医学成像技术(三维重建技术)课件
2024版年度医学影像检查技术学ppt课件

医学影像检查技术学ppt课件•医学影像检查技术学概述•X线检查技术•超声检查技术•核医学检查技术目•磁共振检查技术•医学影像检查技术比较与选择录定义与发展历程定义医学影像检查技术学是研究医学影像形成、处理、存储、传输和显示等技术的科学。
发展历程从早期的X线摄影、超声成像,到现代的计算机断层扫描(CT)、磁共振成像(MRI)等技术的不断发展,医学影像检查技术学已经成为现代医学不可或缺的一部分。
X线成像技术超声成像技术核医学成像技术磁共振成像技术医学影像检查技术分类包括普通X线摄影、计算机X线摄影(CR)、数字X线摄影(DR)等。
包括正电子发射断层扫描(PET)、单光子发射计算机断层扫描(SPECT)等。
包括B型超声、M型超声、多普勒超声等。
包括常规MRI、功能MRI (fMRI)、扩散张量成像(DTI)等。
医学影像检查能够提供人体内部结构和器官的形态、功能等信息,帮助医生做出准确的诊断。
辅助诊断监测治疗效果早期筛查医学影像检查可以监测疾病的治疗效果,为医生调整治疗方案提供依据。
医学影像检查能够早期发现一些潜在疾病,提高治愈率和生活质量。
030201医学影像检查在临床应用中的重要性随着计算机和网络技术的发展,医学影像检查技术正逐步实现数字化和网络化,提高图像质量和传输效率。
数字化和网络化人工智能和机器学习等技术的应用,使得医学影像检查技术更加智能化和自动化,提高诊断准确性和效率。
智能化和自动化多种医学影像检查技术的融合成像,能够提供更全面、更准确的诊断信息。
多模态融合成像随着医学影像检查技术的不断发展,其安全性也得到了不断提升,减少了对患者的辐射损伤和不良反应。
安全性提升医学影像检查技术发展趋势X 线由高速电子撞击靶物质产生,具有穿透性、荧光效应、摄影效应等特性。
X 线产生与性质包括X 线管、高压发生器、控制台等,现代设备还具备数字化成像功能。
X 线设备X 线穿透人体后,不同组织对X 线的吸收和散射程度不同,形成密度差异的影像。
医学图像重建PPT课件

一 图像重建概述
不同密度体对射 线的吸收不同
对射线吸收相同的 物体,密度分布不 一定相同
入射线
高密度体
少透射
入射线
低密度体
多透射
入射线
6ห้องสมุดไป่ตู้
222
入射线
6
141
等强度射线穿透不同组织的情况
投影重建时需要一系列投影才能重建图像。
一 图像重建概述
➢ 分类:
➢ 根据被用于图像重建的数据获取方式不同,可以分为透射 断层成像、发射断层成像和反射断层成像。
插值法:
▪ (一)基于图像灰度值的插值方法,如最邻近法、线性插值、样条插值等 ,它是在原始灰度断层图像序列中,补充若干“缺少”的切片,这些插值方 法插值精度不高,产生的新断面通常会出现边缘模糊,由此重建出的三维 真实感图像表面会产生伪像,当断层间距较大时这一点尤其明显. 造成这 种情况的主要原因是这些方法没有考虑到物体几何形状的变化.
二 医学CT三维图像重建
➢ 投影切片定理给出了图像在空间域上对X轴的投影与 在频率域u轴的切片之间的关系。
➢ 如果投影并非是对X轴进行,而是对与空间域的X 轴成 任意的角度θ的方向进行投影,是否频率域上存在与u 轴成相同的θ角度方向上的中心切片与之相等?
➢ 回答是肯定的,二维傅里叶变换的旋转定理。
3) 为了增强三维逼真效果,突出显示不同组织的边界面,可以采样表面 并进行明暗计算。
➢ 根据成像所采用的射线波长不同,可以分为X射线成像、 超声成像、微波成像、激光共焦成像等。
二 医学CT三维图像重建
(1)现实意义
在医疗诊断中,观察病人的一组二维CT 断层图像是医生诊断病情的常 规方式. 现有的医用X 射线CT 装置得到的序列断层图像,虽能反映断层内 的组织信息,但无法直接得到三维空间内组织的形貌(如肺部肿瘤的表面 纹理) 和组织间相互关联的情况,而临床上组织形貌对组织定征(如肿瘤的 恶性或良性判断) 却是十分重要的. 仅靠CT 断层图像信息,要准确地确定 病变体的空间位置、大小、几何形状以及与周围组织之间的空间关系,是 十分困难的.因此迫切需要一种行之有效的工具来完成对人体器官、软组 织和病变体的三维重建和三维显示. CT 三维重建技术就是辅助医生对病 变体和周围组织进行分析和显示的有效工具,它极大地提高了医疗诊断的 准确性和科学性。
医学图像处理三维重建 ppt课件

医学图像处理三维重建
医学图像处理三维重建
医学图像处理三维重建
医学图像处理三维重建
医学图像处理三维重建
医学图像处理三维重建
医学图像处理三维重建
医学图像处理三维重建
医学图像处理三维重建
医学图像处理三维重建
医学图像处理三维重建
医学图像处理三维重建
医学图像处理三维重建
医学图像处理三维重建
医学图像处理三维重建
• 正确读取DICOM图像后,通过选择合适的
窗宽、窗位,将窗宽范围内的值通过线性 或非线性变换转换为小于256的值,将CT图 像转换为256色BMP图像。
医学图像处理三维重建
• 图像增强就是根据某种应用的需要,人为
地突出输入图像中的某些信息,从而抑制 或消除另一些信息的处理过程。使输入图 像具有更好的图像质量,有利于分析及识 别。
• 在提取边界时,首先采用逐行扫描图片的办法,
通过比较相邻点的像素值,找到图片边界上的一 个点,作为切片边界的起点。然后从边界起点开 始,逐点判断与之相邻的八个点,如果某点为图 片的边界点则记录下,并开始下一步判断,直到 获得所有的边界点。
医学图像处理三维重建
• 重建数据的采集 • 边界轮廓曲线表面绘制 • 设置图像的颜色及阴影效果 • 设置图像光照效果 • 设置图像的显示效果
缘检测的要求比较高;
• 而体重建直接基于体数据进行显示,避免了
重建过程中所造成的伪像痕迹,但运算量较 大。
医学图像处理三维重建
医学图像处理三维重建
• 为了有利于从图像中准确地提取出有用的
信息,需要对原始图像进行预处理,以突 出有效的图像信息,消除或减少噪声的干 扰。
• 图像格式的转换与读写 • 图像增强
医学图像的处理及三维重建

面绘制方法的优缺点
优点:可以采用传统图形学的绘制方法 和现有的交互算法、图形硬件和图形设 备,计算量小,运行速度快。
缺点:可能会丢失三维数据场中的一些 细节信息,从而降低结果的保真性。
体绘制
体绘制技术的中心思想是为每一个体素指 定一个不透明度(Opacity),由光线穿过整 个数据场,并考虑每一个体素对光线的透 射、发射和反射作用,这里体素就是将三 维图像中的每一像素看成是空间中的一个 六面体单元。体绘制的步骤原则上可分为 投射、消隐、渲染和合成等4个步骤。
面绘制的方法
边界轮廓线表示法:首先通过分割对二维断 层图像提取轮廓线,然后把各层对应的轮廓 线拼接在一起表示感兴趣物体的表面边界。
表面曲面表示法:基于表面曲面的表示方法 是由轮廓重建物体的表面,用三角形或多边 形的小平面(或曲面)在相邻的边界轮廓线间 通过特定的算法填充形成物体的表面。
经典算法
体绘制的方法
空间域方法:直接对原始的体数据进 行处理显示
变换域方法:是将体数据变换到变换 域,然后再进行处理显示
经典算法
基于空间域的经典方法:光线跟踪法(Ray Casting),抛雪球法(Splatting),错切一形 变法(Shear-Warp)等。
基于变换域的方法:频域体绘制法 (Frequency Domain Volume Rendering),基于 小波的体绘制法(Wavelet.Based Volume Rendering)等。
表面曲面表示法经典的算法: 立方块法(Cuberille), 移动立方体法(Marching Cubes), 剖分立方体法(Dividing Cubes)等
面绘制示例
面绘制步骤
重建数据的采集 边界轮廓曲线表面绘制 设置图像的颜色及阴影效果 设置图像光照效果 设置图像的显示效果
CT三维重建技术临床应用PPT课件

第21页/共80页
冠 状 动 脉 动 静 脉 瘘 C TA 表 现
右冠状动脉窦房结支—肺动脉瘘显示
第22页/共80页
头 颈 部 C TA 的 成 像 技 术 与 应 用
多 层 螺 旋 C T 的 头 颈 部 C TA 检 查 是 一 种 无 创 、 快 速 、 安 全的头颈部血管病变的检查方法,作为头颈部血管病变的筛 选手段,可同DSA检查相媲美,可在很大程度上取代有创的 DSA检查。
第27页/共80页
先 天 变 异 的 C TA 表 现
左侧椎动脉先天缺失
第28页/共80页
头颈部动脉粥样硬化
左侧颈内动脉钙斑
第29页/共80页
头颈部动脉粥样硬化
双侧颈内动脉硬斑、钙斑并局部血管狭窄
第30页/共80页
头颈部动脉粥样硬化
双侧颈总动脉近段、中、远端、双侧颈内动脉近、远端钙斑形成
第31页/共80页
常使用最大密度投影法(MIP)、最小密度投影法 (MinP)、表面覆盖法(SSD)、多曲面重建(MPR)、容积 再现法(VR)或血管专用软件等重组技术显示图像。通过 测量感兴趣区血管最高值和最低值,定出相应的阈值,通过 编辑软件减去软组织、骨头、静脉或不相关的动脉,在不同 的角度对图像进行观察、分析。
第44页/共80页
主动脉夹层显示
第45页/共80页
主动脉夹层显示
第46页/共80页
主动脉瘤显示
第47页/共80页
肺动脉栓塞
右肺动脉干远段、右肺上叶支及左肺上叶、舌叶、下叶分支栓塞
第48页/共80页
肺动脉发育不良
右侧肺动脉先天发育不良
第49页/共80页
肺动、静脉瘘
双肺下叶外基底段及右肺下叶背段动静脉瘘
《医学影像技术》PPT课件

影像。
2、造影检查 → 将对比剂引入器官内或周围 → 人为形成密度
差 → 形成影像。造影检查明显扩大了X线检查范围。
3、对比剂分易被X线穿透和不易被X线穿透两大类。
↓
↓
阴性造影剂
阳性造影剂
↓
↓
氧气、二氧化碳 钡剂、碘剂
4、对比剂引入人体内方法有直接引入(逆行造影、经皮肝穿
等)和生理积聚(如IVP、胆道静脉造影等),使用对比剂
第四代:探测器数目增加到一千个以上,并固定在扫描架四周,仅球 管绕患者旋转(即旋转固定式),并多采用滑环技术,使扫 描进一步缩短,并且可以进行螺旋扫描。
第五代:即超高速CT,采用电子枪结构,在扫描速度上有飞跃发展,
1秒内可扫描17层,故尤其适用于心脏动态检查,此外,还能
进行血流量的测定,三维图像重建,电影动态摄影,功能诊
a
6
a
7
2、高千伏摄影 (High kilovolt photography) (1)120KV↑,∵散射线 ↑,∴采用12:1↑滤线 栅和r值↑的X线胶片, mAs量↓,辐射线量↓。 (2)常用于胸部、心脏、胸 部肿块的检查。
a
8
•
• 3、软X线摄影(Soft X-ray photography)
宫等能很好地显示其内部结构和微小的病变、病灶、窗宽、窗位的
随意调节能最大限度地减少不需要的组织结构,使病灶显示最隹。 检查方法简便,快捷、无痛苦、无创伤,在放射领域中很快得到了 迅速发展,应用面也越来越广。
五、缺点(Defect)
1、含有放射线;
2、曝光总时间较长,易产生运动性伪影;
3、空间分辨率较差,有部分容积效应;
应注意药物反应。
a
21
《CT三维重建》PPT课件

2021/6/10
15
MPR or CPR
让三维体元数据分别绕X、Y、Z轴旋转任意角度,再 用任意平面截取,或划一曲面线,以曲面线所确定的柱 面来截取新层面,构成多平面重组或曲面重组。
优点:①能以任何方位、角度、层厚、层数自由重 组新的断面图像;②重组图像可反映X线衰减值的差异, 当血管显示不清尤其有价值;③操作方便。
8、MRA ( TOF) 和( PC) 两种技术、二维(2D) 和三维(3D) 图像重建,3D - TOF 的图像分辨率较高,对血管的搏 动敏感性较差,对供血动脉较粗、血流速度快。而复 杂血管,例如动静脉畸形的检查较为理想;3D - PC 技 术,特别在血管畸形有明显出血的时候为最佳检查方 法。但是3D - PC 因需反复预测最佳血液流速,成像时 间长,临床应用较少。
小血管易产生狭窄、梗阻假象,轻-中度狭窄不易鉴别。
2021/6/10
21
SSD
2021/6/10
22
VR
给不同CT值指定不同的颜色和透明度, 则三维体元阵列视为半透明的,假想投射光 线以任意给定的角度穿过它,受到经过的体 元作用,通过观察平面得到图像。
优点:丢失信息最少,立体感强。 缺点:①操作选择适宜的CT值分类重要, 需要人机交互动态进行;②运算量大,需要 大容量计算机。
血管畸形:静脉型(海面状血管畸形、静脉畸形)
淋巴管型(淋巴管瘤、囊性水肿)
毛细血管型
动静脉型(动静脉畸形、动静脉瘘)
混合型
3、不足:海面状血管畸形及静脉畸形形态学及生物学不同
没有动脉型血管畸形一类
淋巴管型畸形不见于CNS
2021/6/10
3
Russell分类
1、病理解剖为基础,20年沿用 2、分类:动静脉畸形
CT三维成像技术的临床应用PPT课件

这个患者,急性的腹痛,上腹部绞痛。 B 超, 可能提示胆总管的扩张。胆囊内有这么多的 结石。胆总管下端有没有结石,有没有器质 性、阻塞性的改变, B 超有些时候由于周围 肠气的干扰,对局部的结构显示的并不是很 清楚。
9
这时候我们做一个 CT 的扫描,轴位扫描显
示在胰头可以看到有一个高密度结节影,胆
12
肠系膜淋巴结结核,淋巴结肿大其中一种早 期的改变叫炎症型,它可以没有出现明显的 干酪坏死,可以表现均匀性的中等或者轻到 中等尤其是中等强化的这种表现。
多平面重建可以采用高分辨率算法,它可以 显示肺内的间质性的病变,也可以显示肺里 这些结节样的病变。高分辨率算法它是不受 影响的,尤其非常清楚的显示气管和支气管 的走行,在一定的角度上可以显示支气管管 腔形态的变化。
24
这是一个骨盆多发性的骨折,包括右侧骶髂 关节的部分半脱位,髂骨翼的骨折,坐骨的 骨折,耻骨上下支的骨折,整个骨盆是变形 的,这个图象大家可以看到,图象清晰度还 是不错的,对比度也非常得好。
25
在骨骼上,这样双膝关节的解剖立体感,由于我们 本身的胶片打出的图像,它是属于灰阶图象,所以 这样彩色图象,灰阶胶片往往不太容易接受。如果 我们把它变成 VRT 图象的一个灰阶图象,黑白图象 为主,打在胶片上显示的就非常得漂亮,像这样一 个膝关节外侧平台的一个纵形的骨折,劈裂形的骨 折。髋关节髋臼外侧缘的一个撕脱性的骨折,这个 骨片实际上是从髋臼后缘的上面这部分掉下来的。 表现一个明显的撕脱性的骨折,这个骨片应该是镶 嵌在上面去的。
分辨率、降低噪声和消除伪影
2
1、一定要容积扫描,也就是我们所说的螺 旋 CT 扫描方式采集图像;
2、血管成像对比剂浓度、总量、流量、准 确扫描时相;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光源 入射光
法向量 反射光 视线
折射定律
折射定律:折射线在入射线与法线构成的平 面上,折射角与入射角满足 1 sin 2 sin
入射光
1 2
折射光
能量关系
在光的反射和折射现象中的能量分布:
Ii I d I s It I v
下标为i,d,s,t,v的能量项分别表示为入射光 强,漫反射光强,镜面反射光强,透射光强, 吸收光强
反射光,透射光决定了物体所呈现的颜色
简单光照明模型-环境光
假定物体是不透明的(即无透射光)
环境光:在空间中近似均匀分布,即在任何位置、
任何方向上强度一样,记为Ia
环境光反射系数Ka:在分布均匀的环境光照射
7.2 主要内容
预处理 分割 模型构建
模型网格简化
绘制
Байду номын сангаас
预处理
分割
二维分割
三维分割
重建
绘制 面绘制
体绘制
7.3 表面绘制
Marching Cube 算法
表面 重建 皮肤 灰度 阈值
HU=500
表面 重建 皮肤
HU=500
骨头
HU=1150
表面 重建
透明显示
能量是守恒的
简单光照明模型
模拟物体表面的光照明物理现象的数
学模型-光照明模型 简单光照明模型亦称局部光照明模型, 其假定物体是不透明的,只考虑光源 的直接照射,而将光在物体之间的传 播效果笼统地模拟为环境光。 可以处理物体之间光照的相互作用的 模型称为整体光照明模型
简单光照明模型
光照射到物体表面,主要发生: 反射 透射(对透明物体) 部分被吸收成热能
影响观察者看到的表面颜色的因素
①物体的几何形状
②光源
③环境
位置、距离、颜色、数量、强度、种类
遮挡关系、光的反射与折射、阴影
④视点位置 ⑤物性
材料、颜色、透明度 折射性
⑥表面光洁度
光源
①几何性质
点光源
线光源 面光源
②光谱组成
白色光等能量的各种波长可见光的组合 彩色光 单色光
光的传播 反射定律:入射角等于反射角,而且反射光 线、入射光线与法向量在同一平面上
整形与假肢手术规划
可视化技术在整形外科中的应用 是假肢设计(造型)。例如,在做髋 骨更换手术前,需要根据病人的个体 特征正确地设计所需髋骨假肢的外形, 才能减少因假肢形状差异造成手术失 败的概率。首先根据CT或MR图象重构 假肢的精确三维模型,交工厂制作, 然后进行手术更换。
放射治疗计划
利用放射性射线杀死或抑制恶性肿 瘤需要事先做出仔细规划,包括剂量计 算和照射点定位。如果辐射定位不准或 剂量不当,轻则造成治疗效果不佳,重 则危及周围正常组织。根据医学图象重 建病人病灶区的解剖结构,并作出精确 定位和剂量计算已是实际可行的。
体光照模型
体光照模型是研究直接体绘制的基础。从物理意 义上讲,当光线穿过体素与光线遇到一曲面时,会发 生不同的光学现象。前者如光线穿过云层会发生吸收、 散射等现象;后者如光线射到桌面上,有漫射、反射、 透射等现象。不同的物理背景决定了体光照强度的计 算与面光照强度的计算有不同的模型和方法。体光照 模型就是研究光线穿过体素时的变化,将光线穿过体 素时的物理现象用数学模型来描述。在目前的体绘制 中,采用得较多的有: 源-衰减模型(Source attenuation) 变密度发射模型(Varying density emitters) 材料分类及组合模型(Classification and mixture)
第七章
三维重建技术
7.1 概述
任务
二维
三维
发展
早期探索阶段(1970s - 1980s)
主要针对心脏、肝脏、胚胎、神经 等器官的三维重建;表面重建的算法: 轮廓线提取算法、轮廓线对应算法、三 角片镶嵌算法、曲面拟合算法等等;
基础算法研究阶段(1990s)
基于体元的表面绘制算法:Cuberille, Marching Cubes,Dividing Cubes;直 接体绘制算法:Raycasting,Splatting, V-Buffer;及各种加速算法;
实用系统研究阶段(90年代末) 外科手术模拟系统、放射治疗 模拟、虚拟内窥镜、整形外科、解 剖模拟。
应用领域
诊断医学:
在临床核医学研究中,CT图象、磁共 振图象和超声图象的广泛应用是诊断的有 力的手段。应用先进的可视化技术对这些 图象进行处理、构造三维实体模型以及对 其进行剖切显示,有助于了解复杂解剖特 征的空间定位和随着时间所发生的变化。
皮肤
HU=500
表面 重建
阻光度=0.8 阻光度=0.6
透明显示
皮肤
HU=500
骨骼 HU=1150
阻光度=0.4
阻光度=0.25
7.3 体绘制
在自然环境和计算模型中,许多对象和现象只 能用三维数据场来表示。与传统的计算机图形学相 比,对象体不再用几何曲面或曲线表示的三维实体, 而是用体素(Voxel)作为基本造型单元。对于每一 体素,不仅其表面而且其内部都包含了对象信息, 这是仅用曲线和曲面等几何造型方法所无法表示的。 体绘制的目的就在于提供一种基于体素的绘制技术, 它有别于传统的基于面的绘制,能显示出对象体的 丰富的内部细节。
源-衰减模型最早由Jaffery提出。该模型为体数 据场中的每一体素分配一个源强度和一个衰减系数, 每一个体素作为一个质点光源,发出的光线在数据 场中沿距离衰减后被投影到视平面上,形成结果图 象。
光照模型
当光照射到物体表面时,光线可能被吸 收、反射和透射。被物体吸收的部分转化为 热,反射、透射的光进入人的视觉系统,使 我们能看见物体。 为模拟这一现象,建立一些数学模型来 替代复杂的物理模型,这些模型就称为明暗 效应模型或者光照明模型。三维形体的图形 经过消隐后,再进行明暗效应的处理,可以 进一步提高图形的真实感。 计算某一点的光强度的模型。
脑结构图及其功能研究
由于脑的复杂性,纯粹采用神经生物 学家所常采用的简化方法无法对之作出 进一步了解。可视化技术在通过组织切 片、医学成象仪器(如超声波、 CT、 MR、PET 等)、药物吸收和神经生理 实验等手段获取脑的数字图象,并进行 特征提取和脑图分析,重构三维脑的结 构图和功能图,以适当的三维显示方式 显示出来。