BC).而AC=AF,BD=BF,∴MN=12(AF+BF),∴AF+BF=AB.∴AB过焦点F(0,1),又AB过点(-1,0),∴1bk b=⎧⎨-+=⎩∴AB对应的函数解析式为y=x+1.9.(1)设这个二次函数解析式为y=ax2+bx+c.根据题意,得15255 1022515 1562525a b ca b ca b c=++⎧⎪=++⎨⎪=++⎩• 解这个三元一次方程组,得12032854a y c ⎧=⎪⎪⎪=-⎨⎪⎪=⎪⎩∴这个函数解析式为:y=120x 2-32x+854.(或y=120(x-15)2+10) (2)把y=10.8代入上式,得10.8=120(x-15)2+10,(或10.8=120x 2-32x+854).整理,得x 2-30x+209=0,(x-11)(x-19)=0,∴x 1=11,x 2=19, 经检验x=11,x=19都符合题意.即蒜苔每10千克批发价为10.8元时,是上市11天、9天.10.(1)依题意,抛物线的对称轴为y=x-2.∵抛物线与x 轴的一个交点为A (-1,0),∴由抛物线的对称性,可得抛物线与x 轴的另一个交点B 的坐标为(-3,0). (2)∵抛物线y=a x 2+4ax+t 与x 轴的一个交点为A (-1,0),∴a (-1)2+4a (-1)+t=0,•∴t=3a .∴y=ax 2+4ax+3a .∴D (0,3a ). ∵梯形ABCD 中,AB ∥CD ,且点C 在抛物线y=a x 2+4ax+3a 上, ∴C (-4,3a ),∴AB=2,CD=4, ∵梯形ABCD 的面积为9,∴12(AB+CD )²OD=9. ∴12(2+4)│3a │=9,∴a=±1. ∴所求抛物线的解析式为y=x 2+4x+3或y=-x 2-4x-3.(3)设点E 坐标为(x 0,y 0),依题意x 0<0,y 0>0,且00||y x =52.∴y=-52.①设点E 在抛物线y=x 2+4x+3上,∴y 0=x 02+4x 0+3.解方程组000200005621540y x x y x x x ⎧=-=-⎧⎪⎨⎨=⎩⎪=++⎩得∴001`25`4x y ⎧=-⎪⎪⎨⎪=⎪⎩∵点E 与点A•在对称轴x=-2的同侧,∴点E 坐标为(-12,54), 设在抛物线的对称轴x=-2上存在一点P ,使△APE 的周长最小. ∵AE 长为定值,∴要使△APE 的周长最小,只须PA+PE 最小. ∵点A•关于对称轴x=-2的对称点是B (-3,0), ∴几何知识可知,P 是直线BE 与对称轴x=-2的交点.•设过点E 、B 的直线的解析式为y=mx+n ,∴1152243302m m n m n n ⎧=⎧⎪-+=⎪⎪⎨⎨⎪⎪-+==⎩⎪⎩解得 ∴直线BE 的解析式为y=12x+32,把x=-2•代入上式,得y=12, ∴点P 坐标为(-2,-12). ②设点E 在抛物线y=-x 2-4x-3上,∴y 0=-x 02-4x 0-3.解方程0020005243y x x x x ⎧=-⎪⎨⎪=---⎩ 消去y 0,得x 02+32x 0+3=0, ∴△<•0,∴此方程无实数根.综上.在抛物线的对称轴上存在点P (-2,12),使△APE 的周长最小. 11.y=x 2+3x+2;(-32,-14). 12.(1)5;(2)2003. 13.(1)y=-x 2+(2)y=-x 2+13x+94,y=-x 2-x .14.(1)2)先求出点C (2,0),故(x-2)(x-6). 15.(1)∵O ,C 两点的坐标分别为O (0,0),C (8,6),设OC 的解析式为y=kx+b ,将两点坐标代入得:k=34,b=0,∴y=34x . ∵抛物线过O ,A ,C 三点,这三点的坐标为O (0,0),A (18,0),C (8,6). ∵A ,O 是x 轴上两点,故可设抛物线的解析式为y=a (x-0)(x-18). 再将C (8,6)代入得:a=-340.∴y=-340x 2+2720x .(2)D (10,6).(3)当Q 在OC 上运动时,可设Q (m ,34m ), 依题意有:m 2+(34m )2=(2t )2,∴m=85t ,∴Q (85t ,65t )•,•(0≤t ≤5).当Q 在CB 上时,Q 点所走过的路程为2t . ∵OC=10,∴CQ=2t-10,∴Q 点的横坐标为2t-10+8=2t-2.∴Q (2t-2,6),(5<t ≤10).(4)∵梯形OABC 的周长为44,当Q 点在OC 上时,P 运动的路程为t , 则Q 运动的路程为(22-t ).△OPQ 中,OP 边上的高为:(22-t )³35.∴S △OPQ =12t (22-t )³35,S 梯形OABC =12(18+10)³6=84.• 依题意有:12t (22-t )³35=84³12.整理得:t 2-22t+140=0.∵△=222-4³140<0,∴这样的t 不存在.当Q 在BC 上时,Q 走过的路程为22-t ,∴CQ 的长为:22-t-10=12-t , ∴S梯形OCQP=12³6(22-t-10+t )=36≠84³12. ∴这样的t 值也不存在.综上所述,不存在这样的t 值,使得P 、Q 两点同时平分梯形的周长和面积. 16.(1)将C (0,-3)代入y=ax 2+bx+c ,得c=-3,将c=-3,B (3,0)代入y=a x 2+bx+c ,得9a+3b+c=0. ∵x=1是对称轴,∴-2ba=-1.(2). 将(2)代入(1)得a=1,b=-2.•所以二次函数得解析式是y=x 2-2x-3.(2)AC 与对称轴的交点P 即为到B 、C 的距离之差最大的点.∵C 点的坐标为(0,-3),A 点的坐标为(-1,0).∴直线AC 的解析式是y=-3x-3,又对称轴为x=1,∴点P 的坐标(1,-6).(3)设M (x 1,y ),N (x 2,y ),所求圆的半径为r ,则x 2-x 1=2r ,(1)∵对称轴为x=1,∴x 2+x 1=2.(2) 由(1)、(2)得:x 2=r+1. (3)将N (r+1,y )将代入解析式y=x 2-2x-3,得y=(r+1)2-2(r+1)-3,(4) 整理得:y=r 2-4.由于r=±y ,当y>0时,r 2-r-4=0,解得r 1,r 2(舍去),•当y<0时,r 2+r-4=0,解得r 1,r 2(舍去),所以圆的半径是12+或12.。
二次函数最值问题(含标准答案)

二次函数最值问题(含答案)————————————————————————————————作者:————————————————————————————————日期:二次函数最值问题一.选择题(共8小题)1.如果多项式P=a2+4a+2014,则P的最小值是()A.2010 B.2011 C.2012 D.20132.已知二次函数y=x2﹣6x+m的最小值是﹣3,那么m的值等于()A.10 B.4 C.5 D.63.若二次函数y=ax2+bx+c的图象开口向下、顶点坐标为(2,﹣3),则此函数有()A.最小值2 B.最小值﹣3 C.最大值2 D.最大值﹣34.设x≥0,y≥0,2x+y=6,则u=4x2+3xy+y2﹣6x﹣3y的最大值是()A.B.18 C.20 D.不存在5.二次函数的图象如图所示,当﹣1≤x≤0时,该函数的最大值是()A.3.125 B.4 C.2 D.06.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()A.1或﹣5 B.﹣1或5 C.1或﹣3 D.1或37.二次函数y=﹣(x﹣1)2+5,当m≤x≤n且mn<0时,y的最小值为2m,最大值为2n,则m+n的值为()A.B.2 C.D.8.如图,抛物线经过A(1,0),B(4,0),C(0,﹣4)三点,点D是直线BC 上方的抛物线上的一个动点,连结DC,DB,则△BCD的面积的最大值是()A.7 B.7.5 C.8 D.9二.填空题(共2小题)9.已知二次函数y=2(x+1)2+1,﹣2≤x≤1,则函数y的最小值是,最大值是.10.如图,在直角坐标系中,点A(0,a2﹣a)和点B(0,﹣3a﹣5)在y轴上,=6.当线段OM最长时,点M的坐标为.点M在x轴负半轴上,S△ABM三.解答题(共3小题)11.在平面直角坐标系中,O为原点,直线l:x=1,点A(2,0),点E,点F,点M都在直线l上,且点E和点F关于点M对称,直线EA与直线OF交于点P.(Ⅰ)若点M的坐标为(1,﹣1),①当点F的坐标为(1,1)时,如图,求点P的坐标;②当点F为直线l上的动点时,记点P(x,y),求y关于x的函数解析式.(Ⅱ)若点M(1,m),点F(1,t),其中t≠0,过点P作PQ⊥l于点Q,当OQ=PQ时,试用含t的式子表示m.12.已知关于x的函数y=kx2+(2k﹣1)x﹣2(k为常数).(1)试说明:不论k取什么值,此函数图象一定经过(﹣2,0);(2)在x>0时,若要使y随x的增大而减小,求k的取值范围;(3)试问该函数是否存在最小值﹣3?若存在,请求出此时k的值;若不存在,请说明理由.13.函数y=(m+2)是关于x的二次函数,求:(1)满足条件的m值;(2)m为何值时,抛物线有最低点?求出这个最低点.这时,当x为何值时,y 随x的增大而增大?(3)m为何值时,函数有最大值?最大值是多少?这时,当x为何值时,y随x 的增大而减小.二次函数最值问题(含答案)一.选择题(共8小题)1.A;2.D;3.D;4.B;5.C;6.B;7.D;8.C;9.1;9;10.(﹣3,0);三.解答题(共3小题)11.【解答】解:(Ⅰ)①∵点O(0,0),F(1,1),∴直线OF的解析式为y=x.设直线EA的解析式为:y=kx+b(k≠0)、∵点E和点F关于点M(1,﹣1)对称,∴E(1,﹣3).又∵A(2,0),点E在直线EA上,∴,解得,∴直线EA的解析式为:y=3x﹣6.∵点P是直线OF与直线EA的交点,则,解得,∴点P的坐标是(3,3).②由已知可设点F的坐标是(1,t).∴直线OF的解析式为y=tx.设直线EA的解析式为y=cx+d(c、d是常数,且c≠0).由点E和点F关于点M(1,﹣1)对称,得点E(1,﹣2﹣t).又点A、E在直线EA上,∴,解得,∴直线EA的解析式为:y=(2+t)x﹣2(2+t).∵点P为直线OF与直线EA的交点,∴tx=(2+t)x﹣2(2+t),即t=x﹣2.则有y=tx=(x﹣2)x=x2﹣2x;(Ⅱ)由(Ⅰ)可得,直线OF的解析式为y=tx.直线EA的解析式为y=(t﹣2m)x﹣2(t﹣2m).∵点P为直线OF与直线EA的交点,∴tx=(t﹣2m)x﹣2(t﹣2m),化简,得x=2﹣.有y=tx=2t﹣.∴点P的坐标为(2﹣,2t﹣).∵PQ⊥l于点Q,得点Q(1,2t﹣),∴OQ2=1+t2(2﹣)2,PQ2=(1﹣)2,∵OQ=PQ,∴1+t2(2﹣)2=(1﹣)2,化简,得t(t﹣2m)(t2﹣2mt﹣1)=0.又∵t≠0,∴t﹣2m=0或t2﹣2mt﹣1=0,解得m=或m=.则m=或m=即为所求.12.解:(1)将x=﹣2代入,得y=k(﹣2)2+(2k﹣1)•(﹣2)﹣2=0,故不论k取何值,此函数图象一定经过点(﹣2,0).(2)①若k=0,此函数为一次函数y=﹣x﹣2,当x>0时,y随x的增大而减小,∴k=0符合题意.②若k≠0,此函数为二次函数,而图象一定经过(﹣2,0)、(0,﹣2)∴要使当x>0时,y随x的增大而减小,开口向下,须满足k<0即可.综上,k的取值范围是k≤0.(3)若k=0,此函数为一次函数y=﹣x﹣2,∵x的取值为全体实数,∴y无最小值,若k≠0,此函数为二次函数,若存在最小值为﹣3,则=﹣3,且k>0,解得:k=符合题意,∴当k=时,函数存在最小值﹣3.13.解:(1)根据题意得m+2≠0且m2+m﹣4=2,解得m1=2,m2=﹣3,所以满足条件的m值为2或﹣3;(2)当m+2>0时,抛物线有最低点,所以m=2,抛物线解析式为y=4x2,所以抛物线的最低点为(0,0),当x≥0时,y随x的增大而增大;(3)当m=﹣3时,抛物线开口向下,函数有最大值;抛物线解析式为y=﹣x2,所以二次函数的最大值是0,这时,当x≥0时,y随x的增大而减小.。
专题07 二次函数的最值问题-九年级数学上册(解析版)

专题07二次函数的最值问题考点1:定轴动区间;考点2:动轴定区间。
1.在二次函数y =x 2﹣2x ﹣3中,当0≤x ≤3时,y 的最大值和最小值分别是()A .0,﹣4B .0,﹣3C .﹣3,﹣4D .0,0解:抛物线的对称轴是直线x =1,则当x =1时,y =1﹣2﹣3=﹣4,是最小值;当x =3时,y =9﹣6﹣3=0是最大值.答案:A .2.(易错题)已知二次函数y =a (x ﹣1)2﹣a (a ≠0),当﹣1≤x ≤4时,y 的最小值为﹣4,则a 的值为()A .12或4B .43或−12C .−43或4D .−12或4解:y =a (x ﹣1)2﹣a 的对称轴为直线x =1,顶点坐标为(1,﹣a ),当a >0时,在﹣1≤x ≤4,函数有最小值﹣a ,∵y 的最小值为﹣4,∴﹣a =﹣4,∴a =4;当a <0时,在﹣1≤x ≤4,当x =4时,函数有最小值,∴9a ﹣a =﹣4,解得a =−12;综上所述:a 的值为4或−12,答案:D.3.(易错题)当a ≤x ≤a +1时,函数y =x 2﹣2x +1的最小值为1,则a 的值为()A .﹣1B .2C .0或2D .﹣1或2解:当y =1时,有x 2﹣2x +1=1,解得:x 1=0,x 2=2.题型01定轴动区间∵当a≤x≤a+1时,函数有最小值1,∴a=2或a+1=0,∴a=2或a=﹣1,答案:D.4.已知函数y=﹣3(x﹣2)2+4,当x=2时,函数取得最大值为4.解:∵y=﹣3(x﹣2)2+4,∴抛物线的顶点坐标为(2,4),又∵a=﹣3<0,∴抛物线的开口向下,顶点是它的最高点,∴x=2时,函数有最大值为4.答案:2,4.5.若函数y=x2﹣6x+5,当2≤x≤6时的最大值是M,最小值是m,则M﹣m=9.解:原式可化为y=(x﹣3)2﹣4,可知函数顶点坐标为(3,﹣4),当y=0时,x2﹣6x+5=0,即(x﹣1)(x﹣5)=0,解得x1=1,x2=5.如图:m=﹣4,当x=6时,y=36﹣36+5=5,即M=5.则M﹣m=5﹣(﹣4)=9.故答案为9.6.已知二次函数y=ax2﹣4ax+3a(1)若a=1,则函数y的最小值为﹣1.(2)若当1≤x≤4时,y的最大值是4,则a的值为43或﹣4.解:(1)当a=1时,y=x2﹣4x+3=(x﹣2)2﹣1∵a=1>0∴抛物线的开口向上,当x=2时,函数y的最小值为﹣1.(2)∵二次函数y=ax2﹣4ax+3a=a(x﹣2)2﹣a∴抛物线的对称轴是直线x=2,∵1≤x≤4,∴当a>0时,抛物线开口向上,在对称轴直线x=2右侧y随x的增大而增大,当x=4时y有最大值,a×(4﹣2)2﹣a=4,解得a=43,当a<0时,抛物线开口向下,x=2时y有最大值,a×(2﹣2)2﹣a=4,解得a=﹣4.答案:(1)﹣1;(2)43或−4.7.(易错题)设a,b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数x的所有取值的全体叫做闭区间,表示为[a,b].对于任何一个二次函数,它在给定的闭区间上都有最小值.(1)函数y=﹣x2+4x﹣2在区间[0,5]上的最小值是﹣7(2)求函数=(+12)2+34在区间[0,32]上的最小值.(3)求函数y=x2﹣4x﹣4在区间[t﹣2,t﹣1](t为任意实数)上的最小值y min的解析式.解:(1)y=﹣x2+4x﹣2其对称轴为直线为x=2,顶点坐标为(2,2),函数图象开口向下.如图1所示:当x=5时,函数有最小值,最小值为﹣7.答案:﹣7.(2)=(+12)2+34,其对称轴为直线=−12,顶点坐标(−12,34),且图象开口向上.其顶点横坐标不在区间[0,32]内,如图2所示:当x=0时,函数y有最小值m=1.(3)将二次函数配方得:y=x2﹣4x﹣4=(x﹣2)2﹣8其对称轴为直线:x=2,顶点坐标为(2,﹣8),图象开口向上若顶点横坐标在区间[t﹣2,t﹣1]左侧,则2<t﹣2,即t>4.当x=t﹣2时,函数取得最小值:m=(−4)2−8=2−8+8若顶点横坐标在区间[t﹣2,t﹣1]上,则t﹣2≤2≤t﹣1,即3≤t≤4.当x=2时,函数取得最小值:y min=﹣8若顶点横坐标在区间[t﹣2,t﹣1]右侧,则t﹣1<2,即t<3.当x=t﹣1时,函数取得最小值:m=(−3)2−8=2−6+1综上讨论,得m=2−8+8(>4)−8(3≤≤4)2−6+1(<3).8.(易错题)已知二次函数y =﹣x 2+6x ﹣5.(1)求二次函数图象的顶点坐标;(2)当1≤x ≤4时,函数的最大值和最小值分别为多少?(3)当t ≤x ≤t +3时,函数的最大值为m ,最小值为n ,若m ﹣n =3,求t 的值.解:(1)∵y =﹣x 2+6x ﹣5=﹣(x ﹣3)2+4,∴顶点坐标为(3,4);(2)∵a =﹣1<0,∴抛物线开口向下,∵顶点坐标为(3,4),∴当x =3时,y 最大值=4,∵当1≤x ≤3时,y 随着x 的增大而增大,∴当x =1时,y 最小值=0,∵当3<x ≤4时,y 随着x 的增大而减小,∴当x =4时,y 最小值=3.∴当1≤x ≤4时,函数的最大值为4,最小值为0;(3)当t ≤x ≤t +3时,对t 进行分类讨论,①当t +3<3时,即t <0,y 随着x 的增大而增大,当x =t +3时,m =﹣(t +3)2+6(t +3)﹣5=﹣t 2+4,当x =t 时,n =﹣t 2+6t ﹣5,∴m ﹣n =﹣t 2+4﹣(﹣t 2+6t ﹣5)=﹣6t +9,∴﹣6t +9=3,解得t =1(不合题意,舍去),②当0≤t <3时,顶点的横坐标在取值范围内,∴m =4,i )当0≤t ≤32时,在x =t 时,n =﹣t 2+6t ﹣5,∴m ﹣n =4﹣(﹣t 2+6t ﹣5)=t 2﹣6t +9,∴t2﹣6t+9=3,解得t1=3−3,t2=3+3(不合题意,舍去);ii)当32<t<3时,在x=t+3时,n=﹣t2+4,∴m﹣n=4﹣(﹣t2+4)=t2,∴t2=3,解得t1=3,t2=−3(不合题意,舍去),③当t≥3时,y随着x的增大而减小,当x=t时,m=﹣t2+6t﹣5,当x=t+3时,n=﹣(t+3)2+6(t+3)﹣5=﹣t2+4,.m﹣n=﹣t2+6t﹣5﹣(﹣t2+4)=6t﹣9,∴6t﹣9=3,解得t=2(不合题意,舍去),综上所述,t=3−3或3.9.已知二次函数y=ax2+4x+a﹣1的最小值为2,则a的值为()A.3B.﹣1C.4D.4或﹣1解:∵二次函数y=ax2+4x+a﹣1有最小值2,∴a>0,y最小值=4a−24=4oK1)−424=2,整理,得a2﹣3a﹣4=0,解得a=﹣1或4,∵a>0,∴a=4.答案:C.10.设二次函数y=a(x﹣m)(x﹣m﹣k)(a>0,m,k是实数),则()A.当k=2时,函数y的最小值为﹣aB.当k=2时,函数y的最小值为﹣2aC.当k=4时,函数y的最小值为﹣aD.当k=4时,函数y的最小值为﹣2a题型02动轴定区间解:令y=0,则(x﹣m)(x﹣m﹣k)=0,∴x1=m,x2=m+k,∴二次函数y=a(x﹣m)(x﹣m﹣k)与x轴的交点坐标是(m,0),(m+k,0),∴二次函数的对称轴是:=1+22=rr2=2r2,∵a>0,∴y有最小值,当=2r2时y最小,即=o2r2−p(2r2−−p=−24,当k=2时,函数y的最小值为=−224=−;当k=4时,函数y的最小值为=−424=−4,答案:A.11.在平面直角坐标系中,二次函数y=x2+mx+m2﹣m(m为常数)的图象经过点(0,6),其对称轴在y轴左侧,则该二次函数有()A.最大值5B.最大值154C.最小值5D.最小值154解:由题意可得:6=m2﹣m,解得:m1=3,m2=﹣2,∵二次函数y=x2+mx+m2﹣m,对称轴在y轴左侧,∴m>0,∴m=3,∴y=x2+3x+6,∴二次函数有最小值为:4a−24=4×1×6−324×1=154.答案:D.12.已知二次函数y=x2﹣2mx(m为常数),当﹣1≤x≤2时,函数值y的最小值为﹣2,则m的值是()A.32B.2C.32或2D.−32或2解:y=x2﹣2mx=(x﹣m)2﹣m2,①若m<﹣1,当x=﹣1时,y=1+2m=﹣2,解得:m=−32;②若m>2,当x=2时,y=4﹣4m=﹣2,解得:m=32<2(舍);③若﹣1≤m≤2,当x=m时,y=﹣m2=﹣2,解得:m=2或m=−2<−1(舍),∴m的值为−32或2,答案:D.13.(易错题)当﹣1≤x≤2时,二次函数y=x2+2kx+1的最小值是﹣1,则k的值可能是32或−解:对称轴:x=−22=−k,分三种情况讨论:①当﹣k<﹣1时,即k>1时,此时﹣1≤x≤2在对称轴的右侧,y随x的增大而增大,=(﹣1)2+2k×(﹣1)+1=﹣1,∴当x=﹣1时,y有最小值,y小k=32,②当﹣1≤﹣k≤2时,即﹣2≤k≤1,对称轴在﹣1≤x≤2内,此时函数在﹣1≤x≤﹣k,y随x的增大而减小,在﹣k≤x≤2时,y随x的增大而增大,=(﹣k)2+2k•(﹣k)+1=﹣1,∴当x=﹣k时,y有最小值,y小k2﹣2k2+2=0,k2﹣2=0,k=±2,∵﹣2≤k≤1,∴k=−2,③当﹣k>2时,即k<﹣2,此时﹣1≤x≤2在对称轴的左侧,y随x的增大而减小,∴当x=2时,y有最小值,y=22+2k×2+1=﹣1,小k=−32(舍),综上所述,k的值可能是32或−2,答案:32或−2.14.已知y=﹣x(x+3﹣a)是关于x的二次函数,当x的取值范围在1≤x≤5时,若y在x=1时取得最大值,则实数a的取值范围是a≤5.解:第一种情况:当二次函数的对称轴不在1≤x≤5内时,此时,对称轴一定在1≤x≤5的左边,函数方能在这个区域取得最大值,x=K32<1,即a<5,第二种情况:当对称轴在1≤x≤5内时,对称轴一定是在顶点处取得最大值,即对称轴为x=1,∴K32=1,即a=5综合上所述a≤5.答案:a≤5.15.(易错题)已知二次函数y=x2﹣2hx+h,当自变量x的取值在﹣1≤x≤1的范围中时,函数有最小值n,则n的最大值是14.解:二次函数y=x2﹣2hx+h图象的对称轴为直线x=h.当h≤﹣1时,x=﹣1时y取最小值,此时n=1+2h+h=1+3h≤﹣2;当﹣1<h<1时,x=h时y取最小值,此时n=h2﹣2h2+h=﹣h2+h=﹣(h−12)2+14≤14;当h≥1时,x=1时y取最小值,此时n=1﹣2h+h=1﹣h≤0.综上所述:n的最大值为14.答案:14.16.(易错题)已知二次函数y=x2﹣2x+2在t≤x≤t+1时的最小值是t,则t的值为1或2.解:y=x2﹣2x+2=(x﹣1)2+1,分类讨论:(1)若顶点横坐标在范围t≤x≤t+1右侧时,有t+1<1,即t<0,此时y随x的增大而减小,=t=(t+1)2﹣2(t+1)+2,∴当x=t+1时,函数取得最小值,y最小值方程无解.(2)若顶点横坐标在范围t≤x≤t+1内时,即有t≤1≤t+1,=1,解这个不等式,即0≤t≤1.此时当x=1时,函数取得最小值,y最小值∴t=1.(3)若顶点横坐标在范围t≤x≤t+1左侧时,即t>1时,y随x的增大而增大,=t=t2﹣2t+2,解得t=2或1(舍弃),∵当x=t时,函数取得最小值,y最小值∴t=1或2.答案:1或2.17.已知函数y=﹣x2+bx+c(b,c为常数)的图象经过点(0,﹣3),(﹣6,﹣3).(1)求b,c的值.(2)当﹣4≤x≤0时,求y的最大值.(3)当m≤x≤0时,若y的最大值与最小值之和为2,求m的值.解:(1)把(0,﹣3),(﹣6,﹣3)代入y=﹣x2+bx+c,得b=﹣6,c=﹣3.(2)∵y=﹣x2﹣6x﹣3=﹣(x+3)2+6,又∵﹣4≤x≤0,∴当x=﹣3时,y有最大值为6.(3)①当﹣3<m≤0时,当x=0时,y有最小值为﹣3,当x=m时,y有最大值为﹣m2﹣6m﹣3,∴﹣m2﹣6m﹣3+(﹣3)=2,∴m=﹣2或m=﹣4(舍去).②当m≤﹣3时,当x=﹣3时y有最大值为6,∵y的最大值与最小值之和为2,∴y最小值为﹣4,∴﹣(m+3)2+6=﹣4,∴m=−3−10或m=−3+10(舍去).综上所述,m=﹣2或−3−10.18.(易错题)已知二次函数y=x2+bx+c(b,c为常数).(Ⅰ)当b=2,c=﹣3时,求二次函数的最小值;(Ⅱ)当c=5时,若在函数值y=1的情况下,只有一个自变量x的值与其对应,求此时二次函数的解析式;(Ⅲ)当c=b2时,若在自变量x的值满足b≤x≤b+3的情况下,与其对应的函数值y的最小值为21,求此时二次函数的解析式.解:(Ⅰ)当b=2,c=﹣3时,二次函数的解析式为y=x2+2x﹣3=(x+1)2﹣4,∴当x=﹣1时,二次函数取得最小值﹣4;(Ⅱ)当c=5时,二次函数的解析式为y=x2+bx+5,由题意得,x2+bx+5=1有两个相等是实数根,∴△=b2﹣16=0,解得,b1=4,b2=﹣4,∴二次函数的解析式y=x2+4x+5,y=x2﹣4x+5;(Ⅲ)当c=b2时,二次函数解析式为y=x2+bx+b2,图象开口向上,对称轴为直线x=−2,①当−2<b,即b>0时,在自变量x的值满足b≤x≤b+3的情况下,y随x的增大而增大,∴当x=b时,y=b2+b•b+b2=3b2为最小值,∴3b2=21,解得,b1=−7(舍去),b2=7;②当b≤−2≤b+3时,即﹣2≤b≤0,∴x=−2,y=34b2为最小值,∴34b2=21,解得,b1=﹣27(舍去),b2=27(舍去);③当−2>b+3,即b<﹣2,在自变量x的值满足b≤x≤b+3的情况下,y随x的增大而减小,故当x=b+3时,y=(b+3)2+b(b+3)+b2=3b2+9b+9为最小值,∴3b2+9b+9=21.解得,b1=1(舍去),b2=﹣4;∴b=7时,解析式为:y=x2+7x+7b=﹣4时,解析式为:y=x2﹣4x+16.综上可得,此时二次函数的解析式为y=x2+7x+7或y=x2﹣4x+16.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学竞赛专题讲座 ---二次函数的最值问题一、内容概述对二次函数2(0)y ax bx c a =++≠,若自变量为任意实数,则取最值情况为:(1)当0,2ba x a>=-时,244ac b y a -=最小值(2)当0,2ba x a<=-时,244ac b y a -=最大值若自变量x 的取值范围为()x αβαβ≤≤≠,则取最值分0a >和0a <两种情况,由α、β与2b a-的大小关系确定。
1.对于0a >:(1)当2baαβ<≤-,因为对称轴左侧y 随x 的增大而减小,所以y 的最大值为()y α,最小值为()y β。
这里()y α、()y β分别是y 在x α=与x β=时的函数值。
(2)当2baαβ-≤≤,因为对称轴右侧y 随x 的增大而增大,所以y 的最大值为()y β,最小值为()y α。
(3)当2b a αβ≤-≤,y 的最大值为()y α、 ()y β中较大者,y 的最小值为()2by a-.2.对于0a <(1)当2baαβ<≤-,y 的最大值为()y β,最小值为()y α。
(2)当2baαβ-≤≤,y 的最大值为()y α,最小值为()y β。
(3)当2b a αβ≤-≤,y 的最小值为()y α、 ()y β中较大者,y 的最大值为()2by a-.综上所述,求函数的最大、最小值,需比较三个函数值:()y α、()y β、()2by a-二、例题解析例1 已知12,x x 是方程22(2)(35)0x k x k k --+++=的两个实数根,求2212x x +的最大值和最小值。
解:由于题给出的二次方程有实根,所以0∆≥,解得443k -≤≤-∴y =2212x x +=21212()2x x x x +-=2106k k ---∵函数y 在443k -≤≤-随着k 的增大而减小 ∴当4k =-时,8y =最大值;当43k =-时,509y =最小值例2 (1)求函数243y x x =--在区间25x -≤≤中的最大值和最小值。
(2)已知:1y ≤,且21x y +=,求222163x x y ++的最小值。
解 (1)若240,2,x x -≥≥即则234y x x =-- ∴2325()24y x =--若240,2,x x -≤≤即则234y x x =--+ ∴2325()24y x =-++由此在25x -≤≤画出草图∴2325()24y x =--(25x ≤≤),当5x =时,6y =最大值;当2x =时,6y =最小值- 对2325()24y x =-++(22x -≤≤),当32x =-时,254y =最大值;2x =时,6y =最小值-综上所述,2x =时,6y =最小值-;当32x =-时,254y =最大值.(2)由21x y +=得12yx -=,12y x =-由1y ≤ 得11x -≤≤ 故01x ≤≤∴22221192163144314()77z x x y x x x =++=++=++z 为开口向上,对称轴为17x =-的抛物线,虽然有最小值197,但17x =-不在01x ≤≤的范围内,因此不是所求的最值。
又0x =时,3z =;1x =时,21z = ∴所求的最小值为3例3 有两条抛物线223,9y x x y x =-=-+,通过点(,0)P t 且平行于y 轴的直线,分别交这两条抛物线于点A 和B ,当t 在0到3的范围内变化时,求线段AB 的最大值。
解:∵A 和B 的纵坐标分别为223,9t t t --+,∴AB =2222381(9)(3)2392()48t t t t t t -+--=-++=--+ ∴当34t =时,线段AB 取得最大值818例4 已知二次函数22962y x ax a a =---+11()33x -≤≤有最大值-3,求实数a 的值。
分析:本题是关于二次函数最值的“逆向问题”,由题设知,二次函数22962y x ax a a =---+的对称轴是3a x =-,而x 的取值范围是1133x -≤≤,所以要对3a -是否在x 的取值范围内讨论求解。
解:(1)若11333a -≤-≤,即11a -≤≤,抛物线开口向下,当3ax =-时,2y a =最大值∵二次函数最大值3-,即32a =-与11a -≤≤矛盾,舍去。
(2)若1,133a a -<->即当1133x -≤≤时,y 随x 增大而减小,当13x =-时,241y a a =-+-最大值,由2413,2a a a -+-=-=解得又1a >,∴2a =(3)若1,133a a -><-即 当1133x -≤≤时,y 随x 增大而增大,当13x =时,21y a =--最大值,由213,2a a --=-=±解得又1a <-,∴2a =-综上所述,26a =+或2a =-例5 在坐标平面上,纵坐标与横坐标都是整数的点称为整点,试在二次函数2910105x x y =-+的图像上找出满足y x ≤的所有整点(),x y ,并说明理由。
解:∵y x ≤,即21810x x x -+≤ ∴21810x x x -+≤ ①当0x ≥时,①式即为21810x x x -+≤,解得29x ≤≤ 此时,满足条件的点有()()()()2,2,4,3,7,6,9,9 当0x <时,21810x x x -+≤-,解得63x -≤≤- 此时满足条件的点有()()6,6,3,3-- 综上所述,满足条件的整点,共有6个。
例6求分式22365112x x x x ++++的最小值解:令2223652612212x x y x x x x +==-+++++,问题转化为考虑函数222z x x =++的最小值。
∵2222(1)1z x x x =++=++ ∴当1x =-时,min 1z =,min 4y =例7已知边长为4的正方形截去一个角后成为五边形ABCDE (如图),其中AF=2,BF=1.试在AB 上求一点P ,使矩形PNDM 有最大面积。
解:设矩形PNDM 的边DN=x ,NP=y ,于是矩形PNDM 的面积S xy =,24x ≤≤易知CN =4x -, EM =4y -,且有NP BC BF CN AF -=,即3142y x -=-所以152y x =-+,2152S xy x x ==-+,24x ≤≤ 所有根据二次函数的性质可得当4x =时max 12S =例7二次函数的最值问题训练题班级 姓名 学号1.填空(1)已知函数211(03)22y x x x =-++≤≤,当x =________时,y 取最大值是______;当x =________时,y 取最小值是______.(2)已知抛物线2(0)y ax bx c a =++≠的开口向上,对称轴是直线2x =,当1230,3x x x ==,对应的值y 分别是1y 、2y 、3y ,则1y 、2y 、3y 的大小关系是_________.(3)函数24)y x =≤≤的最大值与最小值分别是___________.(4)已知二次函数22y x x a =++(01x ≤≤)的最大值是3,那么a 的值为__________. 2.设x 为正整数,则函数21y x x x=-+的最小值是多少?3.已知:01x ≤≤,函数22ay x ax =-+的最小值为m ,试求m 的最大值。
4.对于任意实数x ,不等式210kx kx --<恒成立,求k 的取值范围。
5.如图,半径为1的半圆内接等腰梯形,其下底是半圆的直径,试求:(1)它的周长y 与腰长x 之间的函数关系式,并求出自变量x 的取值范围。
(26.已知实数a 、b 满足等式()2223a b -+=,求:ba的最大值和最小值。
7.已知:方程222(1)212170x k x k k --+-+=,两根为1x 、2x ,求2212x x +的最大值与最小值,并求此时方程的根。
8.根据某服装店统计,服装价格每提高3%,出售服装的件数就要降低2%,设某种服装提价x%,结果每天的经营收入(价格×出售价数)为原来的y 倍,(1)写出y 与x 的函数关系;(2)要使经营收入不降低,x 应控制在什么范围内? (3)当x 是什么值时,能使经营收入最多?9.求函数222121x ax y x bx ++=++的最值。
参考答案1.(1)x=1,y=1,x=3,y=-1;(2) 231y y y <<;(3)最大值与最小值分别为:2,0;(4)a=0; 2.1;3.a =0时,m 有最大值0;a =1时,m 有最大值0.25;a =2时,m 有最大值0 4.-4<k ≤0;(2)x=1时,周长最大为56.当1,22a b =-=-时,b a 取得最小值1,22a b ==时,b a7.k=8时,最大值为98,方程为214490x x -+=,两根为7;k =2时,最小值为2,方程为2210x x -+=,两根为1。
8.(1)(1)(1)100150x xy =+- (2)0≤x ≤50 (3)当x=25时,最多。
9.解:把222121x ax y x bx ++=++化为关于x 的二次方程()212()(1)0y x a by x y -+-+-=,要使这个方程有实数根,则根据222(1)2(1)10b y ab y a ∆=---+-≥① 210b ->,即1b >,∴1,22(1)1ab a b y b -±-=-,∴2(1)1ab a b y b ---≤-或2(1)1ab a b y b -+-≥- ∴2(1)1ab a b y b ---=-极大值,2(1)1ab a by b -+-=-极小值②210b -<,即1b <,则有 22(1)(1)11ab a b ab a b y b b -+----≤≤-- ∴2(1)1ab a b y b ---=-极大值,2(1)1ab a by b -+-=-极小值 ③210b -=,即1b =,得()2112a ab y --≤2112(1)a ab y ab ->≤-时,,∴212(1)a y ab -=-极大值2112(1)a ab y ab -<≥-时,,∴212(1)a y ab -=-极小值。